Provided by: libxml-compile-soap-perl_3.28+ds-1_all bug

NAME

       XML::Compile::SOAP::Client - SOAP message initiators

INHERITANCE

        XML::Compile::SOAP::Client is extended by
          XML::Compile::SOAP11::Client
          XML::Compile::SOAP12::Client

SYNOPSIS

        # never used directly, only via XML::Compile::SOAP1[12]::Client

DESCRIPTION

       This class defines the methods that each client side of the SOAP message exchange
       protocols must implement.

METHODS

   Constructors
       This object can not be instantiated, but is only used as secundary base class.  The
       primary must contain the "new".

   Handlers
       $obj->compileClient(%options)
            -Option   --Default
             async      <false>
             decode     <required>
             encode     <required>
             kind       request-response
             name       <undef>
             soap       'SOAP11'
             transport  <required>

           async => BOOLEAN
             If true, a whole different code-reference is returned. Each time it is called, the
             call will be made but the function returns immediately.  As additional parameter to
             the call, you must provide a "_callback" parameter which is a code-reference which
             will handle the result.

           decode => CODE
             The CODE reference is produced by XML::Compile::SOAP::compileMessage(), and must be
             a RECEIVER: translate a SOAP message into Perl data.  Even in one-way operation,
             this decode should be provided: some servers may pass back some XML in case of
             errors.

           encode => CODE
             The CODE reference is produced by XML::Compile::SOAP::compileMessage(), and must be
             a SENDER: translates Perl data structures into the SOAP message in XML.

           kind => STRING
             Which kind of client is this.  WSDL11 defines four kinds of client-server
             interaction.  Only "request-response" (the default) and "one-way" are currently
             supported.

           name => STRING
           soap => OBJECT|'SOAP11'|'SOAP12'
             When the transport parameter is an object, this is used to wrap the SOAP content
             according to the matching transporter regulation.

           transport => CODE|OBJECT
             The CODE reference is produced by an extensions of
             XML::Compile::Transport::compileClient() (usually
             XML::Compile::Transport::SOAPHTTP::compileClient().

             If you pass a XML::Compile::Transport::SOAPHTTP object, the compileClient will be
             called for you.  This is possible in case you do not have any configuration options
             to pass with the compileClient().

           example:

           Normal call:

              my $call = $wsdl->compileClient('myOp');
              my ($answer, $trace) = $call->(@params);
              #do something with $answer

           Async call:

              my $call = $wsdl->compileClient('myOp', async => 1);
              sub cb
              {  my ($answer, $trace) = @_;
                 #do something with $answer
              };
              $call->(@params, _callback => \&cb);

DETAILS

   Client side SOAP
       Calling the server (Document style)

       First, you compile the call either via a WSDL file (see XML::Compile::WSDL11), or in a few
       manual steps (which are described in the next section).  In either way, you end-up with a
       CODE references which can be called multiple times.

           # compile once
           my $call   = $soap->compileClient(...);

           # and call often
           my $answer = $call->(%request);  # list of pairs
           my $answer = $call->(\%request); # same, but HASH
           my $answer = $call->(\%request, 'UTF-8');  # same

           # or with trace details, see XML::Compile::SOAP::Trace
           my ($answer, $trace) = $call->...

       But what is the structure of %request and $answer?  Well, there are various syntaxes
       possible: from structurally perfect, to user-friendly.

       First, find out which data structures can be present: when you compiled your messages
       explicitly, you have picked your own names.  When the call was initiated from a WSDL file,
       then you have to find the names of the message parts which can be used: the part names for
       header blocks, body blocks, headerfaults, and (body) faults.  Do not worry to much, you
       will get (hopefully understandable) run-time error messages when the structure is
       incorrect.

