Provided by: libssl-doc_3.0.5-2ubuntu1_all bug

NAME

       EVP_RAND, EVP_RAND_fetch, EVP_RAND_free, EVP_RAND_up_ref, EVP_RAND_CTX, EVP_RAND_CTX_new,
       EVP_RAND_CTX_free, EVP_RAND_instantiate, EVP_RAND_uninstantiate, EVP_RAND_generate,
       EVP_RAND_reseed, EVP_RAND_nonce, EVP_RAND_enable_locking, EVP_RAND_verify_zeroization,
       EVP_RAND_get_strength, EVP_RAND_get_state, EVP_RAND_get0_provider, EVP_RAND_CTX_get0_rand,
       EVP_RAND_is_a, EVP_RAND_get0_name, EVP_RAND_names_do_all, EVP_RAND_get0_description,
       EVP_RAND_CTX_get_params, EVP_RAND_CTX_set_params, EVP_RAND_do_all_provided,
       EVP_RAND_get_params, EVP_RAND_gettable_ctx_params, EVP_RAND_settable_ctx_params,
       EVP_RAND_CTX_gettable_params, EVP_RAND_CTX_settable_params, EVP_RAND_gettable_params,
       EVP_RAND_STATE_UNINITIALISED, EVP_RAND_STATE_READY, EVP_RAND_STATE_ERROR - EVP RAND
       routines

SYNOPSIS

        #include <openssl/evp.h>

        typedef struct evp_rand_st EVP_RAND;
        typedef struct evp_rand_ctx_st EVP_RAND_CTX;

        EVP_RAND *EVP_RAND_fetch(OSSL_LIB_CTX *libctx, const char *algorithm,
                               const char *properties);
        int EVP_RAND_up_ref(EVP_RAND *rand);
        void EVP_RAND_free(EVP_RAND *rand);
        EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent);
        void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx);
        EVP_RAND *EVP_RAND_CTX_get0_rand(EVP_RAND_CTX *ctx);
        int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[]);
        int EVP_RAND_CTX_get_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[]);
        int EVP_RAND_CTX_set_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[]);
        const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand);
        const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand);
        const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand);
        const OSSL_PARAM *EVP_RAND_CTX_gettable_params(EVP_RAND_CTX *ctx);
        const OSSL_PARAM *EVP_RAND_CTX_settable_params(EVP_RAND_CTX *ctx);
        const char *EVP_RAND_get0_name(const EVP_RAND *rand);
        const char *EVP_RAND_get0_description(const EVP_RAND *rand);
        int EVP_RAND_is_a(const EVP_RAND *rand, const char *name);
        const OSSL_PROVIDER *EVP_RAND_get0_provider(const EVP_RAND *rand);
        void EVP_RAND_do_all_provided(OSSL_LIB_CTX *libctx,
                                      void (*fn)(EVP_RAND *rand, void *arg),
                                      void *arg);
        int EVP_RAND_names_do_all(const EVP_RAND *rand,
                                  void (*fn)(const char *name, void *data),
                                  void *data);

        int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
                                 int prediction_resistance,
                                 const unsigned char *pstr, size_t pstr_len,
                                 const OSSL_PARAM params[]);
        int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx);
        int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
                              unsigned int strength, int prediction_resistance,
                              const unsigned char *addin, size_t addin_len);
        int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
                            const unsigned char *ent, size_t ent_len,
                            const unsigned char *addin, size_t addin_len);
        int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen);
        int EVP_RAND_enable_locking(EVP_RAND_CTX *ctx);
        int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx);
        unsigned int EVP_RAND_get_strength(EVP_RAND_CTX *ctx);
        int EVP_RAND_get_state(EVP_RAND_CTX *ctx);

        #define EVP_RAND_STATE_UNINITIALISED    0
        #define EVP_RAND_STATE_READY            1
        #define EVP_RAND_STATE_ERROR            2

DESCRIPTION

       The EVP RAND routines are a high-level interface to random number generators both
       deterministic and not.  If you just want to generate random bytes then you don't need to
       use these functions: just call RAND_bytes() or RAND_priv_bytes().  If you want to do more,
       these calls should be used instead of the older RAND and RAND_DRBG functions.

