Provided by: libssl-doc_3.0.5-2ubuntu1_all bug

NAME

       SSL_CTX_set_options, SSL_set_options, SSL_CTX_clear_options, SSL_clear_options,
       SSL_CTX_get_options, SSL_get_options, SSL_get_secure_renegotiation_support - manipulate
       SSL options

SYNOPSIS

        #include <openssl/ssl.h>

        uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t options);
        uint64_t SSL_set_options(SSL *ssl, uint64_t options);

        uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t options);
        uint64_t SSL_clear_options(SSL *ssl, uint64_t options);

        uint64_t SSL_CTX_get_options(const SSL_CTX *ctx);
        uint64_t SSL_get_options(const SSL *ssl);

        long SSL_get_secure_renegotiation_support(SSL *ssl);

DESCRIPTION

       SSL_CTX_set_options() adds the options set via bit-mask in options to ctx.  Options
       already set before are not cleared!

       SSL_set_options() adds the options set via bit-mask in options to ssl.  Options already
       set before are not cleared!

       SSL_CTX_clear_options() clears the options set via bit-mask in options to ctx.

       SSL_clear_options() clears the options set via bit-mask in options to ssl.

       SSL_CTX_get_options() returns the options set for ctx.

       SSL_get_options() returns the options set for ssl.

       SSL_get_secure_renegotiation_support() indicates whether the peer supports secure
       renegotiation.  Note, this is implemented via a macro.

NOTES

       The behaviour of the SSL library can be changed by setting several options.  The options
       are coded as bit-masks and can be combined by a bitwise or operation (|).

       SSL_CTX_set_options() and SSL_set_options() affect the (external) protocol behaviour of
       the SSL library. The (internal) behaviour of the API can be changed by using the similar
       SSL_CTX_set_mode(3) and SSL_set_mode() functions.

       During a handshake, the option settings of the SSL object are used. When a new SSL object
       is created from a context using SSL_new(), the current option setting is copied. Changes
       to ctx do not affect already created SSL objects. SSL_clear() does not affect the
       settings.

       The following bug workaround options are available:

       SSL_OP_CRYPTOPRO_TLSEXT_BUG
           Add server-hello extension from the early version of cryptopro draft when GOST
           ciphersuite is negotiated. Required for interoperability with CryptoPro CSP 3.x.

       SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
           Disables a countermeasure against a SSL 3.0/TLS 1.0 protocol vulnerability affecting
           CBC ciphers, which cannot be handled by some broken SSL implementations.  This option
           has no effect for connections using other ciphers.

       SSL_OP_SAFARI_ECDHE_ECDSA_BUG
           Don't prefer ECDHE-ECDSA ciphers when the client appears to be Safari on OS X.  OS X
           10.8..10.8.3 has broken support for ECDHE-ECDSA ciphers.

       SSL_OP_TLSEXT_PADDING
           Adds a padding extension to ensure the ClientHello size is never between 256 and 511
           bytes in length. This is needed as a workaround for some implementations.

       SSL_OP_ALL
           All of the above bug workarounds.

       It is usually safe to use SSL_OP_ALL to enable the bug workaround options if compatibility
       with somewhat broken implementations is desired.

       The following modifying options are available:

       SSL_OP_ALLOW_CLIENT_RENEGOTIATION
           Client-initiated renegotiation is disabled by default. Use this option to enable it.

       SSL_OP_ALLOW_NO_DHE_KEX
           In TLSv1.3 allow a non-(ec)dhe based key exchange mode on resumption. This means that
           there will be no forward secrecy for the resumed session.

       SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION
           Allow legacy insecure renegotiation between OpenSSL and unpatched clients or servers.
           See the SECURE RENEGOTIATION section for more details.

       SSL_OP_CIPHER_SERVER_PREFERENCE
           When choosing a cipher, use the server's preferences instead of the client
           preferences. When not set, the SSL server will always follow the clients preferences.
           When set, the SSL/TLS server will choose following its own preferences.

       SSL_OP_CISCO_ANYCONNECT
           Use Cisco's version identifier of DTLS_BAD_VER when establishing a DTLSv1 connection.
           Only available when using the deprecated DTLSv1_client_method() API.

