Provided by: python3-ezdxf_0.18.1-1_all
NAME
ezdxf - ezdxf Documentation [image] Welcome! This is the documentation for ezdxf release 0.18.1, last updated Sep 14, 2022. • ezdxf is a Python package to create new DXF files and read/modify/write existing DXF files • MIT-License • the intended audience are programmers • requires at least Python 3.7 • OS independent • tested with CPython and pypy3 • has type annotations and passes mypy --ignore-missing-imports -p ezdxf successful • additional required packages for the core package without add-ons: typing_extensions, pyparsing • read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018 • read-only support for DXF versions R13/R14 (upgraded to R2000) • read-only support for older DXF versions than R12 (upgraded to R12) • read/write support for ASCII DXF and Binary DXF • retains third-party DXF content • optional C-extensions for CPython are included in the binary wheels, available on PyPI for Windows, Linux and macOS
INCLUDED EXTENSIONS
Additional packages required for these add-ons are not automatically installed during the basic setup, for more information about the setup & dependencies visit the documentation. • drawing add-on to visualise and convert DXF files to images which can be saved to various formats such as png, pdf and svg • r12writer add-on to write basic DXF entities direct and fast into a DXF R12 file or stream • iterdxf add-on to iterate over DXF entities from the modelspace of huge DXF files (> 5GB) which do not fit into memory • importer add-on to import entities, blocks and table entries from another DXF document • dxf2code add-on to generate Python code for DXF structures loaded from DXF documents as starting point for parametric DXF entity creation • acadctb add-on to read/write Plot Style Files (CTB/STB) • pycsg add-on for Constructive Solid Geometry (CSG) modeling technique • MTextExplode add-on for exploding MTEXT entities into single-line TEXT entities • text2path add-on to convert text into linear paths • geo add-on to support the __geo_interface__ • meshex add-on for exchanging meshes with other tools as STL, OFF or OBJ files • openscad add-on, an interface to OpenSCAD • odafc add-on, an interface to the ODA File Converter to read and write DWG files
WEBSITE
https://ezdxf.mozman.at/
DOCUMENTATION
Documentation of development version at https://ezdxf.mozman.at/docs Documentation of latest release at http://ezdxf.readthedocs.io/
SOURCE CODE & FEEDBACK
Source Code: http://github.com/mozman/ezdxf.git Issue Tracker: http://github.com/mozman/ezdxf/issues Forum: https://github.com/mozman/ezdxf/discussions
QUESTIONS AND ANSWERS
Please post questions at the forum or stack overflow to make answers available to other users as well.
INTRODUCTION
What is ezdxf ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, ezdxf allows developers to read and modify existing DXF drawings or create new DXF drawings. The main objective in the development of ezdxf was to hide complex DXF details from the programmer but still support most capabilities of the DXF format. Nevertheless, a basic understanding of the DXF format is required, also to understand which tasks and goals are possible to accomplish by using the DXF format. Not all DXF features are supported yet, but additional features will be added in the future gradually. ezdxf is also a replacement for my dxfwrite and my dxfgrabber packages but with different APIs, for more information see also: What is the Relationship between ezdxf, dxfwrite and dxfgrabber? What ezdxf can’t do • ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking for an appropriate application, try the free ODAFileConverter from the Open Design Alliance, which converts between different DXF version and also between the DXF and the DWG file format. • ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to other CAD formats such as DWG • ezdxf is not a CAD kernel and does not provide high level functionality for construction work, it is just an interface to the DXF file format. If you are looking for a CAD kernel with Python scripting support, look at FreeCAD. Supported Python Versions ezdxf requires at least Python 3.7 and will be tested with the latest stable CPython version and the latest stable release of pypy3 during development. ezdxf is written in pure Python with optional Cython implementations of some low level math classes and requires only pyparser and typing_extensions as additional library beside the Python Standard Library. pytest is required to run the unit and integration tests. Data to run the stress and audit test can not be provided, because I don’t have the rights for publishing this DXF files. Supported Operating Systems ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter (>=3.7). Supported DXF Versions ┌────────┬──────────────────────┐ │Version │ AutoCAD Release │ ├────────┼──────────────────────┤ │AC1009 │ AutoCAD R12 │ ├────────┼──────────────────────┤ │AC1012 │ AutoCAD R13 -> R2000 │ ├────────┼──────────────────────┤ │AC1014 │ AutoCAD R14 -> R2000 │ ├────────┼──────────────────────┤ │AC1015 │ AutoCAD R2000 │ ├────────┼──────────────────────┤ │AC1018 │ AutoCAD R2004 │ ├────────┼──────────────────────┤ │AC1021 │ AutoCAD R2007 │ ├────────┼──────────────────────┤ │AC1024 │ AutoCAD R2010 │ ├────────┼──────────────────────┤ │AC1027 │ AutoCAD R2013 │ ├────────┼──────────────────────┤ │AC1032 │ AutoCAD R2018 │ └────────┴──────────────────────┘ ezdxf also reads older DXF versions but saves it as DXF R12. Embedded DXF Information of 3rd Party Applications The DXF format allows third-party applications to embed application-specific information. ezdxf manages DXF data in a structure-preserving form, but for the price of large memory requirement. Because of this, processing of DXF information of third-party applications is possible and will retained on rewriting. License ezdxf is licensed under the very liberal MIT-License.
SETUP & DEPENDENCIES
The primary goal is to keep the dependencies of the core package as small as possible. The add-ons are not part of the core package and can therefore use as many packages as needed. The only requirement for these packages is an easy way to install them on Windows, Linux and macOS, preferably as: pip3 install ezdxf The pyparsing package and the typing_extensions are the only hard dependency and will be installed automatically by pip3! The minimal required Python version is determined by the latest stable version of pypy3 and the Python version deployed by the Raspberry Pi OS, which is currently Python 3.7 (2021). Basic Installation The most common case is the installation by pip3 including the optional C-extensions from PyPI as binary wheels: pip3 install ezdxf Installation with Extras To use all features of the drawing add-on, add the [draw] tag: pip3 install ezdxf[draw] ┌────────┬──────────────────────────────────┐ │Tag │ Additional Installed Packages │ ├────────┼──────────────────────────────────┤ │[draw] │ Matplotlib, PySide6, Pillow │ ├────────┼──────────────────────────────────┤ │[draw5] │ Matplotlib, PyQt5, Pillow (use │ │ │ only if PySide6 is not │ │ │ available) │ ├────────┼──────────────────────────────────┤ │[test] │ geomdl, pytest │ ├────────┼──────────────────────────────────┤ │[dev] │ setuptools, wheel, Cython + │ │ │ [test] │ ├────────┼──────────────────────────────────┤ │[all] │ [draw] + [test] + [dev] │ ├────────┼──────────────────────────────────┤ │[all5] │ [draw5] + [test] + [dev] (use │ │ │ only if PySide6 is not │ │ │ available) │ └────────┴──────────────────────────────────┘ Binary Wheels Ezdxf includes some C-extensions, which will be deployed automatically at each release to PyPI as binary wheels to PyPI: • Windows: only amd64 packages • Linux: manylinux and musllinux packages for x86_64 & aarch64 • macOS: x86_64, arm64 and universal packages The wheels are created by the continuous integration (CI) service provided by GitHub and the build container cibuildwheel provided by PyPA the Python Packaging Authority. The workflows are kept short and simple, so my future me will understand what’s going on and they are maybe also helpful for other developers which do not touch CI services every day. The C-extensions are disabled for pypy3, because the JIT compiled code of pypy is much faster than the compiled C-extensions for pypy. Disable C-Extensions It is possible to disable the C-Extensions by setting the environment variable EZDXF_DISABLE_C_EXT to 1 or true: set EZDXF_DISABLE_C_EXT=1 or on Linux: export EZDXF_DISABLE_C_EXT=1 This is has to be done before anything from ezdxf is imported! If you are working in an interactive environment, you have to restart the interpreter. Installation from GitHub Install the latest development version by pip3 from GitHub: pip3 install git+https://github.com/mozman/ezdxf.git@master Build and Install from Source This is only required if you want the compiled C-extensions, the ezdxf installation by pip from the source code package works without the C-extension but is slower. There are many binary wheels including the compiles C-extensions available on PyPi. Windows 10 Make a build directory and a virtual environment: mkdir build cd build py -m venv py310 py310/Scripts/activate.bat A working C++ compiler setup is required to compile the C-extensions from source code. Windows users need the build tools from Microsoft: https://visualstudio.microsoft.com/de/downloads/ Download and install the required Visual Studio Installer of the community edition and choose the option: Visual Studio Build Tools 20.. Install required packages to build and install ezdxf with C-extensions: pip3 install setuptools wheel cython Clone the GitHub repository: git clone https://github.com/mozman/ezdxf.git Build and install ezdxf from source code: cd ezdxf pip3 install . Check if the installation was successful: python3 -m ezdxf -V The ezdxf command should run without a preceding python3 -m, but calling the launcher through the interpreter guarantees to call the version which was installed in the venv if there exist a global installation of ezdxf like in my case. The output should look like this: ezdxf 0.17.2b4 from D:\Source\build\py310\lib\site-packages\ezdxf Python version: 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)] using C-extensions: yes using Matplotlib: no To install optional packages go to section: Install Optional Packages To run the included tests go to section: Run the Tests WSL & Ubuntu I use sometimes the Windows Subsystem for Linux (WSL) with Ubuntu 20.04 LTS for some tests (how to install WSL). By doing as fresh install on WSL & Ubuntu, I encountered an additional requirement, the build-essential package adds the required C++ support: sudo apt install build-essential The system Python 3 interpreter has the version 3.8, but I will show in a later section how to install an additional newer Python version from the source code: cd ~ mkdir build cd build python3 -m venv py38 source py38/bin/activate Install Cython and wheel in the venv to get the C-extensions compiled: pip3 install cython wheel Clone the GitHub repository: git clone https://github.com/mozman/ezdxf.git Build and install ezdxf from source code: cd ezdxf pip3 install . Check if the installation was successful: python3 -m ezdxf -V The output should look like this: ezdxf 0.17.2b4 from /home/mozman/src/py38/lib/python3.8/site-packages/ezdxf Python version: 3.8.10 (default, Nov 26 2021, 20:14:08) [GCC 9.3.0] using C-extensions: yes using Matplotlib: no To install optional packages go to section: Install Optional Packages To run the included tests go to section: Run the Tests Raspberry Pi OS Testing platform is a Raspberry Pi 400 and the OS is the Raspberry Pi OS which runs on 64bit hardware but is a 32bit OS. The system Python 3 interpreter comes in version 3.7, but I will show in a later section how to install an additional newer Python version from the source code. Install the build requirements, Matplotlib and the PyQt5 bindings from the distribution repository: sudo apt install python3-pip python3-matplotlib python3-pyqt5 Installing Matplotlib and the PyQt5 bindings by pip from piwheels in the venv worked, but the packages showed errors at import, seems to be an packaging error in the required numpy package. PySide6 is the preferred Qt binding but wasn’t available on Raspberry Pi OS at the time of writing this - PyQt5 is supported as fallback. Create the venv with access to the system site-packages for using Matplotlib and the Qt bindings from the system installation: cd ~ mkdir build cd build python3 -m venv --system-site-packages py37 source py37/bin/activate Install Cython and wheel in the venv to get the C-extensions compiled: pip3 install cython wheel Clone the GitHub repository: git clone https://github.com/mozman/ezdxf.git Build and install ezdxf from source code: cd ezdxf pip3 install . Check if the installation was successful: python3 -m ezdxf -V The output should look like this: ezdxf 0.17.2b4 from /home/pi/src/py37/lib/python3.7/site-packages/ezdxf Python version: 3.7.3 (default, Jan 22 2021, 20:04:44) [GCC 8.3.0] using C-extensions: yes using Matplotlib: yes To run the included tests go to section: Run the Tests Manjaro on Raspberry Pi Because the (very well working) Raspberry Pi OS is only a 32bit OS, I searched for a 64bit alternative like Ubuntu, which just switched to version 21.10 and always freezes at the installation process! So I tried Manjaro as rolling release, which I used prior in a virtual machine and wasn’t really happy, because there is always something to update. Anyway the distribution looks really nice and has Python 3.9.9 installed. Install build requirements and optional packages by the system packager pacman: sudo pacman -S python-pip python-matplotlib python-pyqt5 Create and activate the venv: cd ~ mkdir build cd build python3 -m venv --system-site-packages py39 source py39/bin/activate The rest is the same procedure as for the Raspberry Pi OS: pip3 install cython wheel git clone https://github.com/mozman/ezdxf.git cd ezdxf pip3 install . python3 -m ezdxf -V To run the included tests go to section: Run the Tests Ubuntu Server 21.10 on Raspberry Pi I gave the Ubuntu Server 21.10 a chance after the desktop version failed to install by a nasty bug and it worked well. The distribution comes with Python 3.9.4 and after installing some requirements: sudo apt install build-essential python3-pip python3.9-venv The remaining process is like on WSL & Ubuntu except for the newer Python version. Installing Matplotlib by pip works as expected and is maybe useful even on a headless server OS to create SVG and PNG from DXF files. PySide6 is not available by pip and the installation of PyQt5 starts from the source code package which I stopped because this already didn’t finished on Manjaro, but the installation of the PyQt5 bindings by apt works: sudo apt install python3-pyqt5 Use the --system-site-packages option for creating the venv to get access to the PyQt5 package. Install Optional Packages Install the optional dependencies by pip only for Windows 10 and WSL & Ubuntu, for Raspberry Pi OS and Manjaro on Raspberry Pi install these packages by the system packager: pip3 install matplotlib PySide6 Run the Tests This is the same procedure for all systems, assuming you are still in the build directory build/ezdxf and ezdxf is now installed in the venv. Install the test dependencies and run the tests: pip3 install pytest geomdl python3 -m pytest tests integration_tests Build Documentation Assuming you are still in the build directory build/ezdxf of the previous section. Install Sphinx: pip3 install Sphinx sphinx-rtd-theme Build the HTML documentation: cd docs make html The output is located in build/ezdxf/docs/build/html. Python from Source Debian based systems have often very outdated software installed and sometimes there is no easy way to install a newer Python version. This is a brief summery how I installed Python 3.9.9 on the Raspberry Pi OS, for more information go to the source of the recipe: Real Python Install build requirements: sudo apt-get update sudo apt-get upgrade sudo apt-get install -y make build-essential libssl-dev zlib1g-dev \ libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \ libncurses5-dev libncursesw5-dev xz-utils tk-dev Make a build directory: cd ~ mkdir build cd build Download and unpack the source code from Python.org, replace 3.9.9 by your desired version: wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz tar -xvzf Python-3.9.9.tgz cd Python-3.9.9/ Configure the build process, use a prefix to the directory where the interpreter should be installed: ./configure --prefix=/opt/python3.9.9 --enable-optimizations Build & install the Python interpreter. The -j option simply tells make to split the building into parallel steps to speed up the compilation, my Raspberry Pi 400 has 4 cores so 4 seems to be a good choice: make -j 4 sudo make install The building time was ~25min and the new Python 3.9.9 interpreter is now installed as /opt/python3.9.9/bin/python3. At the time there were no system packages for Matplotlib and PyQt5 for this new Python version available, so there is no benefit of using the option --system-site-packages for building the venv: cd ~/build /opt/python3.9.9/bin/python3 -m venv py39 source py39/bin/activate I have not tried to build Matplotlib and PyQt5 by myself and the installation by pip from piwheels did not work, in this case you don’t get Matplotlib support for better font measuring and the drawing add-on will not work. Proceed with the ezdxf installation from source as shown for the Raspberry Pi OS.