       After creating a EVP_RAND_CTX for the required algorithm using EVP_RAND_CTX_new(), inputs
       to the algorithm are supplied either by passing them as part of the EVP_RAND_instantiate()
       call or using calls to EVP_RAND_CTX_set_params() before calling EVP_RAND_instantiate().
       Finally, call EVP_RAND_generate() to produce cryptographically secure random bytes.

   Types
       EVP_RAND is a type that holds the implementation of a RAND.

       EVP_RAND_CTX is a context type that holds the algorithm inputs.  EVP_RAND_CTX structures
       are reference counted.

   Algorithm implementation fetching
       EVP_RAND_fetch() fetches an implementation of a RAND algorithm, given a library context
       libctx and a set of properties.  See "ALGORITHM FETCHING" in crypto(7) for further
       information.

       The returned value must eventually be freed with EVP_RAND_free(3).

       EVP_RAND_up_ref() increments the reference count of an already fetched RAND.

       EVP_RAND_free() frees a fetched algorithm.  NULL is a valid parameter, for which this
       function is a no-op.

   Context manipulation functions
       EVP_RAND_CTX_new() creates a new context for the RAND implementation rand.  If not NULL,
       parent specifies the seed source for this implementation.  Not all random number
       generators need to have a seed source specified.  If a parent is required, a NULL parent
       will utilise the operating system entropy sources.  It is recommended to minimise the
       number of random number generators that rely on the operating system for their randomness
       because this is often scarce.

       EVP_RAND_CTX_free() frees up the context ctx.  If ctx is NULL, nothing is done.

       EVP_RAND_CTX_get0_rand() returns the EVP_RAND associated with the context ctx.

   Random Number Generator Functions
       EVP_RAND_instantiate() processes any parameters in params and then instantiates the RAND
       ctx with a minimum security strength of <strength> and personalisation string pstr of
       length <pstr_len>.  If prediction_resistance is specified, fresh entropy from a live
       source will be sought.  This call operates as per NIST SP 800-90A and SP 800-90C.

       EVP_RAND_uninstantiate() uninstantiates the RAND ctx as per NIST SP 800-90A and SP
       800-90C.  Subsequent to this call, the RAND cannot be used to generate bytes.  It can only
       be freed or instantiated again.

       EVP_RAND_generate() produces random bytes from the RAND ctx with the additional input
       addin of length addin_len.  The bytes produced will meet the security strength.  If
       prediction_resistance is specified, fresh entropy from a live source will be sought.  This
       call operates as per NIST SP 800-90A and SP 800-90C.

       EVP_RAND_reseed() reseeds the RAND with new entropy.  Entropy ent of length ent_len bytes
       can be supplied as can additional input addin of length addin_len bytes.  In the FIPS
       provider, both are treated as additional input as per NIST SP-800-90Ar1, Sections 9.1 and
       9.2.  Additional seed material is also drawn from the RAND's parent or the operating
       system.  If prediction_resistance is specified, fresh entropy from a live source will be
       sought.  This call operates as per NIST SP 800-90A and SP 800-90C.

       EVP_RAND_nonce() creates a nonce in out of maximum length outlen bytes from the RAND ctx.
       The function returns the length of the generated nonce. If out is NULL, the length is
       still returned but no generation takes place. This allows a caller to dynamically allocate
       a buffer of the appropriate size.

       EVP_RAND_enable_locking() enables locking for the RAND ctx and all of its parents.  After
       this ctx will operate in a thread safe manner, albeit more slowly. This function is not
       itself thread safe if called with the same ctx from multiple threads. Typically locking
       should be enabled before a ctx is shared across multiple threads.

       EVP_RAND_get_params() retrieves details about the implementation rand.  The set of
       parameters given with params determine exactly what parameters should be retrieved.  Note
       that a parameter that is unknown in the underlying context is simply ignored.

       EVP_RAND_CTX_get_params() retrieves chosen parameters, given the context ctx and its
       underlying context.  The set of parameters given with params determine exactly what
       parameters should be retrieved.  Note that a parameter that is unknown in the underlying
       context is simply ignored.