       SSL_OP_CLEANSE_PLAINTEXT
           By default TLS connections keep a copy of received plaintext application data in a
           static buffer until it is overwritten by the next portion of data. When enabling
           SSL_OP_CLEANSE_PLAINTEXT deciphered application data is cleansed by calling
           OPENSSL_cleanse(3) after passing data to the application. Data is also cleansed when
           releasing the connection (e.g. SSL_free(3)).

           Since OpenSSL only cleanses internal buffers, the application is still responsible for
           cleansing all other buffers. Most notably, this applies to buffers passed to functions
           like SSL_read(3), SSL_peek(3) but also like SSL_write(3).

       SSL_OP_COOKIE_EXCHANGE
           Turn on Cookie Exchange as described in RFC4347 Section 4.2.1. Only affects DTLS
           connections.

       SSL_OP_DISABLE_TLSEXT_CA_NAMES
           Disable TLS Extension CA Names. You may want to disable it for security reasons or for
           compatibility with some Windows TLS implementations crashing when this extension is
           larger than 1024 bytes.

       SSL_OP_ENABLE_KTLS
           Enable the use of kernel TLS. In order to benefit from kernel TLS OpenSSL must have
           been compiled with support for it, and it must be supported by the negotiated
           ciphersuites and extensions. The specific ciphersuites and extensions that are
           supported may vary by platform and kernel version.

           The kernel TLS data-path implements the record layer, and the encryption algorithm.
           The kernel will utilize the best hardware available for encryption. Using the kernel
           data-path should reduce the memory footprint of OpenSSL because no buffering is
           required. Also, the throughput should improve because data copy is avoided when user
           data is encrypted into kernel memory instead of the usual encrypt then copy to kernel.

           Kernel TLS might not support all the features of OpenSSL. For instance, renegotiation,
           and setting the maximum fragment size is not possible as of Linux 4.20.

           Note that with kernel TLS enabled some cryptographic operations are performed by the
           kernel directly and not via any available OpenSSL Providers. This might be undesirable
           if, for example, the application requires all cryptographic operations to be performed
           by the FIPS provider.

       SSL_OP_ENABLE_MIDDLEBOX_COMPAT
           If set then dummy Change Cipher Spec (CCS) messages are sent in TLSv1.3. This has the
           effect of making TLSv1.3 look more like TLSv1.2 so that middleboxes that do not
           understand TLSv1.3 will not drop the connection. Regardless of whether this option is
           set or not CCS messages received from the peer will always be ignored in TLSv1.3. This
           option is set by default. To switch it off use SSL_clear_options(). A future version
           of OpenSSL may not set this by default.

       SSL_OP_IGNORE_UNEXPECTED_EOF
           Some TLS implementations do not send the mandatory close_notify alert on shutdown. If
           the application tries to wait for the close_notify alert but the peer closes the
           connection without sending it, an error is generated. When this option is enabled the
           peer does not need to send the close_notify alert and a closed connection will be
           treated as if the close_notify alert was received.

           You should only enable this option if the protocol running over TLS can detect a
           truncation attack itself, and that the application is checking for that truncation
           attack.

           For more information on shutting down a connection, see SSL_shutdown(3).

       SSL_OP_LEGACY_SERVER_CONNECT
           Allow legacy insecure renegotiation between OpenSSL and unpatched servers only. See
           the SECURE RENEGOTIATION section for more details.

       SSL_OP_NO_ANTI_REPLAY
           By default, when a server is configured for early data (i.e., max_early_data > 0),
           OpenSSL will switch on replay protection. See SSL_read_early_data(3) for a description
           of the replay protection feature. Anti-replay measures are required to comply with the
           TLSv1.3 specification. Some applications may be able to mitigate the replay risks in
           other ways and in such cases the built in OpenSSL functionality is not required. Those
           applications can turn this feature off by setting this option. This is a server-side
           opton only. It is ignored by clients.

       SSL_OP_NO_COMPRESSION
           Do not use compression even if it is supported. This option is set by default.  To
           switch it off use SSL_clear_options().

       SSL_OP_NO_ENCRYPT_THEN_MAC
           Normally clients and servers will transparently attempt to negotiate the RFC7366
           Encrypt-then-MAC option on TLS and DTLS connection.

           If this option is set, Encrypt-then-MAC is disabled. Clients will not propose, and
           servers will not accept the extension.

       SSL_OP_NO_EXTENDED_MASTER_SECRET
           Normally clients and servers will transparently attempt to negotiate the RFC7627
           Extended Master Secret option on TLS and DTLS connection.

