Provided by: scalapack-doc_1.5-11_all bug

NAME

       PDTRTRI - compute the inverse of a upper or lower triangular distributed matrix sub( A ) =
       A(IA:IA+N-1,JA:JA+N-1)

SYNOPSIS

       SUBROUTINE PDTRTRI( UPLO, DIAG, N, A, IA, JA, DESCA, INFO )

           CHARACTER       DIAG, UPLO

           INTEGER         IA, INFO, JA, N

           INTEGER         DESCA( * )

           DOUBLE          PRECISION A( * )

PURPOSE

       PDTRTRI computes the inverse of a upper or lower triangular distributed matrix sub( A )  =
       A(IA:IA+N-1,JA:JA+N-1).

       Notes
       =====

       Each  global  data  object  is described by an associated description vector.  This vector
       stores the information required to establish the mapping between an object element and its
       corresponding process and memory location.

       Let  A be a generic term for any 2D block cyclicly distributed array.  Such a global array
       has an associated description vector DESCA.  In the following comments,  the  character  _
       should be read as "of the global array".

       NOTATION        STORED IN      EXPLANATION
       ---------------   --------------   --------------------------------------  DTYPE_A(global)
       DESCA( DTYPE_ )The descriptor type.  In this case,
                                      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                                      the BLACS process grid A is distribu-
                                      ted over. The context itself is glo-
                                      bal, but the handle (the integer
                                      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
                                      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
                                      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
                                      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
                                      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                                      row of the array A is distributed.  CSRC_A (global)  DESCA(
       CSRC_ ) The process column over which the
                                      first column of the array A is
                                      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
                                      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let  K  be  the  number  of  rows  or columns of a distributed matrix, and assume that its
       process grid has dimension p x q.
       LOCr( K ) denotes the number of elements of K that a  process  would  receive  if  K  were
       distributed over the p processes of its process column.
       Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K
       were distributed over the q processes of its process row.
       The values of LOCr() and LOCc() may be  determined  via  a  call  to  the  ScaLAPACK  tool
       function, NUMROC:
               LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
               LOCc(  N  )  =  NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An upper bound for these
       quantities may be computed by:
               LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
               LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

       UPLO    (global input) CHARACTER
               Specifies whether the distributed matrix sub( A ) is upper or lower triangular:
               = 'U':  Upper triangular,
               = 'L':  Lower triangular.

       DIAG    (global input) CHARACTER
               Specifies whether or not the distributed matrix sub( A ) is unit triangular:
               = 'N':  Non-unit triangular,
               = 'U':  Unit triangular.

       N       (global input) INTEGER
               The number of rows  and  columns  to  be  operated  on,  i.e.  the  order  of  the
               distributed submatrix sub( A ). N >= 0.

       A       (local input/local output) DOUBLE PRECISION pointer into the
               local  memory to an array of dimension (LLD_A,LOCc(JA+N-1)).  On entry, this array
               contains the local pieces of the triangular matrix sub( A ).  If UPLO =  'U',  the
               leading  N-by-N  upper  triangular  part of the matrix sub( A ) contains the upper
               triangular matrix to be inverted, and the strictly lower triangular part of sub( A
               )  is  not referenced.  If UPLO = 'L', the leading N-by-N lower triangular part of
               the matrix sub( A ) contains the lower triangular matrix, and the  strictly  upper
               triangular  part of sub( A ) is not referenced.  On exit, the (triangular) inverse
               of the original matrix.

       IA      (global input) INTEGER
               The row index in the global array A indicating the first row of sub( A ).

       JA      (global input) INTEGER
               The column index in the global array A indicating the first column of sub( A ).

       DESCA   (global and local input) INTEGER array of dimension DLEN_.
               The array descriptor for the distributed matrix A.

       INFO    (global output) INTEGER
               = 0:  successful exit
               < 0:  If the i-th argument is an array and the j-entry had an illegal value,  then
               INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then
               INFO = -i.  > 0:  If INFO = K, A(IA+K-1,JA+K-1) is exactly zero.   The  triangular
               matrix sub( A ) is singular and its inverse can not be computed.