       EVP_RAND_CTX_set_params() passes chosen parameters to the underlying context, given a
       context ctx.  The set of parameters given with params determine exactly what parameters
       are passed down.  Note that a parameter that is unknown in the underlying context is
       simply ignored.  Also, what happens when a needed parameter isn't passed down is defined
       by the implementation.

       EVP_RAND_gettable_params() returns an OSSL_PARAM array that describes the retrievable and
       settable parameters.  EVP_RAND_gettable_params() returns parameters that can be used with
       EVP_RAND_get_params().  See OSSL_PARAM(3) for the use of OSSL_PARAM as a parameter
       descriptor.

       EVP_RAND_gettable_ctx_params() and EVP_RAND_CTX_gettable_params() return constant
       OSSL_PARAM arrays that describe the retrievable parameters that can be used with
       EVP_RAND_CTX_get_params().  EVP_RAND_gettable_ctx_params() returns the parameters that can
       be retrieved from the algorithm, whereas EVP_RAND_CTX_gettable_params() returns the
       parameters that can be retrieved in the context's current state.  See OSSL_PARAM(3) for
       the use of OSSL_PARAM as a parameter descriptor.

       EVP_RAND_settable_ctx_params() and EVP_RAND_CTX_settable_params() return constant
       OSSL_PARAM arrays that describe the settable parameters that can be used with
       EVP_RAND_CTX_set_params().  EVP_RAND_settable_ctx_params() returns the parameters that can
       be retrieved from the algorithm, whereas EVP_RAND_CTX_settable_params() returns the
       parameters that can be retrieved in the context's current state.  See OSSL_PARAM(3) for
       the use of OSSL_PARAM as a parameter descriptor.

   Information functions
       EVP_RAND_get_strength() returns the security strength of the RAND ctx.

       EVP_RAND_get_state() returns the current state of the RAND ctx.  States defined by the
       OpenSSL RNGs are:

       •   EVP_RAND_STATE_UNINITIALISED: this RNG is currently uninitialised.  The instantiate
           call will change this to the ready state.

       •   EVP_RAND_STATE_READY: this RNG is currently ready to generate output.

       •   EVP_RAND_STATE_ERROR: this RNG is in an error state.

       EVP_RAND_is_a() returns 1 if rand is an implementation of an algorithm that's identifiable
       with name, otherwise 0.

       EVP_RAND_get0_provider() returns the provider that holds the implementation of the given
       rand.

       EVP_RAND_do_all_provided() traverses all RAND implemented by all activated providers in
       the given library context libctx, and for each of the implementations, calls the given
       function fn with the implementation method and the given arg as argument.

       EVP_RAND_get0_name() returns the canonical name of rand.

       EVP_RAND_names_do_all() traverses all names for rand, and calls fn with each name and
       data.

       EVP_RAND_get0_description() returns a description of the rand, meant for display and human
       consumption.  The description is at the discretion of the rand implementation.

       EVP_RAND_verify_zeroization() confirms if the internal DRBG state is currently zeroed.
       This is used by the FIPS provider to support the mandatory self tests.

PARAMETERS

       The standard parameter names are:

       "state" (OSSL_RAND_PARAM_STATE) <integer>
           Returns the state of the random number generator.

       "strength" (OSSL_RAND_PARAM_STRENGTH) <unsigned integer>
           Returns the bit strength of the random number generator.

       For rands that are also deterministic random bit generators (DRBGs), these additional
       parameters are recognised. Not all parameters are relevant to, or are understood by all
       DRBG rands:

       "reseed_requests" (OSSL_DRBG_PARAM_RESEED_REQUESTS) <unsigned integer>
           Reads or set the number of generate requests before reseeding the associated RAND ctx.

       "reseed_time_interval" (OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL) <integer>
           Reads or set the number of elapsed seconds before reseeding the associated RAND ctx.

       "max_request" (OSSL_DRBG_PARAM_RESEED_REQUESTS) <unsigned integer>
           Specifies the maximum number of bytes that can be generated in a single call to
           OSSL_FUNC_rand_generate.