           If this option is set, Extended Master Secret is disabled. Clients will not propose,
           and servers will not accept the extension.

       SSL_OP_NO_QUERY_MTU
           Do not query the MTU. Only affects DTLS connections.

       SSL_OP_NO_RENEGOTIATION
           Disable all renegotiation in TLSv1.2 and earlier. Do not send HelloRequest messages,
           and ignore renegotiation requests via ClientHello.

       SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
           When performing renegotiation as a server, always start a new session (i.e., session
           resumption requests are only accepted in the initial handshake). This option is not
           needed for clients.

       SSL_OP_NO_SSLv3, SSL_OP_NO_TLSv1, SSL_OP_NO_TLSv1_1, SSL_OP_NO_TLSv1_2, SSL_OP_NO_TLSv1_3,
       SSL_OP_NO_DTLSv1, SSL_OP_NO_DTLSv1_2
           These options turn off the SSLv3, TLSv1, TLSv1.1, TLSv1.2 or TLSv1.3 protocol versions
           with TLS or the DTLSv1, DTLSv1.2 versions with DTLS, respectively.  As of OpenSSL
           1.1.0, these options are deprecated, use SSL_CTX_set_min_proto_version(3) and
           SSL_CTX_set_max_proto_version(3) instead.

       SSL_OP_NO_TICKET
           SSL/TLS supports two mechanisms for resuming sessions: session ids and stateless
           session tickets.

           When using session ids a copy of the session information is cached on the server and a
           unique id is sent to the client. When the client wishes to resume it provides the
           unique id so that the server can retrieve the session information from its cache.

           When using stateless session tickets the server uses a session ticket encryption key
           to encrypt the session information. This encrypted data is sent to the client as a
           "ticket". When the client wishes to resume it sends the encrypted data back to the
           server. The server uses its key to decrypt the data and resume the session. In this
           way the server can operate statelessly - no session information needs to be cached
           locally.

           The TLSv1.3 protocol only supports tickets and does not directly support session ids.
           However, OpenSSL allows two modes of ticket operation in TLSv1.3: stateful and
           stateless. Stateless tickets work the same way as in TLSv1.2 and below.  Stateful
           tickets mimic the session id behaviour available in TLSv1.2 and below.  The session
           information is cached on the server and the session id is wrapped up in a ticket and
           sent back to the client. When the client wishes to resume, it presents a ticket in the
           same way as for stateless tickets. The server can then extract the session id from the
           ticket and retrieve the session information from its cache.

           By default OpenSSL will use stateless tickets. The SSL_OP_NO_TICKET option will cause
           stateless tickets to not be issued. In TLSv1.2 and below this means no ticket gets
           sent to the client at all. In TLSv1.3 a stateful ticket will be sent. This is a
           server-side option only.

           In TLSv1.3 it is possible to suppress all tickets (stateful and stateless) from being
           sent by calling SSL_CTX_set_num_tickets(3) or SSL_set_num_tickets(3).

       SSL_OP_PRIORITIZE_CHACHA
           When SSL_OP_CIPHER_SERVER_PREFERENCE is set, temporarily reprioritize
           ChaCha20-Poly1305 ciphers to the top of the server cipher list if a ChaCha20-Poly1305
           cipher is at the top of the client cipher list. This helps those clients (e.g. mobile)
           use ChaCha20-Poly1305 if that cipher is anywhere in the server cipher list; but still
           allows other clients to use AES and other ciphers. Requires
           SSL_OP_CIPHER_SERVER_PREFERENCE.

       SSL_OP_TLS_ROLLBACK_BUG
           Disable version rollback attack detection.

           During the client key exchange, the client must send the same information about
           acceptable SSL/TLS protocol levels as during the first hello. Some clients violate
           this rule by adapting to the server's answer. (Example: the client sends a SSLv2 hello
           and accepts up to SSLv3.1=TLSv1, the server only understands up to SSLv3. In this case
           the client must still use the same SSLv3.1=TLSv1 announcement. Some clients step down
           to SSLv3 with respect to the server's answer and violate the version rollback
           protection.)