       Let's say that the WSDL defines this (ignoring all name-space issues)

        <definitions xmlns:xx="MYNS"
          <message name="GetLastTradePriceInput">
           <part name="count" type="int" />
           <part name="request" element="xx:TradePriceRequest"/>
          </message>

          <message name="GetLastTradePriceOutput">
           <part name="answer" element="xx:TradePrice"/>
          </message>

          <binding
           <operation
            <input>
             <soap:header message="GetLastTradePriceInput" part="count"
             <soap:body message="GetLastTradePriceInput" parts="request"
            <output>
             <soap:body message="GetLastTradePriceOutput"

       The input message needs explicitly named parts in this case, where the output message
       simply uses all defined in the body.  So, the input message has one header part "count",
       and one body part "request".  The output message only has one part named "answer", which
       is all defined for the message and therefore its name can be omitted.

       Then, the definitions of the blocks:

        <schema targetNamespace="MYNS"
          <element name="TradePriceRequest">
           <complexType>
            <all>
             <element name="tickerSymbol" type="string"/>

          <element name="TradePrice">
           <complexType>
            <all>
             <element name="price" type="float"/>
        </schema>

       Now, calling the compiled function can be done like this:

         my $got
            = $call->(  count => 5, request => {tickerSymbol => 'IBM'}  );
            = $call->({ count => 5, request => {tickerSymbol => 'IBM'} });
            = $call->({ count => 5, request => {tickerSymbol => 'IBM'} }
               , 'UTF-8');

       If the first arguments for the code ref is a HASH, then there may be a second which
       specifies the required character-set.  The default is "UTF-8", which is very much advised.

       Parameter unpacking (Document Style)

       In the example situation of previous section, you may simplify the call even further.  To
       understand how, we need to understand the parameter unpacking algorithm.

       The structure which we need to end up with, looks like this

         $call->(\%data, $charset);
         %data = ( Header => {count => 5}
                 , Body   =>
                    { request => {tickerSymbol => 'IBM'} }
                 );

       The structure of the SOAP message is directly mapped on this nested complex HASH.  But is
       inconvenient to write each call like this, therefore the $call parameters are transformed
       into the required structure according to the following rules:

       1.  if called with a LIST, then that will become a HASH

       2.  when a "Header" and/or "Body" are found in the HASH, those are used

       3.  if there are more parameters in the HASH, then those with names of known header and
           headerfault message parts are moved to the "Header" sub-structure.  Body and fault
           message parts are moved to the "Body" sub-structure.

       4.  If the "Body" sub-structure is empty, and there is only one body part expected, then
           all remaining parameters are put in a HASH for that part.  This also happens if there
           are not parameters: it will result in an empty HASH for that block.

       So, in our case this will also do, because "count" is a known part, and "request" gets all
       left-overs, being the only body part.

        my $got = $call->(count => 5, tickerSymbol => 'IBM');

       This does not work if the block element is a simple type.  In most existing Document style
       SOAP schemas, this simplification probably is possible.

       Understanding the output (Document style)

       The $got is a HASH, which will not be simplified automatically: it may change with future
       extensions of the interface.  The return is a complex nested structure, and Data::Dumper
       is your friend.

        $got = { answer => { price => 16.3 } }

       To access the value use

        printf "%.2f US\$\n", $got->{answer}->{price};
        printf "%.2f US\$\n", $got->{answer}{price};   # same

       or

        my $answer = $got->{answer};
        printf "%.2f US\$\n", $answer->{price};

       Calling the server (SOAP-RPC style literal)

       SOAP-RPC style messages which have "<use=literal"> cannot be used without a little help.
       However, one extra definition per procedure call suffices.

       This a complete code example, although you need to fill in some specifics about your
       environment.  If you have a WSDL file, then it will be a little simpler, see
       XML::Compile::WSDL11::compileClient().