USAGE FOR BEGINNERS
This section shows the intended usage of the ezdxf package. This is just a brief overview for new ezdxf users, follow the provided links for more detailed information. First import the package: import ezdxf Loading DXF Files ezdxf supports loading ASCII and binary DXF files from a file: doc = ezdxf.readfile(filename) or from a zip-file: doc = ezdxf.readzip(zipfilename[, filename]) Which loads the DXF file filename from the zip-file zipfilename or the first DXF file in the zip-file if filename is absent. It is also possible to read a DXF file from a stream by the ezdxf.read() function, but this is a more advanced feature, because this requires detection of the file encoding in advance. This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. SEE ALSO: Documentation for ezdxf.readfile(), ezdxf.readzip() and ezdxf.read(), for more information about file management go to the Document Management section. For loading DXF files with structural errors look at the ezdxf.recover module. Saving DXF Files Save the DXF document with a new name: doc.saveas("new_name.dxf") or with the same name as loaded: doc.save() SEE ALSO: Documentation for ezdxf.document.Drawing.save() and ezdxf.document.Drawing.saveas(), for more information about file management go to the Document Management section. Create a New DXF File Create new file for the latest supported DXF version: doc = ezdxf.new() Create a new DXF file for a specific DXF version, e.g for DXF R12: doc = ezdxf.new("R12") To setup some basic DXF resources use the setup argument: doc = ezdxf.new(setup=True) SEE ALSO: Documentation for ezdxf.new(), for more information about file management go to the Document Management section. Layouts and Blocks Layouts are containers for DXF entities like LINE or CIRCLE. The most important layout is the modelspace labeled as “Model” in CAD applications which represents the “world” work space. Paperspace layouts represents plottable sheets which contains often the framing and the tile block of a drawing and VIEWPORT entities as scaled and clipped “windows” into the modelspace. The modelspace is always present and can not be deleted. The active paperspace is also always present in a new DXF document but can be deleted, in that case another paperspace layout gets the new active paperspace, but you can not delete the last paperspace layout. Getting the modelspace of a DXF document: msp = doc.modelspace() Getting a paperspace layout by the name as shown in the tab of a CAD application: psp = doc.layout("Layout1") A block is just another kind of entity space, which can be inserted multiple times into other layouts and blocks by the INSERT entity also called block references, this is a very powerful and important concept of the DXF format. Getting a block layout by the block name: blk = doc.blocks.get("NAME") All these layouts have factory functions to create graphical DXF entities for their entity space, for more information about creating entities see section: Create new DXF Entities Create New Blocks The block definitions of a DXF document are managed by the BlocksSection object: my_block = doc.blocks.new("MyBlock") SEE ALSO: Tutorial for Blocks Query DXF Entities As said in the Layouts and Blocks section, all graphical DXF entities are stored in layouts, all these layouts can be iterated and support the index operator e.g. layout[-1] returns the last entity. The main difference between iteration and index access is, that iteration filters destroyed entities, but the index operator returns also destroyed entities until these entities are purged by layout.purge() more about this topic in section: Delete Entities. There are two advanced query methods: query() and groupby(). Get all lines of layer "MyLayer": lines = msp.query('LINE[layer=="MyLayer"]') This returns an EntityQuery container, which also provides the same query() and groupby() methods. Get all lines categorized by a DXF attribute like color: all_lines_by_color = msp.query("LINE").groupby("color") lines_with_color_1 = all_lines_by_color.get(1, []) The groupby() method returns a regular Python dict with colors as key and a regular Python list of entities as values (not an EntityQuery container). SEE ALSO: For more information go to the Tutorial for getting data from DXF files Examine DXF Entities Each DXF entity has a dxf namespace attribute, which stores the named DXF attributes, some DXF attributes are only indirect available like the vertices in the LWPOLYLINE entity. More information about the DXF attributes of each entity can found in the documentation of the ezdxf.entities module. Get some basic DXF attributes: layer = entity.dxf.layer # default is "0" color = entity.dxf.color # default is 256 = BYLAYER Most DXF attributes have a default value, which will be returned if the DXF attribute is not present, for DXF attributes without a default value you can check in the attribute really exist: entity.dxf.hasattr("true_color") or use the get() method and a default value: entity.dxf.get("true_color", 0) SEE ALSO: Common graphical DXF attributes Create New DXF Entities The factory methods for creating new graphical DXF entities are located in the BaseLayout class. This means this factory methods are available for all entity containers: • Modelspace • Paperspace • BlockLayout The usage is simple: msp = doc.modelspace() msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer"}) SEE ALSO: Thematic Index of Layout Factory Methods A few important or required DXF attributes are explicit method arguments, most additional and optional DXF attributes are gives as a regular Python dict object. The supported DXF attributes can be found in the documentation of the ezdxf.entities module. WARNING: Do not instantiate DXF entities by yourself and add them to layouts, always use the provided factory function to create new graphical entities, this is the intended way to use ezdxf. Create Block References A block reference is just another DXF entity called INSERT, but the term “Block Reference” is a better choice and so the Insert entity is created by the factory function: add_blockref(): msp.add_blockref("MyBlock", (0, 0)) SEE ALSO: See Tutorial for Blocks for more advanced features like using Attrib entities. Create New Layers A layer is not an entity container, a layer is just another DXF attribute stored in the entity and this entity can inherit some properties from this Layer object. Layer objects are stored in the layer table which is available as attribute doc.layers. You can create your own layers: my_layer = doc.layer.add("MyLayer") The layer object also controls the visibility of entities which references this layer, the on/off state of the layer is unfortunately stored as positive or negative color value which make the raw DXF attribute of layers useless, to change the color of a layer use the property Layer.color my_layer.color = 1 To change the state of a layer use the provided methods of the Layer object, like on(), off(), freeze() or thaw(): my_layer.off() SEE ALSO: Layer Concept Delete Entities The safest way to delete entities is to delete the entity from the layout containing that entity: line = msp.add_line((0, 0), (1, 0)) msp.delete_entity(line) This removes the entity immediately from the layout and destroys the entity. The property is_alive returns False for a destroyed entity and all Python attributes are deleted, so line.dxf.color will raise an AttributeError exception, because line does not have a dxf attribute anymore. Ezdxf also supports also destruction of entities by calling method destroy() manually: line.destroy() Manually destroyed entities are not removed immediately from entities containers like Modelspace or EntityQuery, but iterating such a container will filter destroyed entities automatically, so a for e in msp: ... loop will never yield destroyed entities. The index operator and the len() function do not filter deleted entities, to avoid getting deleted entities call the purge() method of the container manually to remove deleted entities. Further Information • Reference documentation • Documentation of package internals: Developer Guides.
BASIC CONCEPTS
The Basic Concepts section teach the intended meaning of DXF attributes and structures without teaching the application of this information or the specific implementation by ezdxf, if you are looking for more information about the ezdxf internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section and for the solution of specific problems go to the Howto section. What is DXF? The common assumption is also the cite of Wikipedia: AutoCAD DXF (Drawing eXchange Format) is a CAD data file format developed by Autodesk for enabling data interoperability between AutoCAD and other applications. DXF was originally introduced in December 1982 as part of AutoCAD 1.0, and was intended to provide an exact representation of the data in the AutoCAD native file format, DWG (Drawing). For many years Autodesk did not publish specifications making correct imports of DXF files difficult. Autodesk now publishes the DXF specifications online. The more precise cite from the DXF reference itself: The DXF™ format is a tagged data representation of all the information contained in an AutoCAD® drawing file. Tagged data means that each data element in the file is preceded by an integer number that is called a group code. A group code’s value indicates what type of data element follows. This value also indicates the meaning of a data element for a given object (or record) type. Virtually all user-specified information in a drawing file can be represented in DXF format. No mention of interoperability between AutoCAD and other applications. In reality the DXF format was designed to ensure AutoCAD cross-platform compatibility in the early days when different hardware platforms with different binary data formats were used. The name DXF (Drawing eXchange Format) may suggest an universal exchange format, but it is not. It is based on the infrastructure installed by Autodesk products (fonts) and the implementation details of AutoCAD (MTEXT) or on licensed third party technologies (embedded ACIS entities). For more information about the AutoCAD history see the document: The Autodesk File - Bits of History, Words of Experience by John Walker, founder of Autodesk, Inc. and co-author of AutoCAD. DXF Reference Quality The DXF reference is by far no specification nor a standard like the W3C standard for SVG or the ISO standard for PDF. The reference describes many but not all DXF entities and some basic concepts like the tag structure or the arbitrary axis algorithm. But the existing documentation (reference) is incomplete and partly misleading or wrong. Also missing from the reference are some important parts like the complex relationship between the entities to create higher order structures like block definitions, layouts (model space & paper space) or dynamic blocks to name a few. Reliable CAD Applications Because of the suboptimal quality of the DXF reference not all DXF viewers, creators or processors are of equal quality. I consider a CAD application as a reliable CAD application when the application creates valid DXF documents in the meaning and interpretation of Autodesk and a reliable DXF viewer when the result matches in most parts the result of the free Trueview viewer provided by Autodesk. These are some applications which do fit the criteria of a reliable CAD application: • AutoCAD and Trueview • CAD applications based on the OpenDesignAlliance (ODA) SDK, see also ODA on wikipedia, even Autodesk is a corporate member, see their blog post from 22 Sep 2020 at adsknews but only to use the ODA IFC tools and not to improve the DWG/DXF compatibility • BricsCAD (ODA based) • GstarCAD (ODA based) • ZWCAD (ODA based) Unfortunately, I cannot recommend any open source applications because everyone I know has serious shortcomings, at least as a DXF viewer, and I don’t trust them as a DXF creator either. To be clear, not even ezdxf (which is not a CAD application) is a reliable library in this sense - it just keeps getting better, but is far from reliable. BTW: Don’t send bug reports based on LibreCAD or QCAD, I won’t waste my time on them. AutoCAD Color Index (ACI) The color attribute represents an ACI (AutoCAD Color Index). AutoCAD and many other CAD application provides a default color table, but pen table would be the more correct term. Each ACI entry defines the color value, the line weight and some other attributes to use for the pen. This pen table can be edited by the user or loaded from an CTB or STB file. Ezdxf provides functions to create (new()) or modify (ezdxf.acadctb.load()) plot styles files. DXF R12 and prior are not good in preserving the layout of a drawing, because of the lack of a standard color table defined by the DXF reference and missing DXF structures to define these color tables in the DXF file. So if a CAD user redefined an ACI and do not provide a CTB or STB file, you have no ability to determine which color or lineweight was used. This is better in later DXF versions by providing additional DXF attributes like lineweight and true_color. SEE ALSO: Plot Style Files (CTB/STB) ezdxf.colors Layer Concept Every object has a layer as one of its properties. You may be familiar with layers - independent drawing spaces that stack on top of each other to create an overall image - from using drawing programs. Most CAD programs use layers as the primary organizing principle for all the objects that you draw. You use layers to organize objects into logical groups of things that belong together; for example, walls, furniture, and text notes usually belong on three separate layers, for a couple of reasons: • Layers give you a way to turn groups of objects on and off - both on the screen and on the plot. • Layers provide the most efficient way of controlling object color and linetype Create a layer table entry Layer by Drawing.layers.new(), assign the layer properties such as color and linetype. Then assign those layers to other DXF entities by setting the DXF attribute layer to the layer name as string. It is possible to use layers without a layer definition but not recommend, just use a layer name without a layer definition, the layer has the default linetype 'Continuous' and the default color is 7. The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using 'BYLAYER' as linetype string and 256 as color, both values are default values for new entities. SEE ALSO: Tutorial for Layers Linetypes The linetype defines the pattern of a line. The linetype of an entity can be specified by the DXF attribute linetype, this can be an explicit named linetype or the entity can inherit its line type from the assigned layer by setting linetype to 'BYLAYER', which is also the default value. CONTINUOUS is the default line type for layers with unspecified line type. ezdxf creates several standard linetypes, if the argument setup is True at calling new(), this simple line types are supported by all DXF versions: doc = ezdxf.new('R2007', setup=True) [image] In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in linetypes. ezdxf v0.8.4 and later supports complex linetypes. SEE ALSO: Tutorial for Linetypes Linetype Scaling Global linetype scaling can be changed by setting the header variable doc.header['$LTSCALE'] = 2, which stretches the line pattern by factor 2. To change the linetype scaling for single entities set scaling factor by DXF attribute ltscale, which is supported since DXF version R2000. Lineweights The lineweight attribute represents the lineweight as integer value in millimeters * 100, e.g. 0.25mm = 25, independently from the unit system used in the DXF document. The lineweight attribute is supported by DXF version R2000 and newer. Only certain values are valid, they are stored in ezdxf.lldxf.const.VALID_DXF_LINEWEIGHTS: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211. Values < 0 have a special meaning and can be imported as constants from ezdxf.lldxf.const ┌───┬────────────────────┐ │-1 │ LINEWEIGHT_BYLAYER │ ├───┼────────────────────┤ │-2 │ LINEWEIGHT_BYBLOCK │ ├───┼────────────────────┤ │-3 │ LINEWEIGHT_DEFAULT │ └───┴────────────────────┘ The validator function: ezdxf.lldxf.validator.is_valid_lineweight() returns True for valid lineweight values otherwise False. Sample file which shows all valid lineweights: valid_lineweights.dxf You have to enable the option to show lineweights in your CAD application or viewer to see the effect on screen, which is often disabled by default, the same has to be done in the page setup options for plotting lineweights. Setting the HEADER variable $LWDISPLAY to 1 may activate support for showing lineweights on screen and $LWDISPSCALE may scale the lineweight on screen: # activate on screen lineweight display doc.header["$LWDISPLAY"] = 1 # lineweight scaling factor for on screen display doc.header["$LWDISPSCALE"] = 0.55 [image] The lineweight value can be overridden by CTB or STB files. Coordinate Systems AutoLISP Reference to Coordinate Systems provided by Autodesk. To brush up you knowledge about vectors, watch the YouTube tutorials of 3Blue1Brown about Linear Algebra. WCS World coordinate system - the reference coordinate system. All other coordinate systems are defined relative to the WCS, which never changes. Values measured relative to the WCS are stable across changes to other coordinate systems. UCS User coordinate system - the working coordinate system defined by the user to make drawing tasks easier. All points passed to AutoCAD commands, including those returned from AutoLISP routines and external functions, are points in the current UCS. As far as I know, all coordinates stored in DXF files are always WCS or OCS never UCS. User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a converter class UCS to translate coordinates from UCS into WCS and vice versa, but always remember: store only WCS or OCS coordinates in DXF files, because there is no method to determine which UCS was active or used to create UCS coordinates. SEE ALSO: • Table entry UCS • ezdxf.math.UCS - converter between WCS and UCS OCS Object coordinate system - coordinates relative to the object itself. These points are usually converted into the WCS, current UCS, or current DCS, according to the intended use of the object. Conversely, points must be translated into an OCS before they are written to the database. This is also known as the entity coordinate system. Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the domain of the user/application. And further more, the main goal of OCS is to place 2D elements in 3D space, this maybe was useful in the early years of CAD, I think nowadays this is an not often used feature, but I am not an AutoCAD user. OCS differ from WCS only if extrusion != (0, 0, 1), convert OCS into WCS: # circle is an DXF entity with extrusion != (0, 0, 1) ocs = circle.ocs() wcs_center = ocs.to_wcs(circle.dxf.center) SEE ALSO: • Object Coordinate System (OCS) - deeper insights into OCS • ezdxf.math.OCS - converter between WCS and OCS DCS Display coordinate system - the coordinate system into which objects are transformed before they are displayed. The origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its z-axis is the viewing direction. In other words, a viewport is always a plan view of its DCS. These coordinates can be used to determine where something will be displayed to the AutoCAD user. Object Coordinate System (OCS) • DXF Reference for OCS provided by Autodesk. The points associated with each entity are expressed in terms of the entity’s own object coordinate system (OCS). The OCS was referred to as ECS in previous releases of AutoCAD. With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D vector describing the z-axis of the OCS (often referenced as extrusion vector), and the elevation value, which is the distance of the entity xy-plane to the WCS/OCS origin. For a given z-axis (extrusion) direction, there are an infinite number of coordinate systems, defined by translating the origin in 3D space and by rotating the x- and y-axis around the z-axis. However, for the same z-axis direction, there is only one OCS. It has the following properties: • Its origin coincides with the WCS origin. • The orientation of the x- and y-axis within the xy-plane are calculated in an arbitrary but consistent manner. AutoCAD performs this calculation using the arbitrary axis algorithm (see below). • Because of Arbitrary Axis Algorithm the OCS can only represent a right-handed coordinate system! The following entities do not lie in a particular plane. All points are expressed in world coordinates. Of these entities, only lines and points can be extruded. Their extrusion direction can differ from the world z-axis. • Line • Point • 3DFace • Polyline (3D) • Vertex (3D) • Polymesh • Polyface • Viewport These entities are planar in nature. All points are expressed in object coordinates. All of these entities can be extruded. Their extrusion direction can differ from the world z-axis. • Circle • Arc • Solid • Trace • Text • Attrib • Attdef • Shape • Insert • Polyline (2D) • Vertex (2D) • LWPolyline • Hatch • Image Some of a Dimension’s points are expressed in WCS and some in OCS. Elevation Elevation group code 38: Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each of the entity’s defining points. Arbitrary Axis Algorithm • DXF Reference for Arbitrary Axis Algorithm provided by Autodesk. The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent generation of object coordinate systems for all entities that use object coordinates. Given a unit-length vector to be used as the z-axis of a coordinate system, the arbitrary axis algorithm generates a corresponding x-axis for the coordinate system. The y-axis follows by application of the right-hand rule. We are looking for the arbitrary x- and y-axis to go with the normal Az (the arbitrary z-axis). They will be called Ax and Ay (using Vec3): Az = Vec3(entity.dxf.extrusion).normalize() # normal (extrusion) vector if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.): Ax = Vec3(0, 1, 0).cross(Az).normalize() # the cross-product operator else: Ax = Vec3(0, 0, 1).cross(Az).normalize() # the cross-product operator Ay = Az.cross(Ax).normalize() WCS to OCS def wcs_to_ocs(point): px, py, pz = Vec3(point) # point in WCS x = px * Ax.x + py * Ax.y + pz * Ax.z y = px * Ay.x + py * Ay.y + pz * Ay.z z = px * Az.x + py * Az.y + pz * Az.z return Vec3(x, y, z) OCS to WCS Wx = wcs_to_ocs((1, 0, 0)) Wy = wcs_to_ocs((0, 1, 0)) Wz = wcs_to_ocs((0, 0, 1)) def ocs_to_wcs(point): px, py, pz = Vec3(point) # point in OCS x = px * Wx.x + py * Wx.y + pz * Wx.z y = px * Wy.x + py * Wy.y + pz * Wy.z z = px * Wz.x + py * Wz.y + pz * Wz.z return Vec3(x, y, z) DXF Units The DXF reference has no explicit information how to handle units in DXF, any information in this section is based on experiments with BricsCAD and may differ in other CAD application, BricsCAD tries to be as compatible with AutoCAD as possible. Therefore, this information should also apply to AutoCAD. Please open an issue on github if you have any corrections or additional information about this topic. Length Units Any length or coordinate value in DXF is unitless in the first place, there is no unit information attached to the value. The unit information comes from the context where a DXF entity is used. The document/modelspace get the unit information from the header variable $INSUNITS, paperspace and block layouts get their unit information form the attribute units. The modelspace object has also a units property, but this value do not represent the modelspace units, this value is always set to 0 “unitless”. Get and set document/modelspace units as enum by the Drawing property units: import ezdxf from ezdxf import units doc = ezdxf.new() # Set centimeter as document/modelspace units doc.units = units.CM # which is a shortcut (including validation) for doc.header['$INSUNITS'] = units.CM Block Units As said each block definition can have independent units, but there is no implicit unit conversion applied, not in CAD applications and not in ezdxf. When inserting a block reference (INSERT) into the modelspace or another block layout with different units, the scaling factor between these units must be applied explicit as scaling DXF attributes (xscale, …) of the Insert entity, e.g. modelspace in meters and block in centimeters, x-, y- and z-scaling has to be 0.01: doc.units = units.M my_block = doc.blocks.new('MYBLOCK') my_block.units = units.CM block_ref = msp.add_block_ref('MYBLOCK') # Set uniform scaling for x-, y- and z-axis block_ref.set_scale(0.01) Use helper function conversion_factor() to calculate the scaling factor between units: factor = units.conversion_factor(doc.units, my_block.units) # factor = 100 for 1m is 100cm # scaling factor = 1 / factor block_ref.set_scale(1.0/factor) HINT: It is never a good idea to use different measurement system in one document, ask the NASA about their Mars Climate Orbiter from 1999. The same applies for units of the same measurement system, just use one unit like meters or inches. Angle Units Angles are always in degrees (360 deg = full circle) and in counter clockwise orientation, unless stated explicit otherwise. Display Format How values are shown in the CAD GUI is controlled by the header variables $LUNITS and $AUNITS, but this has no meaning for values stored in DXF files. $INSUNITS The most important setting is the header variable $INSUNITS, this variable defines the drawing units for the modelspace and therefore for the DXF document if no further settings are applied. The modelspace LAYOUT entity has a property units as any layout like object, but it seem to have no meaning for the modelspace, BricsCAD set this property always to 0, which means unitless. The most common units are 6 for meters and 1 for inches. Changed in version 0.17.2: added an enumeration ezdxf.enums.InsertUnits doc.header['$INSUNITS'] = 6 ┌───┬───────────────────────┐ │0 │ Unitless │ ├───┼───────────────────────┤ │1 │ Inches, units.IN │ ├───┼───────────────────────┤ │2 │ Feet, units.FT │ ├───┼───────────────────────┤ │3 │ Miles, units.MI │ ├───┼───────────────────────┤ │4 │ Millimeters, units.MM │ ├───┼───────────────────────┤ │5 │ Centimeters, units.CM │ ├───┼───────────────────────┤ │6 │ Meters, units.M │ ├───┼───────────────────────┤ │7 │ Kilometers, units.KM │ ├───┼───────────────────────┤ │8 │ Microinches │ ├───┼───────────────────────┤ │9 │ Mils │ ├───┼───────────────────────┤ │10 │ Yards, units.YD │ ├───┼───────────────────────┤ │11 │ Angstroms │ ├───┼───────────────────────┤ │12 │ Nanometers │ ├───┼───────────────────────┤ │13 │ Microns │ ├───┼───────────────────────┤ │14 │ Decimeters, units.DM │ ├───┼───────────────────────┤ │15 │ Decameters │ ├───┼───────────────────────┤ │16 │ Hectometers │ ├───┼───────────────────────┤ │17 │ Gigameters │ ├───┼───────────────────────┤ │18 │ Astronomical units │ └───┴───────────────────────┘ │19 │ Light years │ ├───┼───────────────────────┤ │20 │ Parsecs │ ├───┼───────────────────────┤ │21 │ US Survey Feet │ ├───┼───────────────────────┤ │22 │ US Survey Inch │ ├───┼───────────────────────┤ │23 │ US Survey Yard │ ├───┼───────────────────────┤ │24 │ US Survey Mile │ └───┴───────────────────────┘ $MEASUREMENT The header variable $MEASUREMENT controls whether the current drawing uses imperial or metric hatch pattern and linetype files, this setting is not applied correct in ezdxf yet, but will be fixed in the future: This setting is independent from $INSUNITS, it is possible to set the drawing units to inch and use metric linetypes and hatch pattern. In BricsCAD the base scaling of the linetypes is only depending from the $MEASUREMENT value, is not relevant if $INSUNITS is meter, centimeter, millimeter, … and so on and the same is valid for hatch pattern. Changed in version 0.17.2: added an enumeration ezdxf.enums.Measurement doc.header['$MEASUREMENT'] = 1 ┌──┬─────────┐ │0 │ English │ ├──┼─────────┤ │1 │ Metric │ └──┴─────────┘ $LUNITS The header variable $LUNITS defines how CAD applications show linear values in the GUI and has no meaning for ezdxf: Changed in version 0.17.2: added an enumeration ezdxf.enums.LengthUnits doc.header['$LUNITS'] = 2 ┌──┬───────────────────┐ │1 │ Scientific │ ├──┼───────────────────┤ │2 │ Decimal (default) │ ├──┼───────────────────┤ │3 │ Engineering │ ├──┼───────────────────┤ │4 │ Architectural │ ├──┼───────────────────┤ │5 │ Fractional │ └──┴───────────────────┘ $AUNITS The header variable $AUNITS defines how CAD applications show angular values in the GUI and has no meaning for ezdxf, DXF angles are always degrees in counter-clockwise orientation, unless stated explicit otherwise: Changed in version 0.17.2: added an enumeration ezdxf.enums.AngularUnits doc.header['$AUNITS'] = 0 ┌──┬─────────────────────────┐ │0 │ Decimal degrees │ ├──┼─────────────────────────┤ │1 │ Degrees/minutes/seconds │ ├──┼─────────────────────────┤ │2 │ Grad │ ├──┼─────────────────────────┤ │3 │ Radians │ └──┴─────────────────────────┘ Helper Tools ezdxf.units.conversion_factor(source_units: InsertUnits, target_units: InsertUnits) -> float Returns the conversion factor to represent source_units in target_units. E.g. millimeter in centimeter conversion_factor(MM, CM) returns 0.1, because 1 mm = 0.1 cm ezdxf.units.unit_name(enum: int) -> str Returns the name of the unit enum. ezdxf.units.angle_unit_name(enum: int) -> str Returns the name of the angle unit enum. Layout Extents and Limits The extents and limits of an layout represents borders which can be referenced by the ZOOM command or read from some header variables from the HeaderSection, if the creator application maintains these values – ezdxf does it not automatically. Extents The extents of an layout are determined by the maximum extents of all DXF entities that are in this layout. The command: ZOOM extents sets the current viewport to the extents of the currently selected layout. A paper space layout in an arbitrary zoom state: [image] The same layout after the ZOOM extents command: [image] Limits Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking or entering point locations. The default limits for paper space layouts is defined by the paper size. The layout from above after the ZOOM all command: [image] SEE ALSO: The AutoCAD online reference for the ZOOM and the LIMITS command. Read Stored Values The extents of the model space (the tab called “Model”) are stored in the header variable $EXTMIN and $EXTMAX. The default values of $EXTMIN is (+1e20, +1e20, +1e20) and $EXTMAX is (-1e20, -1e20, -1e20), which do not describe real borders. These values are copies of the extents attributes of the Layout object as Layout.dxf.extmin and Layout.dxf.extmax. The limits of the modelspace are stored in the header variables $LIMMIN and $LIMMAX and have default values of (0, 0) and (420, 297), the default paper size of ezdxf in drawing units. These are copies of the Layout attributes Layout.dxf.extmin and Layout.dxf.extmax. The extents and the limits of the actual paper space layout, which is the last activated paper space layout tab, stored in the header variable $PEXTMIN, $PEXTMAX, $PLIMMIN and $PLIMMAX. Each paper space layout has its own values stored in the Layout attributes Layout.dxf.extmin, Layout.dxf.extmax, Layout.dxf.limmin and Layout.dxf.limmax. Setting Extents and Limits Since v0.16 ezdxf it is sufficient to define the attributes for extents and limits (Layout.dxf.extmax, Layout.dxf.limmin and Layout.dxf.limmax) of Layout object. The header variables are synchronized when the document is saved. The extents of a layout are not calculated automatically by ezdxf, as this can take a long time for large documents and correct values are not required to create a valid DXF document. SEE ALSO: How to: Calculate Extents for the Modelspace Font Resources DXF relies on the infrastructure installed by AutoCAD like the included SHX files or True Type fonts. There is no simple way to store additional information about a used fonts beside the plain file system name like "arial.ttf". The CAD application or viewer which opens the DXF file has to have access to the specified fonts used in your DXF document or it has to use an appropriate replacement font, which is not that easy in the age of unicode. Later DXF versions can store font family names in the XDATA of the STYLE entity but not all CAD application use this information.