       "min_entropylen" (OSSL_DRBG_PARAM_MIN_ENTROPYLEN) <unsigned integer>
       "max_entropylen" (OSSL_DRBG_PARAM_MAX_ENTROPYLEN) <unsigned integer>
           Specify the minimum and maximum number of bytes of random material that can be used to
           seed the DRBG.

       "min_noncelen" (OSSL_DRBG_PARAM_MIN_NONCELEN) <unsigned integer>
       "max_noncelen" (OSSL_DRBG_PARAM_MAX_NONCELEN) <unsigned integer>
           Specify the minimum and maximum number of bytes of nonce that can be used to seed the
           DRBG.

       "max_perslen" (OSSL_DRBG_PARAM_MAX_PERSLEN) <unsigned integer>
       "max_adinlen" (OSSL_DRBG_PARAM_MAX_ADINLEN) <unsigned integer>
           Specify the minimum and maximum number of bytes of personalisation string that can be
           used with the DRBG.

       "reseed_counter" (OSSL_DRBG_PARAM_RESEED_COUNTER) <unsigned integer>
           Specifies the number of times the DRBG has been seeded or reseeded.

       "properties" (OSSL_RAND_PARAM_PROPERTIES) <UTF8 string>
       "mac" (OSSL_RAND_PARAM_MAC) <UTF8 string>
       "digest" (OSSL_RAND_PARAM_DIGEST) <UTF8 string>
       "cipher" (OSSL_RAND_PARAM_CIPHER) <UTF8 string>
           For RAND implementations that use an underlying computation MAC, digest or cipher,
           these parameters set what the algorithm should be.

           The value is always the name of the intended algorithm, or the properties in the case
           of OSSL_RAND_PARAM_PROPERTIES.

NOTES

       An EVP_RAND_CTX needs to have locking enabled if it acts as the parent of more than one
       child and the children can be accessed concurrently.  This must be done by explicitly
       calling EVP_RAND_enable_locking().

       The RAND life-cycle is described in life_cycle-rand(7).  In the future, the transitions
       described there will be enforced.  When this is done, it will not be considered a breaking
       change to the API.

RETURN VALUES

       EVP_RAND_fetch() returns a pointer to a newly fetched EVP_RAND, or NULL if allocation
       failed.

       EVP_RAND_get0_provider() returns a pointer to the provider for the RAND, or NULL on error.

       EVP_RAND_CTX_get0_rand() returns a pointer to the EVP_RAND associated with the context.

       EVP_RAND_get0_name() returns the name of the random number generation algorithm.

       EVP_RAND_up_ref() returns 1 on success, 0 on error.

       EVP_RAND_names_do_all() returns 1 if the callback was called for all names. A return value
       of 0 means that the callback was not called for any names.

       EVP_RAND_CTX_new() returns either the newly allocated EVP_RAND_CTX structure or NULL if an
       error occurred.

       EVP_RAND_CTX_free() does not return a value.

       EVP_RAND_nonce() returns the length of the nonce.

       EVP_RAND_get_strength() returns the strength of the random number generator in bits.

       EVP_RAND_gettable_params(), EVP_RAND_gettable_ctx_params() and
       EVP_RAND_settable_ctx_params() return an array of OSSL_PARAMs.

       EVP_RAND_verify_zeroization() returns 1 if the internal DRBG state is currently zeroed,
       and 0 if not.

       The remaining functions return 1 for success and 0 or a negative value for failure.

SEE ALSO

       RAND_bytes(3), EVP_RAND-CTR-DRBG(7), EVP_RAND-HASH-DRBG(7), EVP_RAND-HMAC-DRBG(7),
       EVP_RAND-TEST-RAND(7), provider-rand(7), life_cycle-rand(7)

HISTORY

       This functionality was added to OpenSSL 3.0.

COPYRIGHT

       Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the Apache License 2.0 (the "License").  You may not use this file except
       in compliance with the License.  You can obtain a copy in the file LICENSE in the source
       distribution or at <https://www.openssl.org/source/license.html>.