        # You probably need these
        use XML::Compile::SOAP11::Client;
        use XML::Compile::Transport::SOAPHTTP;
        use XML::Compile::Util  qw/pack_type/;

        # Literal style RPC
        my $outtype = pack_type $MYNS, 'myFunction';
        my $intype  = pack_type $MYNS, 'myFunctionResponse';

        # Encoded style RPC (see next section on these functions)
        my $outtype = \&my_pack_params;
        my $intype  = \&my_unpack_params;

        # For all RPC calls, you need this only once (or have a WSDL):
        my $transp  = XML::Compile::Transport::SOAPHTTP->new(...);
        my $http    = $transp->compileClient(...);
        my $soap    = XML::Compile::SOAP11::Client->new(...);
        my $send    = $soap->compileMessage('SENDER',   style => $style, ...);
        my $get     = $soap->compileMessage('RECEIVER', style => $style, ...);

        # Per RPC procedure
        my $myproc = $soap->compileClient
          ( name   => 'MyProc'
          , encode => $send, decode => $get, transport => $http
          );

        my $answer = $myproc->(@parameters);   # as document style

       Actually, the @paramers are slightly less flexible as in document style SOAP.  If you use
       header blocks, then the called CODE reference will not be able to distinguish between
       parameters for the RPC block and parameters for the header blocks.

         my $answer = $trade_price
           ->( {symbol => 'IBM'}    # the RPC package implicit
             , transaction => 5     # in the header
             );

       When the number of arguments is odd, the first is indicating the RPC element, and the
       other pairs refer to header blocks.

       The $answer structure may contain a "Fault" entry, or a decoded datastructure with the
       results of your query.  One call using Data::Dumper will show you more than I can explain
       in a few hundred words.

       Calling the server (SOAP-RPC style, encoded)

       SOAP-RPC is a simplification of the interface description: basically, the interface is not
       described at all, but left to good communication between the client and server authors.
       In strongly typed languages, this is quite simple to enforce: the client side and server
       side use the same method prototypes.  However, in Perl we are blessed to go without these
       strongly typed prototypes.

       The approach of SOAP::Lite, is to guess the types of the passed parameters.  For instance,
       "42" will get passed as Integer.  This may lead to nasty problems: a float parameter "2.0"
       will get passed as integer "2", or a string representing a house number "8" is passed as
       an number.  This may not be accepted by the SOAP server.

       So, using SOAP-RPC in XML::Compile::SOAP will ask a little more effort from you: you have
       to state parameter types explicitly.  In the examples/namesservice/ directory, you find a
       detailed example.  You have to create a CODE ref which produces the message, using methods
       defined provided by XML::Compile::SOAP11::Encoding.

       Faults (Document and RPC style)

       Faults and headerfaults are a slightly different story: the type which is specified with
       them is not of the fault XML node itself, but of the "detail" sub-element within the
       standard fault structure.

       When producing the data for faults, you must be aware of the fact that the structure is
       different for SOAP1.1 and SOAP1.2.  When interpreting faults, the same problems are
       present, although the implementation tries to help you by hiding the differences.

       Check whether SOAP1.1 or SOAP1.2 is used by looking for a "faultcode" (SOAP1.1) or a
       "Code" (SOAP1.2) field in the data:

         if(my $fault = $got->{Fault})
         {  if($fault->{faultcode}) { ... SOAP1.1 ... }
            elsif($fault->{Code})   { ... SOAP1.2 ... }
            else { die }
         }

       In either protocol case, the following will get you at a compatible structure in two
       steps:

         if(my $fault = $got->{Fault})
         {   my $decoded = fault->{_NAME}};
             print $got->{$decoded}->{code};
             ...
         }

       See the respective manuals XML::Compile::SOAP11 and XML::Compile::SOAP12 for the hairy
       details.  But one thing can be said: when the fault is declared formally, then the "_NAME"
       will be the name of that part.

   SOAP without WSDL (Document style)
       See the manual page of XML::Compile::WSDL11 to see how simple you can use this module when
       you have a WSDL file at hand.  The creation of a correct WSDL file is NOT SIMPLE.