TUTORIALS
Tutorial for getting data from DXF files In this tutorial I show you how to get data from an existing DXF drawing. If you are a new ezdxf user, read also the tutorial Usage for Beginners. Loading the DXF file: import sys import ezdxf try: doc = ezdxf.readfile("your_dxf_file.dxf") except IOError: print(f"Not a DXF file or a generic I/O error.") sys.exit(1) except ezdxf.DXFStructureError: print(f"Invalid or corrupted DXF file.") sys.exit(2) This works well for DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. SEE ALSO: • Document Management • Usage for Beginners Layouts I use the term layout as synonym for an arbitrary entity space which can contain DXF entities like LINE, CIRCLE, TEXT and so on. Every DXF entity can only reside in exact one layout. There are three different layout types: • Modelspace: this is the common construction space • Paperspace: used to to create print layouts • BlockLayout: reusable elements, every block has its own entity space A DXF drawing consist of exact one modelspace and at least of one paperspace. DXF R12 has only one unnamed paperspace the later DXF versions support more than one paperspace and each paperspace has a name. Getting the modelspace layout The modelspace contains the “real” world representation of the drawing subjects in real world units. The modelspace has the fixed name “Model” and the DXF document has a special getter method modelspace(). msp = doc.modelspace() Iterate over DXF entities of a layout Iterate over all DXF entities in modelspace. Although this is a possible way to retrieve DXF entities, I would like to point out that entity queries are the better way. # helper function def print_entity(e): print("LINE on layer: %s\n" % e.dxf.layer) print("start point: %s\n" % e.dxf.start) print("end point: %s\n" % e.dxf.end) # iterate over all entities in modelspace msp = doc.modelspace() for e in msp: if e.dxftype() == "LINE": print_entity(e) # entity query for all LINE entities in modelspace for e in msp.query("LINE"): print_entity(e) All layout objects supports the standard Python iterator protocol and the in operator. Access DXF attributes of an entity Check the type of an DXF entity by e.dxftype(). The DXF type is always uppercase. All DXF attributes of an entity are grouped in the namespace attribute dxf: e.dxf.layer # layer of the entity as string e.dxf.color # color of the entity as integer See Common graphical DXF attributes If a DXF attribute is not set (a valid DXF attribute has no value), a DXFValueError will be raised. To avoid this use the get_dxf_attrib() method with a default value: # If DXF attribute 'paperspace' does not exist, the entity defaults # to modelspace: p = e.get_dxf_attrib("paperspace", 0) An unsupported DXF attribute raises an DXFAttributeError. Getting a paperspace layout paperspace = doc.layout("layout0") Retrieves the paperspace named layout0, the usage of the Layout object is the same as of the modelspace object. DXF R12 provides only one paperspace, therefore the paperspace name in the method call doc.layout("layout0") is ignored or can be left off. For newer DXF versions you can get a list of the available layout names by the methods layout_names() and layout_names_in_taborder(). Retrieve entities by query language ezdxf provides a flexible query language for DXF entities. All layout types have a query() method to start an entity query or use the ezdxf.query.new() function. The query string is the combination of two queries, first the required entity query and second the optional attribute query, enclosed in square brackets: "EntityQuery[AttributeQuery]" The entity query is a whitespace separated list of DXF entity names or the special name *. Where * means all DXF entities, all other DXF names have to be uppercase. The * search can exclude entity types by adding the entity name with a presceding ! (e.g. * !LINE, search all entities except lines). The attribute query is used to select DXF entities by its DXF attributes. The attribute query is an addition to the entity query and matches only if the entity already match the entity query. The attribute query is a boolean expression, supported operators: and, or, !. SEE ALSO: Entity Query String Get all LINE entities from the modelspace: msp = doc.modelspace() lines = msp.query("LINE") The result container EntityQuery also provides the query() method, get all LINE entities at layer construction: construction_lines = lines.query('*[layer=="construction"]') The * is a wildcard for all DXF types, in this case you could also use LINE instead of *, * works here because lines just contains entities of DXF type LINE. All together as one query: lines = msp.query('LINE[layer=="construction"]') The ENTITIES section also supports the query() method: lines_and_circles = doc.entities.query('LINE CIRCLE[layer=="construction"]') Get all modelspace entities at layer construction, but excluding entities with linetype DASHED: not_dashed_entities = msp.query('*[layer=="construction" and linetype!="DASHED"]') Retrieve entities by groupby() function Search and group entities by a user defined criteria. As example let’s group all entities from modelspace by layer, the result will be a dict with layer names as dict-key and a list of all entities from modelspace matching this layer as dict-value. Usage as dedicated function call: from ezdxf.groupby import groupby group = groupby(entities=msp, dxfattrib="layer") The entities argument can be any container or generator which yields DXFEntity or inherited objects. Shorter and simpler to use as method of BaseLayout (modelspace, paperspace layouts, blocks) and query results as EntityQuery objects: group = msp.groupby(dxfattrib="layer") for layer, entities in group.items(): print(f'Layer "{layer}" contains following entities:') for entity in entities: print(f" {entity}") print("-"*40) The previous example shows how to group entities by a single DXF attribute, but it is also possible to group entities by a custom key, to do so create a custom key function, which accepts a DXF entity as argument and returns a hashable value as dict-key or None to exclude the entity. The following example shows how to group entities by layer and color, so each result entry has a tuple (layer, color) as key and a list of entities with matching DXF attributes as values: def layer_and_color_key(entity): # return None to exclude entities from result container if entity.dxf.layer == "0": # exclude entities from default layer "0" return None else: return entity.dxf.layer, entity.dxf.color group = msp.groupby(key=layer_and_color_key) for key, entities in group.items(): print(f'Grouping criteria "{key}" matches following entities:') for entity in entities: print(f" {entity}") print("-"*40) To exclude entities from the result container the key function should return None. The groupby() function catches DXFAttributeError exceptions while processing entities and excludes this entities from the result container. So there is no need to worry about DXF entities which do not support certain attributes, they will be excluded automatically. SEE ALSO: groupby() documentation Tutorial for creating simple DXF drawings r12writer - create simple DXF R12 drawings with a restricted entities set: LINE, CIRCLE, ARC, TEXT, POINT, SOLID, 3DFACE and POLYLINE. Advantage of the r12writer is the speed and the low memory footprint, all entities are written direct to the file/stream without building a drawing data structure in memory. SEE ALSO: r12writer Create a new DXF drawing with ezdxf.new() to use all available DXF entities: import ezdxf # Create a new DXF R2010 drawing, official DXF version name: "AC1024" doc = ezdxf.new('R2010') # Add new entities to the modelspace: msp = doc.modelspace() # Add a LINE entity msp.add_line((0, 0), (10, 0)) doc.saveas('line.dxf') New entities are always added to layouts, a layout can be the model space, a paper space layout or a block layout. SEE ALSO: Thematic Index of Layout Factory Methods Tutorial for Layers If you are not familiar with the concept of layers, please read this first: Layer Concept Create a Layer Definition import ezdxf doc = ezdxf.new(setup=True) # setup required line types msp = doc.modelspace() doc.layers.add(name="MyLines", color=7, linetype="DASHED") The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using "BYLAYER" as linetype string and 256 as color, both values are default values for new entities so you can leave off these assignments: msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"}) The new created line will be drawn with color 7 and linetype "DASHED". Changing Layer State Get the layer definition object: my_lines = doc.layers.get('MyLines') Check the state of the layer: my_lines.is_off() # True if layer is off my_lines.is_on() # True if layer is on my_lines.is_locked() # True if layer is locked layer_name = my_lines.dxf.name # get the layer name Change the state of the layer: # switch layer off, entities at this layer will not shown in CAD applications/viewers my_lines.off() # lock layer, entities at this layer are not editable in CAD applications my_lines.lock() Get/set default color of a layer by property Layer.color, because the DXF attribute Layer.dxf.color is misused for switching the layer on and off, layer is off if the color value is negative. Changing the default layer values: my_lines.dxf.linetype = "DOTTED" my_lines.color = 13 # preserves on/off state of layer SEE ALSO: For all methods and attributes see class Layer. Check Available Layers The layers object supports some standard Python protocols: # iteration for layer in doc.layers: if layer.dxf.name != "0": layer.off() # switch all layers off except layer "0" # check for existing layer definition if "MyLines" in doc.layers: layer = doc.layers.get("MyLines") layer_count = len(doc.layers) # total count of layer definitions Deleting a Layer Delete a layer definition: doc.layers.remove("MyLines") This just deletes the layer definition, all DXF entities with the DXF attribute layer set to "MyLines" are still there, but if they inherit color and/or linetype from the layer definition they will be drawn now with linetype "Continuous" and color 1. Tutorial for Blocks What are Blocks? Blocks are collections of DXF entities which can be placed multiple times as block references in different layouts and other block definitions. The block reference (Insert) can be rotated, scaled, placed in 3D space by OCS and arranged in a grid like manner, each Insert entity can have individual attributes (Attrib) attached. Create a Block Blocks are managed as BlockLayout objects by the BlocksSection object, every drawing has only one blocks section stored in the attribute: Drawing.blocks. import ezdxf import random # needed for random placing points def get_random_point(): """Returns random x, y coordinates.""" x = random.randint(-100, 100) y = random.randint(-100, 100) return x, y # Create a new drawing in the DXF format of AutoCAD 2010 doc = ezdxf.new('R2010') # Create a block with the name 'FLAG' flag = doc.blocks.new(name='FLAG') # Add DXF entities to the block 'FLAG'. # The default base point (= insertion point) of the block is (0, 0). flag.add_lwpolyline([(0, 0), (0, 5), (4, 3), (0, 3)]) # the flag symbol as 2D polyline flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a circle Block References (Insert) A block reference is a DXF Insert entity and can be placed in any layout: Modelspace, any Paperspace or BlockLayout (which enables nested block references). Every block reference can be placed, scaled and rotated individually. Scaling by negative values is mirroring. Lets insert some random flags into the modelspace: # Get the modelspace of the drawing. msp = doc.modelspace() # Get 50 random placing points. placing_points = [get_random_point() for _ in range(50)] for point in placing_points: # Every flag has a different scaling and a rotation of -15 deg. random_scale = 0.5 + random.random() * 2.0 # Add a block reference to the block named 'FLAG' at the coordinates 'point'. msp.add_blockref('FLAG', point, dxfattribs={ 'xscale': random_scale, 'yscale': random_scale, 'rotation': -15 }) # Save the drawing. doc.saveas("blockref_tutorial.dxf") Query all block references of block FLAG: for flag_ref in msp.query('INSERT[name=="FLAG"]'): print(str(flag_ref)) When inserting a block reference into the modelspace or another block layout with different units, the scaling factor between these units should be applied as scaling attributes (xscale, …) e.g. modelspace in meters and block in centimeters, xscale has to be 0.01. What are Attributes? An attribute (Attrib) is a text annotation attached to a block reference with an associated tag. Attributes are often used to add information to blocks which can be evaluated and exported by CAD programs. An attribute can be visible or hidden. The simple way to use attributes is just to add an attribute to a block reference by Insert.add_attrib(), but the attribute is geometrically not related to the block reference, so you have to calculate the insertion point, rotation and scaling of the attribute by yourself. Using Attribute Definitions The second way to use attributes in block references is a two step process, first step is to create an attribute definition (template) in the block definition, the second step is adding the block reference by Layout.add_blockref() and attach and fill attribute automatically by the add_auto_attribs() method to the block reference. The advantage of this method is that all attributes are placed relative to the block base point with the same rotation and scaling as the block, but has the disadvantage that non uniform scaling is not handled very well. The method Layout.add_auto_blockref() handles non uniform scaling better by wrapping the block reference and its attributes into an anonymous block and let the CAD application do the transformation work which will create correct graphical representations at least by AutoCAD and BricsCAD. This method has the disadvantage of a more complex evaluation of attached attributes Using attribute definitions (Attdef): # Define some attributes for the block 'FLAG', placed relative # to the base point, (0, 0) in this case. flag.add_attdef('NAME', (0.5, -0.5), dxfattribs={'height': 0.5, 'color': 3}) flag.add_attdef('XPOS', (0.5, -1.0), dxfattribs={'height': 0.25, 'color': 4}) flag.add_attdef('YPOS', (0.5, -1.5), dxfattribs={'height': 0.25, 'color': 4}) # Get another 50 random placing points. placing_points = [get_random_point() for _ in range(50)] for number, point in enumerate(placing_points): # values is a dict with the attribute tag as item-key and # the attribute text content as item-value. values = { 'NAME': "P(%d)" % (number + 1), 'XPOS': "x = %.3f" % point[0], 'YPOS': "y = %.3f" % point[1] } # Every flag has a different scaling and a rotation of +15 deg. random_scale = 0.5 + random.random() * 2.0 blockref = msp.add_blockref('FLAG', point, dxfattribs={ 'rotation': 15 }).set_scale(random_scale) blockref.add_auto_attribs(values) # Save the drawing. doc.saveas("auto_blockref_tutorial.dxf") Get/Set Attributes of Existing Block References See the howto: Get/Set Block Reference Attributes Evaluate Wrapped Block References As mentioned above evaluation of block references wrapped into anonymous blocks is complex: # Collect all anonymous block references starting with '*U' anonymous_block_refs = modelspace.query('INSERT[name ? "^\*U.