Provided by: libsereal-encoder-perl_4.025+ds-1_amd64 bug

NAME

       Sereal::Encoder - Fast, compact, powerful binary serialization

SYNOPSIS

         use Sereal::Encoder qw(encode_sereal sereal_encode_with_object);

         my $encoder = Sereal::Encoder->new({...options...});
         my $out = $encoder->encode($structure);

         # alternatively the functional interface:
         $out = sereal_encode_with_object($encoder, $structure);

         # much slower functional interface with no persistent objects:
         $out = encode_sereal($structure, {... options ...});

DESCRIPTION

       This library implements an efficient, compact-output, and feature-rich serializer using a
       binary protocol called Sereal.  Its sister module Sereal::Decoder implements a decoder for
       this format.  The two are released separately to allow for independent and safer
       upgrading.  If you care greatly about performance, consider reading the
       Sereal::Performance documentation after finishing this document.

       The Sereal protocol version emitted by this encoder implementation is currently protocol
       version 4 by default.

       The protocol specification and many other bits of documentation can be found in the github
       repository. Right now, the specification is at
       <https://github.com/Sereal/Sereal/blob/master/sereal_spec.pod>, there is a discussion of
       the design objectives in <https://github.com/Sereal/Sereal/blob/master/README.pod>, and
       the output of our benchmarks can be seen at
       <https://github.com/Sereal/Sereal/wiki/Sereal-Comparison-Graphs>.  For more information on
       getting the best performance out of Sereal, have a look at the "PERFORMANCE" section
       below.

CLASS METHODS

   new
       Constructor. Optionally takes a hash reference as first parameter. This hash reference may
       contain any number of options that influence the behaviour of the encoder.

       Currently, the following options are recognized, none of them are on by default.

       compress

       If this option provided and true, compression of the document body is enabled.  As of
       Sereal version 4, three different compression techniques are supported and can be enabled
       by setting "compress" to the respective named constants (exportable from the
       "Sereal::Encoder" module): Snappy (named constant: "SRL_SNAPPY"), Zlib ("SRL_ZLIB") and
       Zstd ("SRL_ZSTD").  For your convenience, there is also a "SRL_UNCOMPRESSED" constant.

       If this option is set, then the Snappy-related options below are ignored. They are
       otherwise recognized for compatibility only.

       compress_threshold

       The size threshold (in bytes) of the uncompressed output below which compression is not
       even attempted even if enabled.  Defaults to one kilobyte (1024 bytes). Set this to 0 and
       "compress" to a non-"SRL_UNCOMPRESSED" value to always attempt to compress.  Note that the
       document will not be compressed if the resulting size will be bigger than the original
       size (even if "compress_threshold" is 0).

       compress_level

       If Zlib or Zstd compressions are used, then this option will set a compression level: Zlib
       uses range from 1 (fastest) to 9 (best). Defaults to 6. Zstd uses range from 1 (fastest)
       to 22 (best). Default is 3.

       snappy

       See also the "compress" option. This option is provided only for compatibility with Sereal
       V1.

       If set, the main payload of the Sereal document will be compressed using Google's Snappy
       algorithm. This can yield anywhere from no effect to significant savings on output size at
       rather low run time cost.  If in doubt, test with your data whether this helps or not.

       The decoder (version 0.04 and up) will know how to handle Snappy-compressed Sereal
       documents transparently.

       Note: The "snappy_incr" and "snappy" options are identical in Sereal protocol v2 and up
       (so by default). If using an older protocol version (see "protocol_version" and
       "use_protocol_v1" options below) to emit Sereal V1 documents, this emits non-incrementally
       decodable documents. See "snappy_incr" in those cases.

       snappy_incr

       See also the "compress" option. This option is provided only for compatibility with Sereal
       V1.

       Same as the "snappy" option for default operation (that is in Sereal v2 or up).

       In Sereal V1, enables a version of the Snappy protocol which is suitable for incremental
       parsing of packets. See also the "snappy" option above for more details.

       snappy_threshold

       See also the "compress" option. This option is provided only for compatibility with Sereal
       V1.