       When using SOAP without WSDL file, it gets a little bit more complicate to use: you need
       to describe the content of the messages yourself.  The following example is used as test-
       case "t/10soap11.t", directly taken from the SOAP11 specs section 1.3 example 1.

        # for simplification
        my $TestNS   = 'http://test-types';
        use XML::Compile::Util qw/SCHEMA2001/;
        my $SchemaNS = SCHEMA2001;

       First, the schema (hopefully someone else created for you, because they can be quite hard
       to create correctly) is in file "myschema.xsd"

        <schema targetNamespace="$TestNS"
          xmlns="$SchemaNS">

        <element name="GetLastTradePrice">
          <complexType>
             <all>
               <element name="symbol" type="string"/>
             </all>
          </complexType>
        </element>

        <element name="GetLastTradePriceResponse">
          <complexType>
             <all>
                <element name="price" type="float"/>
             </all>
          </complexType>
        </element>

        <element name="Transaction" type="int"/>
        </schema>

       Ok, now the program you create the request:

        use XML::Compile::SOAP11;
        use XML::Compile::Util  qw/pack_type/;

        my $soap   = XML::Compile::SOAP11->new;
        $soap->schemas->importDefinitions('myschema.xsd');

        my $get_price = $soap->compileMessage
          ( 'SENDER'
          , header =>
             [ transaction => pack_type($TestNS, 'Transaction') ]
          , body  =>
             [ request => pack_type($TestNS, 'GetLastTradePrice') ]
          , mustUnderstand => 'transaction'
          , destination    => [ transaction => 'NEXT http://actor' ]
          );

       "INPUT" is used in the WSDL terminology, indicating this message is an input message for
       the server.  This $get_price is a WRITER.  Above is done only once in the initialization
       phase of your program.

       At run-time, you have to call the CODE reference with a data-structure which is compatible
       with the schema structure.  (See XML::Compile::Schema::template() if you have no clue how
       it should look)  So: let's send this:

        # insert your data
        my %data_in = (transaction => 5, request => {symbol => 'DIS'});
        my %data_in = (transaction => 5, symbol => 'DIS'); # alternative

        # create a XML::LibXML tree
        my $xml  = $get_price->(\%data_in, 'UTF-8');
        print $xml->toString;

       And the output is:

        <SOAP-ENV:Envelope
           xmlns:x0="http://test-types"
           xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
          <SOAP-ENV:Header>
            <x0:Transaction
              mustUnderstand="1"
              actor="http://schemas.xmlsoap.org/soap/actor/next http://actor">
                5
            </x0:Transaction>
          </SOAP-ENV:Header>
          <SOAP-ENV:Body>
            <x0:GetLastTradePrice>
              <symbol>DIS</symbol>
            </x0:GetLastTradePrice>
          </SOAP-ENV:Body>
        </SOAP-ENV:Envelope>

       Some transport protocol will sent this data from the client to the server.  See
       XML::Compile::Transport::SOAPHTTP, as one example.

       On the SOAP server side, we will parse the message.  The string $soap contains the XML.
       The program looks like this:

        my $server = $soap->compileMessage # create once
         ( 'RECEIVER'
         , header => [ transaction => pack_type($TestNS, 'Transaction') ]
         , body   => [ request => pack_type($TestNS, 'GetLastTradePrice') ]
         );

        my $data_out = $server->($soap);   # call often

       Now, the $data_out reference on the server, is stucturally exactly equivalent to the
       %data_in from the client.

SEE ALSO

       This module is part of XML-Compile-SOAP distribution version 3.28, built on August 01,
       2022. Website: http://perl.overmeer.net/CPAN/

LICENSE

       Copyrights 2007-2022 by [Mark Overmeer <markov@cpan.org>]. For other contributors see
       ChangeLog.

       This program is free software; you can redistribute it and/or modify it under the same
       terms as Perl itself.  See http://dev.perl.org/licenses/