+"]') # Collect real references to 'FLAG' flag_refs = [] for block_ref in anonymous_block_refs: # Get the block layout of the anonymous block block = doc.blocks.get(block_ref.dxf.name) # Find all block references to 'FLAG' in the anonymous block flag_refs.extend(block.query('INSERT[name=="FLAG"]')) # Evaluation example: collect all flag names. flag_numbers = [ flag.get_attrib_text("NAME") for flag in flag_refs if flag.has_attrib("NAME") ] print(flag_numbers) Exploding Block References This is an advanced feature and because ezdxf is still not a CAD application, the results may no be perfect. Non uniform scaling lead to incorrect results for text entities (TEXT, MTEXT, ATTRIB) and some other entities like HATCH with arc or ellipse path segments. By default the “exploded” entities are added to the same layout as the block reference is located. for flag_ref in msp.query('INSERT[name=="FLAG"]'): flag_ref.explode() Examine Entities of Block References If you just want to examine the entities of a block reference use the virtual_entities() method. This methods yields “virtual” entities with attributes identical to “exploded” entities but they are not stored in the entity database, have no handle and are not assigned to any layout. for flag_ref in msp.query('INSERT[name=="FLAG"]'): for entity in flag_ref.virtual_entities(): if entity.dxftype() == "LWPOLYLINE": print(f"Found {str(entity)}.") Tutorial for LWPolyline The LWPolyline is defined as a single graphic entity, which differs from the old-style Polyline entity, which is defined as a group of sub-entities. LWPolyline display faster (in AutoCAD) and consume less disk space, it is a planar element, therefore all points in OCS as (x, y) tuples (LWPolyline.dxf.elevation is the z-axis value). Create a simple polyline: import ezdxf doc = ezdxf.new("R2000") msp = doc.modelspace() points = [(0, 0), (3, 0), (6, 3), (6, 6)] msp.add_lwpolyline(points) doc.saveas("lwpolyline1.dxf") Append multiple points to a polyline: doc = ezdxf.readfile("lwpolyline1.dxf") msp = doc.modelspace() line = msp.query("LWPOLYLINE").first if line is not None: line.append_points([(8, 7), (10, 7)]) doc.saveas("lwpolyline2.dxf") The LWPOLYLINE entity always returns polyline points as 5-tuple (x, y, start_width, end_width, bulge), the start_width, end_width and bulge values are 0 if not present: first_point = line[0] x, y, start_width, end_width, bulge = first_point Use the method points() as context manager to edit polyline points, this method was introduced because accessing single points was very slow in early versions of ezdxf, but now direct access by the index operator [] is very fast and using the context manager is not required anymore. The advantage of the context manager is the ability to use a user defined point format: doc = ezdxf.readfile("lwpolyline2.dxf") msp = doc.modelspace() line = msp.query("LWPOLYLINE").first with line.points("xyseb") as points: # points is a standard Python list # existing points are 5-tuples, but new points can be # set as (x, y, [start_width, [end_width, [bulge]]]) tuple # set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge). # delete last 2 points del points[-2:] # adding two points points.extend([(4, 7), (0, 7)]) doc.saveas("lwpolyline3.dxf") Each line segment can have a different start- and end-width, if omitted start- and end-width is 0: doc = ezdxf.new("R2000") msp = doc.modelspace() # point format = (x, y, [start_width, [end_width, [bulge]]]) # set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge). points = [(0, 0, .1, .15), (3, 0, .2, .25), (6, 3, .3, .35), (6, 6)] msp.add_lwpolyline(points) doc.saveas("lwpolyline4.dxf") The first point carries the start- and end-width of the first segment, the second point of the second segment and so on, the start- and end-width value of the last point is used for the closing segment if the polyline is closed else these values are ignored. Start- and end-width only works if the DXF attribute dxf.const_width is unset, to be sure delete it: # no exception will be raised if const_width is already unset: del line.dxf.const_width LWPolyline can also have curved elements, they are defined by the Bulge value: doc = ezdxf.new("R2000") msp = doc.modelspace() # point format = (x, y, [start_width, [end_width, [bulge]]]) # set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge). points = [(0, 0, 0, .05), (3, 0, .1, .2, -.5), (6, 0, .1, .05), (9, 0)] msp.add_lwpolyline(points) doc.saveas("lwpolyline5.dxf") [image] The curved segment is drawn from the point which defines the bulge value to the following point, the curved segment is always an arc. The bulge value defines the ratio of the arc sagitta (segment height h) to half line segment length (point distance), a bulge value of 1 defines a semicircle. The curve is on the right side of the line for a bulge value > 0, and on the left side of the line for a bulge value < 0. The user defined point format, default is xyseb: • x = x coordinate • y = y coordinate • s = start width • e = end width • b = bulge value • v = (x, y) as tuple msp.add_lwpolyline([(0, 0, 0), (10, 0, 1), (20, 0, 0)], format="xyb") msp.add_lwpolyline([(0, 10, 0), (10, 10, .5), (20, 10, 0)], format="xyb") [image] Tutorial for Text Add a simple one line text entity by factory function add_text(). import ezdxf # TEXT is a basic entity and is supported by every DXF version. # Argument setup=True for adding standard linetypes and text styles. doc = ezdxf.new('R12', setup=True) msp = doc.modelspace() # use set_pos() for proper TEXT alignment: # The relations between DXF attributes 'halign', 'valign', # 'insert' and 'align_point' are tricky. msp.add_text("A Simple Text").set_pos((2, 3), align='MIDDLE_RIGHT') # Using a text style msp.add_text("Text Style Example: Liberation Serif", dxfattribs={ 'style': 'LiberationSerif', 'height': 0.35} ).set_pos((2, 6), align='LEFT') doc.saveas("simple_text.dxf") Valid text alignments for argument align in Text.set_pos(): ┌───────────┬─────────────┬───────────────┬──────────────┐ │Vert/Horiz │ Left │ Center │ Right │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Baseline │ LEFT │ CENTER │ RIGHT │ └───────────┴─────────────┴───────────────┴──────────────┘ Special alignments are ALIGNED and FIT, they require a second alignment point, the text is justified with the vertical alignment Baseline on the virtual line between these two points. ┌──────────┬──────────────────────────────────┐ │Alignment │ Description │ ├──────────┼──────────────────────────────────┤ │ALIGNED │ Text is stretched or compressed │ │ │ to fit exactly between p1 and p2 │ │ │ and the text height is also │ │ │ adjusted to preserve │ │ │ height/width ratio. │ ├──────────┼──────────────────────────────────┤ │FIT │ Text is stretched or compressed │ │ │ to fit exactly between p1 and p2 │ │ │ but only the text width is │ │ │ adjusted, the text height is │ │ │ fixed by the height attribute. │ ├──────────┼──────────────────────────────────┤ │MIDDLE │ also a special adjustment, but │ │ │ the result is the same as for │ │ │ MIDDLE_CENTER. │ └──────────┴──────────────────────────────────┘ Standard Text Styles Setup some standard text styles and linetypes by argument setup=True: doc = ezdxf.new('R12', setup=True) Replaced all proprietary font declarations in setup_styles() (ARIAL, ARIAL_NARROW, ISOCPEUR and TIMES) by open source fonts, this is also the style name (e.g. {'style': 'OpenSans-Italic'}): [image] New Text Style Creating a new text style is simple: doc.styles.new('myStandard', dxfattribs={'font' : 'OpenSans-Regular.ttf'}) But getting the correct font name is often not that simple, especially on Windows. This shows the required steps to get the font name for Open Sans: • open font folder c:\windows\fonts • select and open the font-family Open Sans • right-click on Open Sans Standard and select Properties • on top of the first tab you see the font name: 'OpenSans-Regular.ttf' The style name has to be unique in the DXF document, else ezdxf will raise an DXFTableEntryError exception. To replace an existing entry, delete the existing entry by doc.styles.remove(name), and add the replacement entry. 3D Text It is possible to place the 2D Text entity into 3D space by using the OCS, for further information see: Tutorial for OCS/UCS Usage. Tutorial for MText and MTextEditor The MText entity is a multi line entity with extended formatting possibilities and requires at least DXF version R2000, to use all features (e.g. background fill) DXF R2007 is required. Prolog code: import ezdxf doc = ezdxf.new("R2007", setup=True) msp = doc.modelspace() lorem_ipsum = """ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. """ Adding a MText entity The MText entity can be added to any layout (modelspace, paperspace or block) by the add_mtext() function. # store MText entity for additional manipulations mtext = msp.add_mtext(lorem_ipsum, dxfattribs={"style": "OpenSans"}) This adds a MText entity with text style “OpenSans”. The MText content can be accessed by the text attribute, this attribute can be edited like any Python string: mtext.text += "Append additional text to the MText entity." # even shorter with __iadd__() support: mtext += "Append additional text to the MText entity." [image] IMPORTANT: Line endings “\n” will be replaced by the MTEXT line endings “\P” at DXF export, but not vice versa “\P” by “\n” at DXF file loading. Text placement The location of the MText entity is defined by the MText.dxf.insert and the MText.dxf.attachment_point attributes. The attachment_point defines the text alignment relative to the insert location, default value is 1. Attachment point constants defined in ezdxf.lldxf.const: ┌───────────────────────────┬───────┐ │MText.dxf.attachment_point │ Value │ ├───────────────────────────┼───────┤ │MTEXT_TOP_LEFT │ 1 │ ├───────────────────────────┼───────┤ │MTEXT_TOP_CENTER │ 2 │ ├───────────────────────────┼───────┤ │MTEXT_TOP_RIGHT │ 3 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_LEFT │ 4 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_CENTER │ 5 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_RIGHT │ 6 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_LEFT │ 7 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_CENTER │ 8 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_RIGHT │ 9 │ └───────────────────────────┴───────┘ The MText entity has a method for setting insert, attachment_point and rotation attributes by one call: set_location() Character height The character height is defined by the DXF attribute MText.dxf.char_height in drawing units, which has also consequences for the line spacing of the MText entity: mtext.dxf.char_height = 0.5 The character height can be changed inline, see also MText formatting and MText Inline Codes. Text rotation (direction) The MText.dxf.rotation attribute defines the text rotation as angle between the x-axis and the horizontal direction of the text in degrees. The MText.dxf.text_direction attribute defines the horizontal direction of MText as vector in WCS or OCS, if an OCS is defined. Both attributes can be present at the same entity, in this case the MText.dxf.text_direction attribute has the higher priority. The MText entity has two methods to get/set rotation: get_rotation() returns the rotation angle in degrees independent from definition as angle or direction, and set_rotation() set the rotation attribute and removes the text_direction attribute if present. Defining a wrapping border The wrapping border limits the text width and forces a line break for text beyond this border. Without attribute dxf.width (or setting 0) the lines are wrapped only at the regular line endings ” \P” or “\n”, setting the reference column width forces additional line wrappings at the given width. The text height can not be limited, the text always occupies as much space as needed. mtext.dxf.width = 60 [image] MText formatting MText supports inline formatting by special codes: MText Inline Codes mtext.text = "{\\C1;red text} - {\\C3;green text} - {\\C5;blue text}" [image] See also new section for the new support class MTextEditor in ezdxf v0.17. Stacked text MText also supports stacked text: # the space ' ' in front of 'Lower' and the ';' behind 'Lower' are necessary # combined with vertical center alignment mtext.text = "\\A1;\\SUpper^ Lower; - \\SUpper/ Lower;} - \\SUpper# Lower;" [image] See also new section for the new support class MTextEditor in ezdxf v0.17. Background color (filling) The MText entity can have a background filling: • AutoCAD Color Index (ACI) • true color value as (r, g, b) tuple • color name as string, use special name 'canvas' to use the canvas background color Because of the complex dependencies ezdxf provides a method to set all required DXF attributes at once: mtext.set_bg_color(2, scale=1.5) The parameter scale determines how much border there is around the text, the value is based on the text height, and should be in the range of 1 - 5, where 1 fits exact the MText entity. [image] MTextEditor New in version 0.17. WARNING: The MTextEditor assembles just the inline code, which has to be parsed and rendered by the target CAD application, ezdxf has no influence to that result. Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not work across different CAD applications and keep the formatting in a logic manner like, do not change paragraph properties in the middle of a paragraph. There is no official documentation for the inline codes! The MTextEditor class provides a floating interface to build MText content in an easy way. This example only shows the connection between MText and the MTextEditor, and shows no additional features to the first example of this tutorial: Init Editor import ezdxf from ezdxf.tools.text import MTextEditor doc = ezdxf.new("R2007", setup=True) msp = doc.modelspace() lorem_ipsum = """ Lorem ipsum dolor sit amet, consectetur adipiscing elit, ... see prolog code """ # create a new editor object with an initial text: editor = MTextEditor(lorem_ipsum) # get the MTEXT content string from the editor by the str() function: mtext = msp.add_mtext(str(editor), dxfattribs={"style": "OpenSans"}) Tutorial Prolog: # use constants defined in MTextEditor: NP = MTextEditor.NEW_PARAGRAPH ATTRIBS = { "char_height": 0.7, "style": "OpenSans", "width": 10, } editor = MTextEditor("using colors:" + NP) Set Text Color There are three ways to change the color inline: • by color name “red”, “green”, “blue”, “yellow”, “cyan”, “magenta”, “white” • by AutoCAD Color Index (ACI) • by RGB values # RED: set color by name - red, green, blue, yellow, cyan, magenta, white editor.color("red").append("RED" + NP) # RED: the color stays the same until the next change editor.append("also RED" + NP) # GREEN: change color by ACI (AutoCAD Color Index) editor.aci(3).append("GREEN" + NP) # BLUE: change color by RGB tuples editor.rgb((0, 0, 255)).append("BLUE" + NP) # add the MTEXT entity to the model space: msp.add_mtext(str(editor), attribs) [image] Changing Text Height The MtextEditor.height() method set the text height as absolute value in drawing units (text height = cap height): attribs = dict(ATTRIBS) attribs["width"] = 40.0 editor = MTextEditor("changing text height absolute: default height is 0.7" + NP) # doubling the default height = 1.4 editor.height(1.4) editor.append("text height: 1.4" + NP) editor.height(3.5).append("text height: 3.5" + NP) editor.height(0.7).append("back to default height: 0.7" + NP) msp.add_mtext(str(editor), attribs) [image] The MtextEditor.scale_height() method set the text height by