       This option is a synonym for the "compress_threshold" option, but only if Snappy
       compression is enabled.

       croak_on_bless

       If this option is set, then the encoder will refuse to serialize blessed references and
       throw an exception instead.

       This can be important because blessed references can mean executing a destructor on a
       remote system or generally executing code based on data.

       See also "no_bless_objects" to skip the blessing of objects.  When both flags are set,
       "croak_on_bless" has a higher precedence then "no_bless_objects".

       freeze_callbacks

       This option was introduced in Sereal v2 and needs a Sereal v2 decoder.

       If this option is set, the encoder will check for and possibly invoke the "FREEZE" method
       on any object in the input data. An object that was serialized using its "FREEZE" method
       will have its corresponding "THAW" class method called during deserialization. The exact
       semantics are documented below under "FREEZE/THAW CALLBACK MECHANISM".

       Beware that using this functionality means a significant slowdown for object
       serialization. Even when serializing objects without a "FREEZE" method, the additional
       method look up will cost a small amount of runtime.  Yes, "Sereal::Encoder" is so fast
       that this may make a difference.

       no_bless_objects

       If this option is set, then the encoder will serialize blessed references without the
       bless information and provide plain data structures instead.

       See also the "croak_on_bless" option above for more details.

       undef_unknown

       If set, unknown/unsupported data structures will be encoded as "undef" instead of throwing
       an exception.

       Mutually exclusive with "stringify_unknown".  See also "warn_unknown" below.

       stringify_unknown

       If set, unknown/unsupported data structures will be stringified and encoded as that string
       instead of throwing an exception. The stringification may cause a warning to be emitted by
       perl.

       Mutually exclusive with "undef_unknown".  See also "warn_unknown" below.

       warn_unknown

       Only has an effect if "undef_unknown" or "stringify_unknown" are enabled.

       If set to a positive integer, any unknown/unsupported data structure encountered will emit
       a warning. If set to a negative integer, it will warn for unsupported data structures just
       the same as for a positive value with one exception: For blessed, unsupported items that
       have string overloading, we silently stringify without warning.

       max_recursion_depth

       "Sereal::Encoder" is recursive. If you pass it a Perl data structure that is deeply
       nested, it will eventually exhaust the C stack. Therefore, there is a limit on the depth
       of recursion that is accepted. It defaults to 10000 nested calls. You may choose to
       override this value with the "max_recursion_depth" option. Beware that setting it too high
       can cause hard crashes, so only do that if you KNOW that it is safe to do so.

       Do note that the setting is somewhat approximate. Setting it to 10000 may break at
       somewhere between 9997 and 10003 nested structures depending on their types.

       canonical

       Enable all options which are related to producing canonical output, so that two
       strucutures with similar contents produce the same serialized form.

       See the caveats elsewhere in this document about producing canonical output.

       Currently sets the default for the following parameters: "canonical_refs" and "sort_keys".
       If the option is explicitly set then this setting is ignored.  More options may be added
       in the future.

       You are warned that use of this option may incur additional performance penalties in a
       future release by enabling other options than those listed here.

       canonical_refs

       Normally "Sereal::Encoder" will ARRAYREF and HASHREF tags when the item contains less than
       16 items, and and is not referenced more than once. This flag will override this
       optimization and use a standard REFN ARRAY style tag output. This is primarily useful for
       producing canonical output and for testing Sereal itself.

       See "CANONICAL REPRESENTATION" for why you might want to use this, and for the various
       caveats involved.

       sort_keys

       Normally "Sereal::Encoder" will output hashes in whatever order is convenient, generally
       that used by perl to actually store the hash, or whatever order was returned by a tied
       hash.

       If this option is enabled then the Encoder will sort the keys before outputting them. It
       uses more memory, and is quite a bit slower than the default.

       Generally speaking this should mean that a hash and a copy should produce the same output.
       Nevertheless the user is warned that Perl has a way of "morphing" variables on use, and
       some of its rules are a little arcane (for instance utf8 keys), and so two hashes that
       might appear to be the same might still produce different output as far as Sereal is
       concerned.

