Provided by: libtype-tiny-perl_1.016008-1_all bug

NAME

       Type::Tiny::Manual::Params - advanced information on Type::Params

MANUAL

       To get started with Type::Params, please read Type::Tiny::Manual::UsingWithMoo which will
       cover a lot of the basics, even if you're not using Moo.

   "validate" and "validate_named"
       The generally recommended way of using Type::Params is this:

         sub mysub {
           state $check = compile( SIGNATURE );
           my @args = $check->( @_ );
         }

       But it is possible to do it in one call:

         sub mysub {
           my @args = validate( \@_, SIGNATURE );
         }

       There is also a "validate_named" function which acts as a counterpart for "compile_named".

       This will generally be slower and less efficient than using "compile" first because
       Type::Tiny can do a lot of optimizations in that first stage to make the second stage a
       lot faster. (And the results of "compile" get stored in the "state" variable so that only
       has to happen once.)

       There is rarely a reason to use "validate" and "validate_named", but they exist if you
       want them.

   "multisig"
       Multisig allows you to allow multiple ways of calling a sub.

        sub repeat_string {
          state $check = multisig(
            compile(
              Int,
              Str,
            ),
            compile_named(
              { named_to_list => 1 },
              count  => Int,
              string => Str,
            ),
          );

          my ($count, $string) = $check->(@_);
          return $string x $count;
        }

        repeat_string(            "Hello",          42  );    # works
        repeat_string(  string => "Hello", count => 42  );    # works
        repeat_string({ string => "Hello", count => 42 });    # works
        repeat_string( qr/hiya/ );                            # dies

       It combines multiple checks and tries each until one works.

   "wrap_subs" and "wrap_methods"
       "wrap_subs" turns the "compile" idea inside out.

       Instead of this:

        sub foobar {
          state $check = compile(Int, Str);
          my ($foo, $bar) = @_;
          ...;
        }

       You do this:

        sub foobar {
          my ($foo, $bar) = @_;
          ...;
        }
        wrap_subs foobar => [ Int, Str ];

       Or this:

        sub foobar {
          my ($foo, $bar) = @_;
          ...;
        }
        wrap_subs foobar => compile( Int, Str );

   Mixed Named and Positional Parameters
       This can be faked using positional parameters and a Slurpy dictionary.

        state $check = compile(
          Int,
          Slurpy[
            Dict[
              foo => Int,
              bar => Optional[Int],
              baz => Optional[Int],
            ],
          ],
        );

        @_ = (42, foo => 21);                 # ok
        @_ = (42, foo => 21, bar  => 84);     # ok
        @_ = (42, foo => 21, bar  => 10.5);   # not ok
        @_ = (42, foo => 21, quux => 84);     # not ok

       From Type::Params 1.009_002, "head" and "tail" options are accepted, which provide another
       option for mixed named and positional arguments:

        state $check = compile_named(
          { head => [ Int ] },
          foo => Int,
          bar => Optional[Int],
          baz => Optional[Int],
          ],
        );

       The "head" is shifted off @_ before @_ is considered as a hash.  The "tail" is popped off
       @_ before @_ is considered as a hash.

   Proper Signatures
       Don't you wish your subs could look like this?

         sub set_name (Object $self, Str $name) {
           $self->{name} = $name;
         }

       Well; here are a few solutions for sub signatures that work with Type::Tiny...

       Zydeco

       Zydeco is a Perl OO syntax toolkit with Type::Tiny support baked in throughout.

         package MyApp {
           use Zydeco;

           class Person {
             has name ( type => Str );

             method rename (Str $new_name) {
               printf("%s will now be called %s\n", $self->name, $new_name);
               $self->name($new_name);
             }

             coerce from Str via {
               $class->new(name => $_)
             }
           }

           class Company {
             has owner ( type => 'Person' );
           }
         }

         my $acme = MyApp->new_company(owner => "Robert");
         $acme->owner->rename("Bob");

       Kavorka

       Kavorka is a sub signatures implementation written to natively use Type::Utils'
       "dwim_type" for type constraints, and take advantage of Type::Tiny's features such as
       inlining, and coercions.

         method set_name (Str $name) {
           $self->{name} = $name;
         }

       Kavorka's signatures provide a lot more flexibility, and slightly more speed than
       Type::Params. (The speed comes from inlining almost all type checks into the body of the
       sub being declared.)