a relative factor, the MtextEditor object does not keep track of current text height, you have to do this by yourself. The initial text height is MText.dxf.char_height: attribs = dict(ATTRIBS) attribs["width"] = 40.0 editor = MTextEditor("changing text height relative: default height is 0.7" + NP) # this is the default text height in the beginning: current_height = attribs["char_height"] # The text height can only be changed by a factor: editor.scale_height(2) # scale by 2 = 1.4 # keep track of the actual height: current_height *= 2 editor.append("text height: 1.4" + NP) # to set an absolute height, calculate the required factor: desired_height = 3.5 factor = desired_height / current_height editor.scale_height(factor).append("text height: 3.5" + NP) current_height = desired_height # and back to 0.7 editor.scale_height(0.7 / current_height).append("back to default height: 0.7" + NP) msp.add_mtext(str(editor), attribs).set_location(insert=location) Changing Font The font name for changing MText fonts inline is the font family name! The font family name is the name shown in font selection widgets in desktop applications: “Arial”, “Times New Roman”, “Comic Sans MS”. The font has to be installed at the target system, else then CAD default font will be used, in AutoCAD/BricsCAD is this the font defined for the text style “Standard”. IMPORTANT: The DXF/DWG format is not optimal for preserving text layouts across multiple systems, and it’s getting really bad across different CAD applications. attribs = dict(ATTRIBS) attribs["width"] = 15.0 editor = MTextEditor("changing fonts:" + NP) editor.append("Default: Hello World!" + NP) editor.append("SimSun: ") # change font in a group to revert back to the default font at the end: simsun_editor = MTextEditor().font("SimSun").append("你好,世界" + NP) # reverts the font back at the end of the group: editor.group(str(simsun_editor)) # back to default font OpenSans: editor.append("Times New Roman: ") # change font outside of a group until next font change: editor.font("Times New Roman").append("Привет мир!" + NP) # If the font does not exist, a replacement font will be used: editor.font("Does not exist").append("This is the replacement font!") msp.add_mtext(str(editor), attribs) [image] Set Paragraph Properties The paragraph properties are set by the paragraph() method and a ParagraphProperties object, which bundles all paragraph properties in a named tuple. Each paragraph can have its own properties for: • indentation arguments: • indent is the left indentation of the first line • left is the left side indentation of the paragraph • right is the right side indentation of the paragraph • text adjustment: align, by enum MTextParagraphAlignment • MTextParagraphAlignment.LEFT • MTextParagraphAlignment.RIGHT • MTextParagraphAlignment.CENTER • MTextParagraphAlignment.JUSTIFIED • MTextParagraphAlignment.DISTRIBUTED • tabulator stops: tab_stops, a tuple of tabulator stops Indentation and tabulator stops are multiples of the default MText text height stored in MText.dxf.char_height. Calculate the drawing units for indentation and tabulator stops, by multiplying the indentation value by the char_height value. Mtext paragraphs are separated by new paragraph “\P” characters. # import support classes: from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment attribs = dict(ATTRIBS) attribs["char_height"] = 0.25 attribs["width"] = 7.5 editor = MTextEditor("Indent the first line:" + NP) props = ParagraphProperties( indent=1, # indent first line = 1x0.25 drawing units align=MTextParagraphAlignment.JUSTIFIED ) editor.paragraph(props) editor.append(lorem_ipsum) msp.add_mtext(str(editor), attribs) [image] The first line indentation “indent” is relative to the “left” indentation. # import support classes: from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment attribs = dict(ATTRIBS) attribs["char_height"] = 0.25 attribs["width"] = 7.5 editor = MTextEditor("Indent left paragraph side:" + NP) indent = 0.7 # 0.7 * 0.25 = 0.175 drawing units props = ParagraphProperties( # first line indentation is relative to "left", this reverses the # left indentation: indent=-indent, # first line # indent left paragraph side: left=indent, align=MTextParagraphAlignment.JUSTIFIED ) editor.paragraph(props) editor.append(" ".join(lorem_ipsum(100))) msp.add_mtext(str(editor), attribs).set_location(insert=location) [image] Bullet List There are no special commands to build bullet list, the list is build of indentation and a tabulator stop. Each list item needs a marker as an arbitrary string. For more information about paragraph indentation and tabulator stops see also chapter Set Paragraph Properties. attribs = dict(ATTRIBS) attribs["char_height"] = 0.25 attribs["width"] = 7.5 bullet = "•" # alt + numpad 7 editor = MTextEditor("Bullet List:" + NP) editor.bullet_list( indent=1, bullets=[bullet] * 3, # each list item needs a marker content=[ "First item", "Second item", " ".join(lorem_ipsum(30)), ]) msp.add_mtext(str(editor), attribs) [image] Numbered List There are no special commands to build numbered list, the list is build of indentation and a tabulator stop. There is no automatic numbering, but therefore the absolute freedom for using any string as list marker. For more information about paragraph indentation and tabulator stops see also chapter Set Paragraph Properties. attribs = dict(ATTRIBS) attribs["char_height"] = 0.25 attribs["width"] = 7.5 editor = MTextEditor("Numbered List:" + NP) editor.bullet_list( indent=1, bullets=["1.", "2.", "3."], content=[ "First item", "Second item", " ".join(lorem_ipsum(30)), ]) msp.add_mtext(str(editor), attribs) [image] Stacked Text MText supports stacked text (fractions) as a single inline code, which means it is not possible to change any property inside the fraction. This example shows a fraction with scaled down text height, placed in a group to revert the text height afterwards: editor = MTextEditor("Stacked text:" + NP) stack = MTextEditor().scale_height(0.6).stack("1", "2", "^") editor.append("over: ").group(str(stack)).append(NP) stack = MTextEditor().scale_height(0.6).stack("1", "2", "/") editor.append("fraction: ").group(str(stack)).append(NP) stack = MTextEditor().scale_height(0.6).stack("1", "2", "#") editor.append("slanted: ").group(str(stack)).append(NP) # Additional formatting in numerator and denominator is not supported # by AutoCAD or BricsCAD, switching the color inside the stacked text # to red does not work: numerator = MTextEditor().color("red").append("1") stack = MTextEditor().scale_height(0.6).stack(str(numerator), "2", "#") editor.append("color red: ").group(str(stack)).append(NP) msp.add_mtext(str(editor), attribs) [image] SEE ALSO: • MTextEditor example code on github. • Documentation of MTextEditor Tutorial for Spline Background information about B-spline at Wikipedia. Splines from fit points Splines can be defined by fit points only, this means the curve goes through all given fit points. AutoCAD and BricsCAD generates required control points and knot values by itself, if only fit points are present. Create a simple spline: doc = ezdxf.new('R2000') fit_points = [(0, 0, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)] msp = doc.modelspace() spline = msp.add_spline(fit_points) [image] Append a fit point to a spline: # fit_points, control_points, knots and weights are list-like containers: spline.fit_points.append((2250, 2500, 0)) [image] You can set additional control points, but if they do not fit the auto-generated AutoCAD values, they will be ignored and don’t mess around with knot values. Solve problems of incorrect values after editing a spline generated by AutoCAD: doc = ezdxf.readfile("AutoCAD_generated.dxf") msp = doc.modelspace() spline = msp.query('SPLINE').first # fit_points, control_points, knots and weights are list-like objects: spline.fit_points.append((2250, 2500, 0)) As far as I have tested, this approach works without complaints from AutoCAD, but for the case of problems remove invalid data: # current control points do not match spline defined by fit points spline.control_points = [] # count of knots is not correct: # count of knots = count of control points + degree + 1 spline.knots = [] # same for weights, count of weights == count of control points spline.weights = [] Splines by control points To create splines from fit points is the easiest way to create splines, but this method is also the least accurate, because a spline is defined by control points and knot values, which are generated for the case of a definition by fit points, and the worst fact is that for every given set of fit points exist an infinite number of possible splines as solution. AutoCAD (and BricsCAD also) uses an proprietary algorithm to generate control points and knot values from fit points, which differs from the well documented Global Curve Interpolation. Therefore splines generated from fit points by ezdxf do not match splines generated by AutoCAD (BricsCAD). To ensure the same spline geometry for all CAD applications, the spline has to be defined by control points. The method add_spline_control_frame() adds a spline through fit points by calculating the control points by the Global Curve Interpolation algorithm. There is also a low level function ezdxf.math.global_bspline_interpolation() which calculates the control points from fit points. msp.add_spline_control_frame(fit_points, method='uniform', dxfattribs={'color': 1}) msp.add_spline_control_frame(fit_points, method='chord', dxfattribs={'color': 3}) msp.add_spline_control_frame(fit_points, method='centripetal', dxfattribs={'color': 5}) • black curve: AutoCAD/BricsCAD spline generated from fit points • red curve: spline curve interpolation, “uniform” method • green curve: spline curve interpolation, “chord” method • blue curve: spline curve interpolation, “centripetal” method [image] Open Spline Add and open (clamped) spline defined by control points with the method add_open_spline(). If no knot values are given, an open uniform knot vector will be generated. A clamped B-spline starts at the first control point and ends at the last control point. control_points = [(0, 0, 0), (1250, 1560, 0), (3130, 610, 0), (2250, 1250, 0)] msp.add_open_spline(control_points) [image] Rational Spline Rational B-splines have a weight for every control point, which can raise or lower the influence of the control point, default weight = 1, to lower the influence set a weight < 1 to raise the influence set a weight > 1. The count of weights has to be always equal to the count of control points. Example to raise the influence of the first control point: msp.add_closed_rational_spline(control_points, weights=[3, 1, 1, 1]) [image] Spline properties Check if spline is a closed curve or close/open spline, for a closed spline the last point is connected to the first point: if spline.closed: # this spline is closed pass # close spline spline.closed = True # open spline spline.closed = False Set start- and end tangent for splines defined by fit points: spline.dxf.start_tangent = (0, 1, 0) # in y-axis spline.dxf.end_tangent = (1, 0, 0) # in x-axis Get data count as stored in DXF file: count = spline.dxf.n_fit_points count = spline.dxf.n_control_points count = spline.dxf.n_knots Get data count of real existing data: count = spline.fit_point_count count = spline.control_point_count count = spline.knot_count Tutorial for Polyface The Polyface entity represents a 3D mesh build of vertices and faces and is just an extended POLYLINE entity with a complex VERTEX structure. The Polyface entity was used in DXF R12 and older DXF versions and is still supported by newer DXF versions. The new Mesh entity stores the same data much more efficient but requires DXF R2000 or newer. The Polyface entity supports only triangles and quadrilaterals as faces the Mesh entity supports n-gons. Its recommended to use the MeshBuilder objects to create 3D meshes and render them as POLYFACE entities by the render_polymesh() method into a layout: import ezdxf from ezdxf import colors from ezdxf.gfxattribs import GfxAttribs from ezdxf.render import forms cube = forms.cube().scale_uniform(10).subdivide(2) red = GfxAttribs(color=colors.RED) green = GfxAttribs(color=colors.GREEN) blue = GfxAttribs(color=colors.BLUE) doc = ezdxf.new() msp = doc.modelspace() # render as MESH entity cube.render(msp, dxfattribs=red) cube.translate(20) # render as POLYFACE a.k.a. POLYLINE entity cube.render_polyface(msp, dxfattribs=green) cube.translate(20) # render as unconnected 3DFACE entities cube.render_3dfaces(msp, dxfattribs=blue) doc.saveas("meshes.dxf") [image] WARNING: If the mesh contains n-gons the render methods for POLYFACE and 3DFACES subdivides the n-gons into triangles, which does not work for concave faces. The usage of the MeshBuilder object is also recommended for inspecting Polyface entities: • MeshBuilder.vertices is a sequence of 3D points as ezdxf.math.Vec3 objects • a face in MeshBuilder.faces is a sequence of indices into the MeshBuilder.vertices sequence import ezdxf from ezdxf.render import MeshBuilder def process(mesh): # vertices is a sequence of 3D points vertices = mses.vertices # a face is a sequence of indices into the vertices sequence faces = mesh.faces ... doc = ezdxf.readfile("meshes.dxf") msp = doc.modelspace() for polyline in msp.query("POLYLINE"): if polyline.is_poly_face_mesh: mesh = MeshBuilder.from_polyface(polyline) process(mesh) Tutorial for Mesh Create a cube mesh by direct access to base data structures: import ezdxf # 8 corner vertices cube_vertices = [ (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), ] # 6 cube faces cube_faces = [ [0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 5, 4], [1, 2, 6, 5], [3, 2, 6, 7], [0, 3, 7, 4] ] # MESH requires DXF R2000 or later doc = ezdxf.new("R2000") msp = doc.modelspace() mesh = msp.add_mesh() # do not subdivide cube, 0 is the default value mesh.dxf.subdivision_levels = 0 with mesh.edit_data() as mesh_data: mesh_data.vertices = cube_vertices mesh_data.faces = cube_faces doc.saveas("cube_mesh_1.dxf") Create a cube mesh by assembling single faces and the edit_data() context manager of the Mesh class, using the helper class MeshData: import ezdxf # 8 corner vertices p = [ (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), ] # MESH requires DXF R2000 or later doc = ezdxf.new("R2000") msp = doc.modelspace() mesh = msp.add_mesh() with mesh.edit_data() as mesh_data: mesh_data.add_face([p[0], p[1], p[2], p[3]]) mesh_data.add_face([p[4], p[5], p[6], p[7]]) mesh_data.add_face([p[0], p[1], p[5], p[4]]) mesh_data.add_face([p[1], p[2], p[6], p[5]]) mesh_data.add_face([p[3], p[2], p[6], p[7]]) mesh_data.add_face([p[0], p[3], p[7], p[4]]) # optional call optimize(): minimizes the vertex count mesh_data.optimize() doc.saveas("cube_mesh_2.dxf") Tutorial for Hatch Create hatches with one boundary path The simplest form of the Hatch entity has one polyline path with only straight lines as boundary path: import ezdxf # hatch requires DXF R2000 or later doc = ezdxf.new("R2000") msp = doc.modelspace() # by default a solid fill hatch with fill color=7 (white/black) hatch = msp.add_hatch(color=2) # every boundary path is a 2D element # vertex format for the polyline path is: (x, y[, bulge]) # there are no bulge values in this example hatch.paths.add_polyline_path( [(0, 0), (10, 0), (10, 10), (0, 10)], is_closed=True ) doc.saveas("solid_hatch_polyline_path.dxf") But like all polyline entities the polyline