       As of 3.006_007 (prerelease candidate for 3.007) the sort order has been changed to the
       following: order by length of keys (in bytes) ascending, then by byte order of the raw
       underlying string, then by utf8ness, with non-utf8 first. This order was chosen because it
       is the most efficient to implement, both in terms of memory and time. This sort order is
       enabled when sort_keys is set to 1.

       You may also produce output in Perl "cmp" order, by setting sort_keys to 2.  And for
       backwards compatibility you may also produce output in reverse Perl "cmp" order by setting
       sort_keys to 3. Prior to 3.006_007 this was the only sort order possible, although it was
       not explicitly defined what it was.

       Note that comparatively speaking both of the "cmp" sort orders are slow and memory
       inefficient. Unless you have a really good reason stick to the default which is fast and
       as lean as possible.

       Unless you are concerned with "cross process canonical representation" then it doesn't
       matter what option you choose.

       See "CANONICAL REPRESENTATION" for why you might want to use this, and for the various
       caveats involved.

       no_shared_hashkeys

       When the "no_shared_hashkeys" option is set to a true value, then the encoder will disable
       the detection and elimination of repeated hash keys. This only has an effect for
       serializing structures containing hashes.  By skipping the detection of repeated hash
       keys, performance goes up a bit, but the size of the output can potentially be much
       larger.

       Do not disable this unless you have a reason to.

       dedupe_strings

       If this is option is enabled/true then Sereal will use a hash to encode duplicates of
       strings during serialization efficiently using (internal) backreferences. This has a
       performance and memory penalty during encoding so it defaults to off.  On the other hand,
       data structures with many duplicated strings will see a significant reduction in the size
       of the encoded form. Currently only strings longer than 3 characters will be deduped,
       however this may change in the future.

       Note that Sereal will perform certain types of deduping automatically even without this
       option. In particular class names and hash keys (see also the "no_shared_hashkeys"
       setting) are deduped regardless of this option. Only enable this if you have good reason
       to believe that there are many duplicated strings as values in your data structure.

       Use of this option does not require an upgraded decoder (this option was added in
       Sereal::Encoder 0.32). The deduping is performed in such a way that older decoders should
       handle it just fine.  In other words, the output of a Sereal decoder should not depend on
       whether this option was used during encoding. See also below: aliased_dedupe_strings.

       aliased_dedupe_strings

       This is an advanced option that should be used only after fully understanding its
       ramifications.

       This option enables a mode of operation that is similar to dedupe_strings and if both
       options are set, aliased_dedupe_strings takes precedence.

       The behaviour of aliased_dedupe_strings differs from dedupe_strings in that the duplicate
       occurrences of strings are emitted as Perl language level aliases instead of as Sereal-
       internal backreferences. This means that using this option actually produces a different
       output data structure when decoding. The upshot is that with this option, the application
       using (decoding) the data may save a lot of memory in some situations but at the cost of
       potential action at a distance due to the aliasing.

       Beware: The test suite currently does not cover this option as well as it probably should.
       Patches welcome.

       protocol_version

       Specifies the version of the Sereal protocol to emit. Valid are integers between 1 and the
       current version. If not specified, the most recent protocol version will be used. See also
       "use_protocol_v1":

       It is strongly advised to use the latest protocol version outside of migration periods.

       use_protocol_v1

       This option is deprecated in favour of the "protocol_version" option (see above).

       If set, the encoder will emit Sereal documents following protocol version 1.  This is
       strongly discouraged except for temporary compatibility/migration purposes.

INSTANCE METHODS

   encode
       Given a Perl data structure, serializes that data structure and returns a binary string
       that can be turned back into the original data structure by Sereal::Decoder. The method
       expects a data structure to serialize as first argument, optionally followed by a header
       data structure.

       A header is intended for embedding small amounts of meta data, such as routing
       information, in a document that allows users to avoid deserializing main body needlessly.

   encode_to_file
           Sereal::Encoder->encode_to_file($file,$data,$append);
           $encoder->encode_to_file($file,$data,$append);

       Encode the data specified and write it the named file.  If $append is true then the
       written data is appended to any existing data, otherwise any existing data will be
       overwritten.  Dies if any errors occur during writing the encoded data.