       Kavorka also includes support for type checking of the returned value.

       Kavorka can also be used as part of Moops, a larger framework for object oriented
       programming in Perl.

       Function::Parameters

       Function::Parameters offers support for Type::Tiny and MooseX::Types.

         use Types::Standard qw( Str );
         use Function::Parameters;

         method set_name (Str $name) {
             $self->{name} = $name;
         }

       Attribute::Contract

       Both Kavorka and Function::Parameters require a relatively recent version of Perl.
       Attribute::Contract supports older versions by using a lot less magic.

       You want Attribute::Contract 0.03 or above.

         use Attribute::Contract -types => [qw/Object Str/];

         sub set_name :ContractRequires(Object, Str) {
             my ($self, $name) = @_;
             $self->{name} = $name;
         }

       Attribute::Contract also includes support for type checking of the returned value.

   Type::Params versus X
       Params::Validate

       Type::Params is not really a drop-in replacement for Params::Validate; the API differs far
       too much to claim that. Yet it performs a similar task, so it makes sense to compare them.

       •   Type::Params will tend to be faster if you've got a sub which is called repeatedly,
           but may be a little slower than Params::Validate for subs that are only called a few
           times. This is because it does a bunch of work the first time your sub is called to
           make subsequent calls a lot faster.

       •   Params::Validate doesn't appear to have a particularly natural way of validating a mix
           of positional and named parameters.

       •   Type::Utils allows you to coerce parameters. For example, if you expect a Path::Tiny
           object, you could coerce it from a string.

       •   If you are primarily writing object-oriented code, using Moose or similar, and you are
           using Type::Tiny type constraints for your attributes, then using Type::Params allows
           you to use the same constraints for method calls.

       •   Type::Params comes bundled with Types::Standard, which provides a much richer
           vocabulary of types than the type validation constants that come with
           Params::Validate. For example, Types::Standard provides constraints like
           "ArrayRef[Int]" (an arrayref of integers), while the closest from Params::Validate is
           "ARRAYREF", which you'd need to supplement with additional callbacks if you wanted to
           check that the arrayref contained integers.

           Whatsmore, Type::Params doesn't just work with Types::Standard, but also any other
           Type::Tiny type constraints.

       Params::ValidationCompiler

       Params::ValidationCompiler does basically the same thing as Type::Params.

       •   Params::ValidationCompiler and Type::Params are likely to perform fairly similarly. In
           most cases, recent versions of Type::Params seem to be slightly faster, but except in
           very trivial cases, you're unlikely to notice the speed difference. Speed probably
           shouldn't be a factor when choosing between them.

       •   Type::Params's syntax is more compact:

              state $check = compile(Object, Optional[Int], Slurpy[ArrayRef]);

           Versus:

              state $check = validation_for(
                 params => [
                    { type => Object },
                    { type => Int,      optional => 1 },
                    { type => ArrayRef, slurpy => 1 },
                 ],
              );

       •   Params::ValidationCompiler probably has slightly better exceptions.

NEXT STEPS

       Here's your next step:

       •   Type::Tiny::Manual::NonOO

           Type::Tiny in non-object-oriented code.

AUTHOR

       Toby Inkster <tobyink@cpan.org>.

COPYRIGHT AND LICENCE

       This software is copyright (c) 2013-2014, 2017-2022 by Toby Inkster.

       This is free software; you can redistribute it and/or modify it under the same terms as
       the Perl 5 programming language system itself.

DISCLAIMER OF WARRANTIES

       THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
       WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
       PURPOSE.