path can also have bulge values: import ezdxf # hatch requires the DXF R2000 or later doc = ezdxf.new("R2000") msp = doc.modelspace() # by default a solid fill hatch with fill color=7 (white/black) hatch = msp.add_hatch(color=2) # every boundary path is a 2D element # vertex format for the polyline path is: (x, y[, bulge]) # bulge value 1 = an arc with diameter=10 (= distance to next vertex * bulge value) # bulge value > 0 ... arc is right of line # bulge value < 0 ... arc is left of line hatch.paths.add_polyline_path( [(0, 0, 1), (10, 0), (10, 10, -0.5), (0, 10)], is_closed=True ) doc.saveas("solid_hatch_polyline_path_with_bulge.dxf") The most flexible way to define a boundary path is the edge path. An edge path can have multiple edges and each edge can be one of the following elements: • line EdgePath.add_line() • arc EdgePath.add_arc() • ellipse EdgePath.add_ellipse() • spline EdgePath.add_spline() Create a solid hatch with an edge path (ellipse) as boundary path: import ezdxf # hatch requires the DXF R2000 or later doc = ezdxf.new("R2000") msp = doc.modelspace() # important: major axis >= minor axis (ratio <= 1.) # minor axis length = major axis length * ratio msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5) # by default a solid fill hatch with fill color=7 (white/black) hatch = msp.add_hatch(color=2) # every boundary path is a 2D element edge_path = hatch.paths.add_edge_path() # each edge path can contain line, arc, ellipse and spline elements # important: major axis >= minor axis (ratio <= 1.) edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5) doc.saveas("solid_hatch_ellipse.dxf") Create hatches with multiple boundary paths (islands) The DXF attribute hatch_style defines the island detection style: ┌──┬──────────────────────────────────┐ │0 │ nested - altering filled and │ │ │ unfilled areas │ ├──┼──────────────────────────────────┤ │1 │ outer - area between external │ │ │ and outermost path is filled │ ├──┼──────────────────────────────────┤ │2 │ ignore - external path is filled │ └──┴──────────────────────────────────┘ hatch = msp.add_hatch( color=1, dxfattribs={ "hatch_style": ezdxf.const.HATCH_STYLE_NESTED, # 0 = nested: ezdxf.const.HATCH_STYLE_NESTED # 1 = outer: ezdxf.const.HATCH_STYLE_OUTERMOST # 2 = ignore: ezdxf.const.HATCH_STYLE_IGNORE }, ) # The first path has to set flag: 1 = external # flag const.BOUNDARY_PATH_POLYLINE is added (OR) automatically hatch.paths.add_polyline_path( [(0, 0), (10, 0), (10, 10), (0, 10)], is_closed=True, flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL, ) This is also the result for all 4 paths and hatch_style set to 2 (ignore). [image] # The second path has to set flag: 16 = outermost hatch.paths.add_polyline_path( [(1, 1), (9, 1), (9, 9), (1, 9)], is_closed=True, flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST, ) This is also the result for all 4 paths and hatch_style set to 1 (outer). [image] # The third path has to set flag: 0 = default hatch.paths.add_polyline_path( [(2, 2), (8, 2), (8, 8), (2, 8)], is_closed=True, flags=ezdxf.const.BOUNDARY_PATH_DEFAULT, ) [image] # The forth path has to set flag: 0 = default, and so on hatch.paths.add_polyline_path( [(3, 3), (7, 3), (7, 7), (3, 7)], is_closed=True, flags=ezdxf.const.BOUNDARY_PATH_DEFAULT, ) doc.saveas(OUTDIR / "solid_hatch_islands_04.dxf") [image] The expected result of combinations of various hatch_style values and paths flags, or the handling of overlapping paths is not documented by the DXF reference, so don’t ask me, ask Autodesk or just try it by yourself and post your experience in the forum. Example for Edge Path Boundary hatch = msp.add_hatch(color=1) # 1. polyline path hatch.paths.add_polyline_path( [ (240, 210, 0), (0, 210, 0), (0, 0, 0.0), (240, 0, 0), ], is_closed=1, flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL, ) # 2. edge path edge_path = hatch.paths.add_edge_path(flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST) edge_path.add_spline( control_points=[ (126.658105895725, 177.0823706957212), (141.5497003747484, 187.8907860433995), (205.8997365206943, 154.7946313459515), (113.0168862297068, 117.8189380884978), (202.9816918983783, 63.17222935389572), (157.363511042264, 26.4621294342132), (144.8204003260554, 28.4383294369643), ], knot_values=[ 0.0, 0.0, 0.0, 0.0, 55.20174685732758, 98.33239645153571, 175.1126541251052, 213.2061566683142, 213.2061566683142, 213.2061566683142, 213.2061566683142, ], ) edge_path.add_arc( center=(152.6378550678883, 128.3209356351659), radius=100.1880612627354, start_angle=94.4752130054052, end_angle=177.1345242028005, ) edge_path.add_line( (52.57506282464041, 123.3124200796114), (126.658105895725, 177.0823706957212), ) [image] Associative Boundary Paths A HATCH entity can be associative to a base geometry, which means if the base geometry is edited in a CAD application the HATCH get the same modification. Because ezdxf is not a CAD application, this association is not maintained nor verified by ezdxf, so if you modify the base geometry afterwards the geometry of the boundary path is not updated and no verification is done to check if the associated geometry matches the boundary path, this opens many possibilities to create invalid DXF files: USE WITH CARE. This example associates a LWPOLYLINE entity to the hatch created from the LWPOLYLINE vertices: # Create base geometry lwpolyline = msp.add_lwpolyline( [(0, 0, 0), (10, 0, 0.5), (10, 10, 0), (0, 10, 0)], format="xyb", close=True, ) hatch = msp.add_hatch(color=1) path = hatch.paths.add_polyline_path( # get path vertices from associated LWPOLYLINE entity lwpolyline.get_points(format="xyb"), # get closed state also from associated LWPOLYLINE entity is_closed=lwpolyline.closed, ) # Set association between boundary path and LWPOLYLINE hatch.associate(path, [lwpolyline]) An EdgePath needs associations to all geometry entities forming the boundary path. Predefined Hatch Pattern Use predefined hatch pattern by name: hatch.set_pattern_fill("ANSI31", scale=0.5) [image] Create hatches with gradient fill TODO Tutorial for Hatch Pattern Definition TODO Tutorial for Image and ImageDef Insert a raster image into a DXF document, the raster image is NOT embedded in the DXF file: import ezdxf # The IMAGE entity requires the DXF R2000 format or later. doc = ezdxf.new("R2000") # The IMAGEDEF entity is like a block definition, it just defines the image. my_image_def = doc.add_image_def( filename="mycat.jpg", size_in_pixel=(640, 360) ) msp = doc.modelspace() # The IMAGE entity is like the INSERT entity, it's just an image reference, # and there can be multiple references to the same picture in a DXF document. # 1st image reference msp.add_image( insert=(2, 1), size_in_units=(6.4, 3.6), image_def=my_image_def, rotation=0 ) # 2nd image reference msp.add_image( insert=(4, 5), size_in_units=(3.2, 1.8), image_def=my_image_def, rotation=30 ) # Get existing image definitions from the OBJECTS section: image_defs = doc.objects.query("IMAGEDEF") doc.saveas("dxf_with_cat.dxf") Tutorial for Underlay and UnderlayDefinition Insert a PDF, DWF, DWFx or DGN file as drawing underlay, the underlay file is NOT embedded into the DXF file: import ezdxf doc = ezdxf.new('AC1015') # underlay requires the DXF R2000 format or later my_underlay_def = doc.add_underlay_def(filename='my_underlay.pdf', name='1') # The (PDF)DEFINITION entity is like a block definition, it just defines the underlay # 'name' is misleading, because it defines the page/sheet to be displayed # PDF: name is the page number to display # DGN: name='default' ??? # DWF: ???? msp = doc.modelspace() # add first underlay msp.add_underlay(my_underlay_def, insert=(2, 1, 0), scale=0.05) # The (PDF)UNDERLAY entity is like the INSERT entity, it creates an underlay reference, # and there can be multiple references to the same underlay in a drawing. msp.add_underlay(my_underlay_def, insert=(4, 5, 0), scale=.5, rotation=30) # get existing underlay definitions, Important: UNDERLAYDEFs resides in the objects section pdf_defs = doc.objects.query('PDFDEFINITION') # get all pdf underlay defs in drawing doc.saveas("dxf_with_underlay.dxf") Tutorial for Linetypes Simple line type example: [image] You can define your own linetypes. A linetype definition has a name, a description and line pattern elements: elements = [total_pattern_length, elem1, elem2, ...] total_pattern_length Sum of all linetype elements (absolute values) elem if elem > 0 it is a line, if elem < 0 it is gap, if elem == 0.0 it is a dot Create a new linetype definition: import ezdxf from ezdxf.tools.standards import linetypes # some predefined linetypes doc = ezdxf.new() msp = doc.modelspace() my_line_types = [ ( "DOTTED", "Dotted . . . . . . . . . . . . . . . .", [0.2, 0.0, -0.2], ), ( "DOTTEDX2", "Dotted (2x) . . . . . . . . ", [0.4, 0.0, -0.4], ), ( "DOTTED2", "Dotted (.5) . . . . . . . . . . . . . . . . . . . ", [0.1, 0.0, -0.1], ), ] for name, desc, pattern in my_line_types: if name not in doc.linetypes: doc.linetypes.add( name=name, pattern=pattern, description=desc, ) Setup some predefined linetypes: for name, desc, pattern in linetypes(): if name not in doc.linetypes: doc.linetypes.add( name=name, pattern= pattern, description=desc, ) Check Available Linetypes The linetypes object supports some standard Python protocols: # iteration print("available linetypes:") for lt in doc.linetypes: print(f"{lt.dxf.name}: {lt.dxf.description}") # check for existing linetype if "DOTTED" in doc.linetypes: pass count = len(doc.linetypes) # total count of linetypes Removing Linetypes WARNING: Ezdxf does not check if a linetype is still in use and deleting a linetype which is still in use generates an invalid DXF file. The audit process audit() of the DXF document removes linetype attributes referencing non existing linetypes. You can delete a linetype: doc.layers.remove("DASHED") This just removes the linetype definition, the linetype attribute of DXF entities may still refer the reoved linetype definition “DASHED” and AutoCAD will not open DXF files including undefined linetypes. Tutorial for Complex Linetypes In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in line types. Complex linetype example with text: [image] Complex line type example with shapes: [image] For easy usage the pattern string for complex line types is mostly the same string as the pattern definition strings in AutoCAD “.lin” files. Example for complex line type TEXT: doc = ezdxf.new("R2018") # DXF R13 or later is required doc.linetypes.add( name="GASLEITUNG2", # linetype definition string from acad.lin: pattern='A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25', description= "Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----", length=1, # required for complex line types }) The pattern always starts with an “A”, the following float values have the same meaning as for simple linetypes, a value > 0 is a line, a value < 0 is a gap, and a 0 is a point, the opening square bracket “[” starts the complex part of the linetype pattern. The text after the “[” defines the complex linetype: • A text in quotes (e.g. “GAS”) defines a complex TEXT linetype and represents the pattern text itself. • A text without quotes is a SHAPE name (in “.lin” files) and defines a complex SHAPE linetype. Ezdxf can not translate this SHAPE name from the “.lin” file into the required shape file index, so *YOU have to translate this SHAPE name into the shape file index, e.g. saving the file with AutoCAD as DXF and searching for the DXF linetype definition, see example below and the DXF Internals: LTYPE Table. For complex TEXT linetypes the second parameter is the text style, for complex SHAPE linetypes the second parameter is the shape file name, the shape file has to be in the same directory as the DXF file or in one of the CAD application support paths. The meaning of the following comple linetype parameters are shown in the table below: ┌───────┬──────────────────────────────────┐ │S │ scaling factor, always > 0, if │ │ │ S=0 the TEXT or SHAPE is not │ │ │ visible │ ├───────┼──────────────────────────────────┤ │R or U │ rotation relative to the line │ │ │ direction │ ├───────┼──────────────────────────────────┤ │X │ x-direction offset (along the │ │ │ line) │ ├───────┼──────────────────────────────────┤ │Y │ y-direction offset │ │ │ (perpendicular to the line) │ └───────┴──────────────────────────────────┘ These parameters are case insensitive and the closing square bracket “]” ends the complex part of the linetype pattern. The fine tuning of this parameters is a try an error process, for complex TEXT linetypes the scaling factor (e.g. the STANDARD text style) sets the text height (e.g. “S=0.1” sets the text height to 0.1 units), by shifting in y-direction by half of the scaling factor, the text is vertically centered to the line. For the x-direction it seems to be a good practice to place a gap in front of the text and after the text, find x shifting value and gap sizes by try and error. The overall length is at least the sum of all line and gap definitions (absolute values). Example for complex line type SHAPE: doc.linetypes.add("GRENZE2", # linetype definition in acad.lin: # A,.25,-.1,[BOX,ltypeshp.shx,x=-.1,s=.1],-.1,1 # replacing BOX by shape index 132 (got index from an AutoCAD file), # ezdxf can't get shape index from ltypeshp.shx pattern="A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1", description="Grenze eckig ----[]-----[]----[]-----[]----[]--", length= 1.45, # required for complex line types }) Complex line types with shapes only work if the associated shape file (e. g. ltypeshp.shx) and the DXF file are in the same directory or the shape file is placed in one of the CAD application support folders. Tutorial for OCS/UCS Usage For OCS/UCS usage is a basic understanding of vectors required, for a brush up, watch the YouTube tutorials of 3Blue1Brown about Linear Algebra. Second read the Coordinate Systems introduction please. SEE ALSO: The free online book 3D Math Primer for Graphics and Game Development is a very good resource for learning vector math and other graphic related topics, it is easy to read for beginners and especially targeted to programmers. For WCS there is not much to say as, it is what it is: the main world coordinate system, and a drawing unit can have any real world unit you want. Autodesk added some mechanism to define a scale for dimension and text entities, but because I am not an AutoCAD user, I am not familiar with it, and further more I think this is more an AutoCAD topic than a DXF topic. Object Coordinate System (OCS) The OCS is used to place planar 2D entities in 3D space. ALL points of a planar entity lay in the same plane, this is also true if the plane is located in 3D space by an OCS. There are three basic DXF attributes that gives a 2D entity its spatial form. Extrusion The extrusion vector defines the OCS, it is a normal vector to the base plane of a planar entity. This base plane is always located in the origin of the WCS. But there are some entities like Ellipse, which have an extrusion vector, but do not establish an OCS. For this entities the extrusion vector defines only the extrusion direction and thickness defines the extrusion distance, but all other points in WCS. Elevation The elevation value defines the z-axis value for all points of a planar entity, this is an OCS value, and defines the distance of the entity plane from the base plane. This value exists only in output from DXF versions prior to