EXPORTABLE FUNCTIONS

   sereal_encode_with_object
       The functional interface that is equivalent to using "encode". Takes an encoder object
       reference as first argument, followed by a data structure and optional header to
       serialize.

       This functional interface is marginally faster than the OO interface since it avoids
       method resolution overhead and, on sufficiently modern Perl versions, can usually avoid
       subroutine call overhead.

   encode_sereal
       The functional interface that is equivalent to using "new" and "encode".  Expects a data
       structure to serialize as first argument, optionally followed by a hash reference of
       options (see documentation for "new()").

       This function cannot be used for encoding a data structure with a header.  See
       "encode_sereal_with_header_data".

       This functional interface is significantly slower than the OO interface since it cannot
       reuse the encoder object.

   encode_sereal_with_header_data
       The functional interface that is equivalent to using "new" and "encode".  Expects a data
       structure and a header to serialize as first and second arguments, optionally followed by
       a hash reference of options (see documentation for "new()").

       This functional interface is significantly slower than the OO interface since it cannot
       reuse the encoder object.

PERFORMANCE

       See Sereal::Performance for detailed considerations on performance tuning. Let it just be
       said that:

       If you care about performance at all, then use "sereal_encode_with_object" or the OO
       interface instead of "encode_sereal". It's a significant difference in performance if you
       are serializing small data structures.

       The exact performance in time and space depends heavily on the data structure to be
       serialized. Often there is a trade-off between space and time. If in doubt, do your own
       testing and most importantly ALWAYS TEST WITH REAL DATA. If you care purely about speed at
       the expense of output size, you can use the "no_shared_hashkeys" option for a small speed-
       up. If you need smaller output at the cost of higher CPU load and more memory used during
       encoding/decoding, try the "dedupe_strings" option and enable Snappy compression.

       For ready-made comparison scripts, see the author_tools/bench.pl and
       author_tools/dbench.pl programs that are part of this distribution. Suffice to say that
       this library is easily competitive in both time and space efficiency with the best
       alternatives.

FREEZE/THAW CALLBACK MECHANISM

       Some objects do not lend themselves naturally to naive perl datastructure level
       serialization. For instance XS code might use a hidden structure that would not get
       serialized, or an object may contain volatile data like a filehandle that would not be
       reconstituted properly. To support cases like this "Sereal" supports a FREEZE and THAW
       api. When objects are serialized their FREEZE method is asked for a replacement
       representation, and when objects are deserialized their THAW method is asked to convert
       that replacement back to something useful.

       This mechanism is enabled using the "freeze_callbacks" option of the encoder.  It is
       inspired by the equivalent mechanism in CBOR::XS. The general mechanism is documented in
       the A GENERIC OBJECT SERIALIATION PROTOCOL section of Types::Serialiser. Similar to CBOR
       using "CBOR", Sereal uses the string "Sereal" as a serializer identifier for the
       callbacks.

       Here is a contrived example of a class implementing the "FREEZE" / "THAW" mechanism.

         package
           File;

         use Moo;

         has 'path' => (is => 'ro');
         has 'fh' => (is => 'rw');

         # open file handle if necessary and return it
         sub get_fh {
           my $self = shift;
           # This could also be done with fancier Moo(se) syntax
           my $fh = $self->fh;
           if (not $fh) {
             open $fh, "<", $self->path or die $!;
             $self->fh($fh);
           }
           return $fh;
         }

         sub FREEZE {
           my ($self, $serializer) = @_;
           # Could switch on $serializer here: JSON, CBOR, Sereal, ...
           # But this case is so simple that it will work with ALL of them.
           # Do not try to serialize our file handle! Path will be enough
           # to recreate.
           return $self->path;
         }

         sub THAW {
           my ($class, $serializer, $data) = @_;
           # Turn back into object.
           return $class->new(path => $data);
         }

       Why is the "FREEZE"/"THAW" mechanism important here? Our contrived "File" class may
       contain a file handle which can't be serialized. So "FREEZE" not only returns just the
       path (which is more compact than encoding the actual object contents), but it strips the
       file handle which can be lazily reopened on the other side of the
       serialization/deserialization pipe.  But this example also shows that a naive
       implementation can easily end up with subtle bugs. A file handle itself has state
       (position in file, etc).  Thus the deserialization in the above example won't accurately
       reproduce the original state. It can't, of course, if it's deserialized in a different
       environment anyway.