       The following options no longer have any effect but their identifiers are retained for
       compatibility purposes:

       SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
       SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER
       SSL_OP_SSLEAY_080_CLIENT_DH_BUG
       SSL_OP_TLS_D5_BUG
       SSL_OP_TLS_BLOCK_PADDING_BUG
       SSL_OP_MSIE_SSLV2_RSA_PADDING
       SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG
       SSL_OP_MICROSOFT_SESS_ID_BUG
       SSL_OP_NETSCAPE_CHALLENGE_BUG
       SSL_OP_PKCS1_CHECK_1
       SSL_OP_PKCS1_CHECK_2
       SSL_OP_SINGLE_DH_USE
       SSL_OP_SINGLE_ECDH_USE
       SSL_OP_EPHEMERAL_RSA

SECURE RENEGOTIATION

       OpenSSL always attempts to use secure renegotiation as described in RFC5746. This counters
       the prefix attack described in CVE-2009-3555 and elsewhere.

       This attack has far reaching consequences which application writers should be aware of. In
       the description below an implementation supporting secure renegotiation is referred to as
       patched. A server not supporting secure renegotiation is referred to as unpatched.

       The following sections describe the operations permitted by OpenSSL's secure renegotiation
       implementation.

   Patched client and server
       Connections and renegotiation are always permitted by OpenSSL implementations.

   Unpatched client and patched OpenSSL server
       The initial connection succeeds but client renegotiation is denied by the server with a
       no_renegotiation warning alert if TLS v1.0 is used or a fatal handshake_failure alert in
       SSL v3.0.

       If the patched OpenSSL server attempts to renegotiate a fatal handshake_failure alert is
       sent. This is because the server code may be unaware of the unpatched nature of the
       client.

       If the option SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION is set then renegotiation always
       succeeds.

   Patched OpenSSL client and unpatched server
       If the option SSL_OP_LEGACY_SERVER_CONNECT or SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION is
       set then initial connections and renegotiation between patched OpenSSL clients and
       unpatched servers succeeds. If neither option is set then initial connections to unpatched
       servers will fail.

       Setting the option SSL_OP_LEGACY_SERVER_CONNECT has security implications; clients that
       are willing to connect to servers that do not implement RFC 5746 secure renegotiation are
       subject to attacks such as CVE-2009-3555.

       OpenSSL client applications wishing to ensure they can connect to unpatched servers should
       always set SSL_OP_LEGACY_SERVER_CONNECT

       OpenSSL client applications that want to ensure they can not connect to unpatched servers
       (and thus avoid any security issues) should always clear SSL_OP_LEGACY_SERVER_CONNECT
       using SSL_CTX_clear_options() or SSL_clear_options().

       The difference between the SSL_OP_LEGACY_SERVER_CONNECT and
       SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION options is that SSL_OP_LEGACY_SERVER_CONNECT
       enables initial connections and secure renegotiation between OpenSSL clients and unpatched
       servers only, while SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION allows initial connections
       and renegotiation between OpenSSL and unpatched clients or servers.

RETURN VALUES

       SSL_CTX_set_options() and SSL_set_options() return the new options bit-mask after adding
       options.

       SSL_CTX_clear_options() and SSL_clear_options() return the new options bit-mask after
       clearing options.

       SSL_CTX_get_options() and SSL_get_options() return the current bit-mask.

       SSL_get_secure_renegotiation_support() returns 1 is the peer supports secure renegotiation
       and 0 if it does not.

SEE ALSO

       ssl(7), SSL_new(3), SSL_clear(3), SSL_shutdown(3) SSL_CTX_set_tmp_dh_callback(3),
       SSL_CTX_set_min_proto_version(3), openssl-dhparam(1)

HISTORY

       The attempt to always try to use secure renegotiation was added in OpenSSL 0.9.8m.

       The SSL_OP_PRIORITIZE_CHACHA and SSL_OP_NO_RENEGOTIATION options were added in OpenSSL
       1.1.1.

       The SSL_OP_NO_EXTENDED_MASTER_SECRET and SSL_OP_IGNORE_UNEXPECTED_EOF options were added
       in OpenSSL 3.0.

       The SSL_OP_ constants and the corresponding parameter and return values of the affected
       functions were changed to "uint64_t" type in OpenSSL 3.0.  For that reason it is no longer
       possible use the SSL_OP_ macro values in preprocessor "#if" conditions. However it is
       still possible to test whether these macros are defined or not.

COPYRIGHT

       Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the Apache License 2.0 (the "License").  You may not use this file except
       in compliance with the License.  You can obtain a copy in the file LICENSE in the source
       distribution or at <https://www.openssl.org/source/license.html>.