Provided by: libcerf-doc_1.3-2.1_all
NAME
cdawson, dawson - Dawson's integral
SYNOPSIS
#include <cerf.h> double _Complex cdawson ( double _Complex z ); double dawson ( double x );
DESCRIPTION
The function cdawson returns Dawson's integral D(z) = exp(-z^2) integral from 0 to z exp(t^2) dt = sqrt(pi)/2 * exp(-z^2) * erfi(z). For function dawson takes a real argument x, and returns the real result D(x).
RESOURCES
Project web site: http://apps.jcns.fz-juelich.de/libcerf
REFERENCES
The computation of D(z) is based on Faddeeva's function w_of_z; to compute D(x), the imaginary part im_w_of_x is used.
BUG REPORTS
Please report bugs to the authors.
AUTHORS
Steven G. Johnson [http://math.mit.edu/~stevenj], Massachusetts Institute of Technology, researched the numerics, and implemented the Faddeeva function. Joachim Wuttke <j.wuttke@fz-juelich.de>, Forschungszentrum Juelich, reorganized the code into a library, and wrote this man page.
SEE ALSO
Related complex error functions in liberfc: w_of_z(3), voigt(3), cerf(3), erfcx(3), erfi(3).
COPYING
Copyright (c) 2012 Massachusetts Institute of Technology Copyright (c) 2013 Forschungszentrum Juelich GmbH Software: MIT License. This documentation: Creative Commons Attribution Share Alike.