THREAD-SAFETY

       "Sereal::Encoder" is thread-safe on Perl's 5.8.7 and higher. This means "thread-safe" in
       the sense that if you create a new thread, all "Sereal::Encoder" objects will become a
       reference to undef in the new thread. This might change in a future release to become a
       full clone of the encoder object.

CANONICAL REPRESENTATION

       You might want to compare two data structures by comparing their serialized byte strings.
       For that to work reliably the serialization must take extra steps to ensure that identical
       data structures are encoded into identical serialized byte strings (a so-called "canonical
       representation").

       Unfortunately in Perl there is no such thing as a "canonical representation".  Most people
       are interested in "structural equivalence" but even that is less well defined than most
       people think. For instance in the following example:

           my $array1= [ 0, 0 ];
           my $array2= do {
               my $zero= 0;
               sub{ \@_ }->($zero,$zero);
           };

       the question of whether $array1 is structurally equivalent to $array2 is a subjective one.
       Sereal for instance would NOT consider them equivalent but "Test::Deep" would.  There are
       many examples of this in Perl. Simply stringifying a number technically changes the
       scalar. Storable would notice this, but Sereal generally would not.

       Despite this as of 3.002 the Sereal encoder supports a "canonical" option which will make
       a "best effort" attempt at producing a canonical representation of a data structure.  This
       mode is actually a combination of several other modes which may also be enabled
       independently, and as and when we add new options to the encoder that would assist in this
       regard then the "canonical" will also enable them. These options may come with a
       performance penalty so care should be taken to read the Changes file and test the
       performance implications when upgrading a system that uses this option.

       It is important to note that using canonical representation to determine if two data
       structures are different is subject to false-positives. If two Sereal encodings are
       identical you can generally assume that the two data structures are functionally
       equivalent from the point of view of normal Perl code (XS code might disagree). However if
       two Sereal encodings differ the data structures may actually be functionally equivalent.
       In practice it seems the the false-positive rate is low, but your milage may vary.

       Some of the issues with producing a true canonical representation are outlined below:

       Sereal doesn't order the hash keys by default.
           This can be enabled via the "sort_keys", which is itself enabled by "canonical"
           option.

       Sereal output is sensitive to refcounts
           This can be somewhat mitigated by the use of "canonical_refs", see above.

       There are multiple valid Sereal documents that you can produce for the same Perl data
       structure.
           Just sorting hash keys is not enough.  Some of the reasons are outlined below. These
           issues are especially relevant when considering language interoperability.

           PAD bytes
               A trivial example is PAD bytes which mean nothing and are skipped. They mostly
               exist for encoder optimizations to prevent certain nasty backtracking situations
               from becoming O(n) at the cost of one byte of output. An explicit canonical mode
               would have to outlaw them (or add more of them) and thus require a much more
               complicated implementation of refcount/weakref handing in the encoder while at the
               same time causing some operations to go from O(1) to a full memcpy of everything
               after the point of where we backtracked to. Nasty.

           COPY tag
               Another example is COPY. The COPY tag indicates that the next element is an
               identical copy of a previous element (which is itself forbidden from including
               COPY's other than for class names). COPY is purely internal. The Perl/XS
               implementation uses it to share hash keys and class names. One could use it for
               other strings (theoretically), but doesn't for time-efficiency reasons. We'd have
               to outlaw the use of this (significant) optimization of canonicalization.

           REF representation
               Sereal represents a reference to an array as a sequence of tags which, in its
               simplest form, reads REF, ARRAY $array_length TAG1 TAG2 ....  The separation of
               "REF" and "ARRAY" is necessary to properly implement all of Perl's referencing and
               aliasing semantics correctly. Quite frequently, however, your array is only
               referenced once and plainly so. If it's also at most 15 elements long, Sereal
               optimizes all of the "REF" and "ARRAY" tags, as well as the length into a special
               one byte ARRAYREF tag. This is a very significant optimization for common cases.
               This, however, does mean that most arrays up to 15 elements could be represented
               in two different, yet perfectly valid forms. ARRAYREF would have to be outlawed
               for a properly canonical form. The exact same logic applies to HASH vs. HASHREF.
               This behavior can be overridden by the "canonical_refs" option, which disables use
               of HASHREF and ARRAYREF.

           Numeric representation
               Similar to how Sereal can represent arrays and hashes in a full and a compact
               form. For small integers (between -16 and +15 inclusive), Sereal emits only one
               byte including the encoding of the type of data. For larger integers, it can use
               either variants (positive only) or zigzag encoding, which can also represent
               negative numbers. For a canonical mode, the space optimizations would have to be
               turned off and it would have to be explicitly specified whether variant or zigzag
               encoding is to be used for encoding positive integers.

               Perl may choose to retain multiple representations of a scalar. Specifically, it
               can convert integers, floating point numbers, and strings on the fly and will
               aggressively cache the results. Normally, it remembers which of the
               representations can be considered canonical, that means, which can be used to
               recreate the others reliably. For example, 0 and "0" can both be considered
               canonical since they naturally transform into each other. Beyond intrinsic
               ambiguity, there are ways to trick Perl into allowing a single scalar to have
               distinct string, integer, and floating point representations that are all flagged
               as canonical, but can't be transformed into each other. These are the so-called
               dualvars. Sereal cannot represent dualvars (and that's a good thing).

               Floating point values can appear to be the same but serialize to different byte
               strings due to insignificant 'noise' in the floating point representation. Sereal
               supports different floating point precisions and will generally choose the most
               compact that can represent your floating point number correctly.

           There's also a few cases where Sereal will produce different documents for values that
           you might think are the same thing, because if you e.g. compared them with "eq" or
           "==" in perl itself would think they were equivalent. However for the purposes of
           serialization they're not the same value.

           A good example of these cases is where Test::Deep and Sereal's canonical mode differ.
           We have tests for some of these cases in t/030_canonical_vs_test_deep.t. Here's the
           issues we've noticed so far:

           Sereal considers ASCII strings with the UTF-8 flag to be different from the same
           string without the UTF-8 flag
               Consider:

                   my $language_code = "en";

               v.s.:

                   my $language_code = "en";
                   utf8::upgrade($en);

               Sereal's canonical mode will encode these strings differently, as it should, since
               the UTF-8 flag will be passed along on interpolation.

               But this can be confusing if you're just getting some user-supplied ASCII strings
               that you may inadvertently toggle the UTF-8 flag on, e.g. because you're comparing
               an ASCII value in a database to a value submitted in a UTF-8 web form.

           Sereal will encode strings that look like numbers as strings, unless they've been used
           in numeric context
               I.e. these values will be encoded differently, respectively:

                   my $IV_x = "12345";
                   my $IV_y = "12345" + 0;
                   my $NV_x = "12.345";
                   my $NV_y = "12.345" + 0;

               But as noted above something like Test::Deep will consider these to be the same
               thing.

           We might produce certain aggressive flags to the canonical mode in the future to deal
           with this. For the cases noted above some combination of turning the UTF-8 flag on on
           all strings, or stripping it from strings that have it but are ASCII-only would
           "work", similarly we could scan strings to see if they match "looks_like_number()" and
           if so numify them.

           This would produce output that either would be a lot bigger (having to encode all
           numbers as strings), or would be more expensive to generate (having to scan strings
           for numeric or non-ASCII context), and for some cases like the UTF-8 flag munging
           wouldn't be suitable for general use outside of canonicialization.

       Often, people don't actually care about "canonical" in the strict sense required for real
       identity checking. They just require a best-effort sort of thing for caching. But it's a
       slippery slope!

       In a nutshell, the "canonical" option may be sufficient for an application which is simply
       serializing a cache key, and thus there's little harm in an occasional false-negative, but
       think carefully before applying Sereal in other use-cases.

KNOWN ISSUES

       Strings Or Numbers
           Perl does not make a strong distinction between strings and numbers, and from an
           internal point of view it can be difficult to tell what the "right" representation is
           for a given variable.

           Sereal tries to not be lossy. So if it detects that the string value of a var, and the
           numeric value are different it will generally round trip the *string* value. This
           means that "special" strings often used in Perl function returns, like "0 but true",
           and "0e0", will round trip in a way that their normal Perl semantics are preserved.
           However this also means that "non canonical" values, like " 100 ", which will numify
           as 100 without warnings, will round trip as their string values.

           Perl also has some operators, the binary operators, ^, | and &, which do different
           things depending on whether their arguments had been used in numeric context as the
           following examples show:

               perl -le'my $x="1"; $i=int($x); print unpack "H*", $x ^ "1"'
               30

               perl -le'my $x="1"; print unpack "H*", $x ^ "1"'
               00

               perl -le'my $x=" 1 "; $i=int($x); print unpack "H*", $x ^ "1"'
               30

               perl -le'my $x=" 1 "; print unpack "H*", $x ^ "1"'
               113120

           Sereal currently cannot round trip this property properly.

           An extreme case of this problem is that of "dualvars", which can be created using the
           Scalar::Util::dualvar() function. This function allows one to create variables which
           have string and integer values which are completely unrelated to each other.  Sereal
           currently will choose the *string* value when it detects these items.

           It is possible that a future release of the protocol will fix these issues.

BUGS, CONTACT AND SUPPORT

       For reporting bugs, please use the github bug tracker at
       <http://github.com/Sereal/Sereal/issues>.

       For support and discussion of Sereal, there are two Google Groups:

       Announcements around Sereal (extremely low volume):
       <https://groups.google.com/forum/?fromgroups#!forum/sereal-announce>

       Sereal development list: <https://groups.google.com/forum/?fromgroups#!forum/sereal-dev>

AUTHORS AND CONTRIBUTORS

       Yves Orton <demerphq@gmail.com>

       Damian Gryski

       Steffen Mueller <smueller@cpan.org>

       Rafaël Garcia-Suarez

       Ævar Arnfjörð Bjarmason <avar@cpan.org>

       Tim Bunce

       Daniel Dragan <bulkdd@cpan.org> (Windows support and bugfixes)

       Zefram

       Borislav Nikolov

       Ivan Kruglov <ivan.kruglov@yahoo.com>

       Some inspiration and code was taken from Marc Lehmann's excellent JSON::XS module due to
       obvious overlap in problem domain. Thank you!

ACKNOWLEDGMENT

       This module was originally developed for Booking.com.  With approval from Booking.com,
       this module was generalized and published on CPAN, for which the authors would like to
       express their gratitude.

COPYRIGHT AND LICENSE

       Copyright (C) 2012, 2013, 2014 by Steffen Mueller Copyright (C) 2012, 2013, 2014 by Yves
       Orton

       The license for the code in this distribution is the following, with the exceptions listed
       below:

       This library is free software; you can redistribute it and/or modify it under the same
       terms as Perl itself.

       Except portions taken from Marc Lehmann's code for the JSON::XS module, which is licensed
       under the same terms as this module.

       Also except the code for Snappy compression library, whose license is reproduced below and
       which, to the best of our knowledge, is compatible with this module's license. The license
       for the enclosed Snappy code is:

         Copyright 2011, Google Inc.
         All rights reserved.

         Redistribution and use in source and binary forms, with or without
         modification, are permitted provided that the following conditions are
         met:

           * Redistributions of source code must retain the above copyright
         notice, this list of conditions and the following disclaimer.
           * Redistributions in binary form must reproduce the above
         copyright notice, this list of conditions and the following disclaimer
         in the documentation and/or other materials provided with the
         distribution.
           * Neither the name of Google Inc. nor the names of its
         contributors may be used to endorse or promote products derived from
         this software without specific prior written permission.

         THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
         OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
         SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
         LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
         DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
         THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
         (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.