R11 as separated DXF attribute (group code 38). In DXF R12 and later, the elevation value is supplied as z-axis value of each point. But as always in DXF, this simple rule does not apply to all entities: LWPolyline and Hatch have an DXF attribute elevation, where the z-axis of this point is the elevation height and the x-axis = y-axis = 0. Thickness Defines the extrusion distance for an entity. NOTE: There is a new edition of this tutorial using UCS based transformation, which are available in ezdxf v0.11 and later: Tutorial for UCS Based Transformations This edition shows the hard way to accomplish the transformations by low level operations. Placing 2D Circle in 3D Space The colors for axis follow the AutoCAD standard: • red is x-axis • green is y-axis • blue is z-axis import ezdxf from ezdxf.math import OCS doc = ezdxf.new('R2010') msp = doc.modelspace() # For this example the OCS is rotated around x-axis about 45 degree # OCS z-axis: x=0, y=1, z=1 # extrusion vector must not normalized here ocs = OCS((0, 1, 1)) msp.add_circle( # You can place the 2D circle in 3D space # but you have to convert WCS into OCS center=ocs.from_wcs((0, 2, 2)), # center in OCS: (0.0, 0.0, 2.82842712474619) radius=1, dxfattribs={ # here the extrusion vector should be normalized, # which is granted by using the ocs.uz 'extrusion': ocs.uz, 'color': 1, }) # mark center point of circle in WCS msp.add_point((0, 2, 2), dxfattribs={'color': 1}) The following image shows the 2D circle in 3D space in AutoCAD Left and Front view. The blue line shows the OCS z-axis (extrusion direction), elevation is the distance from the origin to the center of the circle in this case 2.828, and you see that the x- and y-axis of OCS and WCS are not aligned. [image: circle in ocs as side view] [image] [image: circle in ocs as front view] [image] Placing LWPolyline in 3D Space For simplicity of calculation I use the UCS class in this example to place a 2D pentagon in 3D space. # The center of the pentagon should be (0, 2, 2), and the shape is # rotated around x-axis about 45 degree, to accomplish this I use an # UCS with z-axis (0, 1, 1) and an x-axis parallel to WCS x-axis. ucs = UCS( origin=(0, 2, 2), # center of pentagon ux=(1, 0, 0), # x-axis parallel to WCS x-axis uz=(0, 1, 1), # z-axis ) # calculating corner points in local (UCS) coordinates points = [Vec3.from_deg_angle((360 / 5) * n) for n in range(5)] # converting UCS into OCS coordinates ocs_points = list(ucs.points_to_ocs(points)) # LWPOLYLINE accepts only 2D points and has an separated DXF attribute elevation. # All points have the same z-axis (elevation) in OCS! elevation = ocs_points[0].z msp.add_lwpolyline( points=ocs_points, format='xy', # ignore z-axis close=True, dxfattribs={ 'elevation': elevation, 'extrusion': ucs.uz, 'color': 1, }) The following image shows the 2D pentagon in 3D space in AutoCAD Left, Front and Top view. The three lines from the center of the pentagon show the UCS, the three colored lines in the origin show the OCS the white lines in the origin show the WCS. The z-axis of the UCS and the OCS show the same direction (extrusion direction), and the x-axis of the UCS and the WCS show the same direction. The elevation is the distance from the origin to the center of the pentagon and all points of the pentagon have the same elevation, and you see that the y- axis of UCS, OCS and WCS are not aligned. [image: pentagon in ucs as side view] [image] [image: pentagon in ucs as front view] [image] Using UCS to Place 3D Polyline It is much simpler to use a 3D Polyline to create the 3D pentagon. The UCS class is handy for this example and all kind of 3D operations. # Using an UCS simplifies 3D operations, but UCS definition can happen later # calculating corner points in local (UCS) coordinates without Vec3 class angle = math.radians(360 / 5) corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)] # let's do some transformations tmatrix = Matrix44.chain( # creating a transformation matrix Matrix44.z_rotate(math.radians(15)), # 1. rotation around z-axis Matrix44.translate(0, .333, .333), # 2. translation ) transformed_corners_ucs = tmatrix.transform_vertices(corners_ucs) # transform UCS into WCS ucs = UCS( origin=(0, 2, 2), # center of pentagon ux=(1, 0, 0), # x-axis parallel to WCS x-axis uz=(0, 1, 1), # z-axis ) corners_wcs = list(ucs.points_to_wcs(transformed_corners_ucs)) msp.add_polyline3d( points=corners_wcs, close=True, ) # add lines from center to corners center_wcs = ucs.to_wcs((0, .333, .333)) for corner in corners_wcs: msp.add_line(center_wcs, corner, dxfattribs={'color': 1}) ucs.render_axis(msp) [image: 3d poyline with UCS] [image] Placing 2D Text in 3D Space The problem by placing text in 3D space is the text rotation, which is always counter clockwise around the OCS z-axis, and 0 degree is in direction of the positive OCS x-axis, and the OCS x-axis is calculated by the Arbitrary Axis Algorithm. Calculate the OCS rotation angle by converting the TEXT rotation angle (in UCS or WCS) into a vector or begin with text direction as vector, transform this direction vector into OCS and convert the OCS vector back into an angle in the OCS xy-plane (see example), this procedure is available as UCS.to_ocs_angle_deg() or UCS.to_ocs_angle_rad(). AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts. # Thickness for text works only with shx fonts not with true type fonts doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'}) ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1)) # calculation of text direction as angle in OCS: # convert text rotation in degree into a vector in UCS text_direction = Vec3.from_deg_angle(-45) # transform vector into OCS and get angle of vector in xy-plane rotation = ucs.to_ocs(text_direction).angle_deg text = msp.add_text( text="TEXT", dxfattribs={ # text rotation angle in degrees in OCS 'rotation': rotation, 'extrusion': ucs.uz, 'thickness': .333, 'color': 1, 'style': 'TXT', }) # set text position in OCS text.set_pos(ucs.to_ocs((0, 0, 0)), align='MIDDLE_CENTER') [image: text in ucs as top view] [image] [image: text in ucs as front view] [image] HINT: For calculating OCS angles from an UCS, be aware that 2D entities, like TEXT or ARC, are placed parallel to the xy-plane of the UCS. Placing 2D Arc in 3D Space Here we have the same problem as for placing text, you need the start and end angle of the arc in degrees in OCS, and this example also shows a shortcut for calculating the OCS angles. ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1)) msp.add_arc( center=ucs.to_ocs((0, 0)), radius=1, start_angle=ucs.to_ocs_angle_deg(45), end_angle=ucs.to_ocs_angle_deg(270), dxfattribs={ 'extrusion': ucs.uz, 'color': 1, }) center = ucs.to_wcs((0, 0)) msp.add_line( start=center, end=ucs.to_wcs(Vec3.from_deg_angle(45)), dxfattribs={'color': 1}, ) msp.add_line( start=center, end=ucs.to_wcs(Vec3.from_deg_angle(270)), dxfattribs={'color': 1}, ) [image: arc in ucs as top view] [image] [image: arc in ucs as front view] [image] Placing Block References in 3D Space Despite the fact that block references (Insert) can contain true 3D entities like Line or Mesh, the Insert entity uses the same placing principe as Text or Arc shown in the previous chapters. Simple placing by OCS and rotation about the z-axis, can be achieved the same way as for generic 2D entity types. The DXF attribute Insert.dxf.rotation rotates a block reference around the block z-axis, which is located in the Block.dxf.base_point. To rotate the block reference around the WCS x-axis, a transformation of the block z-axis into the WCS x-axis is required by rotating the block z-axis 90 degree counter clockwise around y-axis by using an UCS: This is just an excerpt of the important parts, see the whole code of insert.py at github. # rotate UCS around an arbitrary axis: def ucs_rotation(ucs: UCS, axis: Vec3, angle: float): # new in ezdxf v0.11: UCS.rotate(axis, angle) t = Matrix44.axis_rotate(axis, math.radians(angle)) ux, uy, uz = t.transform_vertices([ucs.ux, ucs.uy, ucs.uz]) return UCS(origin=ucs.origin, ux=ux, uy=uy, uz=uz) doc = ezdxf.new('R2010', setup=True) blk = doc.blocks.new('CSYS') setup_csys(blk) msp = doc.modelspace() ucs = ucs_rotation(UCS(), axis=Y_AXIS, angle=90) # transform insert location to OCS insert = ucs.to_ocs((0, 0, 0)) # rotation angle about the z-axis (= WCS x-axis) rotation = ucs.to_ocs_angle_deg(15) msp.add_blockref('CSYS', insert, dxfattribs={ 'extrusion': ucs.uz, 'rotation': rotation, }) [image] [image] To rotate a block reference around another axis than the block z-axis, you have to find the rotated z-axis (extrusion vector) of the rotated block reference, following example rotates the block reference around the block x-axis by 15 degrees: # t is a transformation matrix to rotate 15 degree around the x-axis t = Matrix44.axis_rotate(axis=X_AXIS, angle=math.radians(15)) # transform block z-axis into new UCS z-axis (= extrusion vector) uz = Vec3(t.transform(Z_AXIS)) # create new UCS at the insertion point, because we are rotating around the x-axis, # ux is the same as the WCS x-axis and uz is the rotated z-axis. ucs = UCS(origin=(1, 2, 0), ux=X_AXIS, uz=uz) # transform insert location to OCS, block base_point=(0, 0, 0) insert = ucs.to_ocs((0, 0, 0)) # for this case a rotation around the z-axis is not required rotation = 0 blockref = msp.add_blockref('CSYS', insert, dxfattribs={ 'extrusion': ucs.uz, 'rotation': rotation, }) [image] [image] The next example shows how to translate a block references with an already established OCS: # translate a block references with an established OCS translation = Vec3(-3, -1, 1) # get established OCS ocs = blockref.ocs() # get insert location in WCS actual_wcs_location = ocs.to_wcs(blockref.dxf.insert) # translate location new_wcs_location = actual_wcs_location + translation # convert WCS location to OCS location blockref.dxf.insert = ocs.from_wcs(new_wcs_location) Setting a new insert location is the same procedure without adding a translation vector, just transform the new insert location into the OCS. [image] [image] The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle is -90 degrees. First transform block y-axis (rotation axis) and block z-axis (extrusion vector) from OCS into WCS: # rotate a block references with an established OCS around the block y-axis about 90 degree ocs = blockref.ocs() # convert block y-axis (= rotation axis) into WCS vector rotation_axis = ocs.to_wcs((0, 1, 0)) # convert local z-axis (=extrusion vector) into WCS vector local_z_axis = ocs.to_wcs((0, 0, 1)) Build transformation matrix and transform extrusion vector and build new UCS: # build transformation matrix t = Matrix44.axis_rotate(axis=rotation_axis, angle=math.radians(-90)) uz = t.transform(local_z_axis) uy = rotation_axis # the block reference origin stays at the same location, no rotation needed wcs_insert = ocs.to_wcs(blockref.dxf.insert) # build new UCS to convert WCS locations and angles into OCS ucs = UCS(origin=wcs_insert, uy=uy, uz=uz) Set new OCS attributes, we also have to set the rotation attribute even though we do not rotate the block reference around the local z-axis, the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted: # set new OCS blockref.dxf.extrusion = ucs.uz # set new insert blockref.dxf.insert = ucs.to_ocs((0, 0, 0)) # set new rotation: we do not rotate the block reference around the local z-axis, # but the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted blockref.dxf.rotation = ucs.to_ocs_angle_deg(0) [image] [image] And here is the point, where my math knowledge ends, for more advanced CAD operation you have to look elsewhere. Tutorial for UCS Based Transformations With ezdxf v0.11 a new feature for entity transformation was introduced, which makes working with OCS/UCS much easier, this is a new edition of the older Tutorial for OCS/UCS Usage. For the basic information read the old tutorial please. In ezdxf v0.13 the transform_to_wcs() interface was replaced by the general transformation interface: transform(). For this tutorial we don’t have to worry about the OCS and the extrusion vector, this is done automatically by the transform() method of each DXF entity. Placing 2D Circle in 3D Space To recreate the situation of the old tutorial instantiate a new UCS and rotate it around the local x-axis. Use UCS coordinates to place the 2D CIRCLE in 3D space, and transform the UCS coordinates to the WCS. import math import ezdxf from ezdxf.math import UCS doc = ezdxf.new('R2010') msp = doc.modelspace() ucs = UCS() # New default UCS # All rotation angles in radians, and rotation # methods always return a new UCS. ucs = ucs.rotate_local_x(math.radians(-45)) circle = msp.add_circle( # Use UCS coordinates to place the 2d circle in 3d space center=(0, 0, 2), radius=1, dxfattribs={'color': 1} ) circle.transform(ucs.matrix) # mark center point of circle in WCS msp.add_point((0, 0, 2), dxfattribs={'color': 1}).transform(ucs.matrix) [image: circle in ucs as side view] [image] [image: circle in ucs as front view] [image] Placing LWPolyline in 3D Space Simplified LWPOLYLINE example: # The center of the pentagon should be (0, 2, 2), and the shape is # rotated around x-axis about -45 degree ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) msp.add_lwpolyline( # calculating corner points in UCS coordinates points=(Vec3.from_deg_angle((360 / 5) * n) for n in range(5)), format='xy', # ignore z-axis close=True, dxfattribs={ 'color': 1, } The 2D pentagon in 3D space in BricsCAD Left and Front view. [image: pentagon in ucs as side view] [image] [image: pentagon in ucs as front view] [image] Using UCS to Place 3D Polyline Simplified POLYLINE example: Using a first UCS to transform the POLYLINE and a second UCS to place the POLYLINE in 3D space. # using an UCS simplifies 3D operations, but UCS definition can happen later # calculating corner points in local (UCS) coordinates without Vec3 class angle = math.radians(360 / 5) corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)] # let's do some transformations by UCS transformation_ucs = UCS().rotate_local_z(math.radians(15)) # 1. rotation around z-axis transformation_ucs.shift((0, .333, .333)) # 2. translation (inplace) corners_ucs = list(transformation_ucs.points_to_wcs(corners_ucs)) location_ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) msp.add_polyline3d( points=corners_ucs, close=True, dxfattribs={ 'color': 1, } ).transform(location_ucs.matrix) # Add lines from the center of the POLYLINE to the corners center_ucs = transformation_ucs.to_wcs((0, 0, 0)) for corner in corners_ucs: msp.add_line( center_ucs, corner, dxfattribs={'color': 1} ).transform(location_ucs.matrix) [image: 3d poyline with UCS] [image] Placing 2D Text in 3D Space The problem with the text rotation in the old tutorial disappears (or better it is hidden in transform()) with the new UCS based transformation method: AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts. # thickness for text works only with shx fonts not with true type fonts doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'}) ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) text = msp.add_text( text="TEXT", dxfattribs={ # text rotation angle in degrees in UCS 'rotation': -45, 'thickness': .333, 'color': 1, 'style': 'TXT', } ) # set text position in UCS text.set_pos((0, 0, 0), align='MIDDLE_CENTER') text.transform(ucs.matrix) [image: text in ucs as top view] [image] [image: text in ucs as front view] [image] Placing 2D Arc in 3D Space Same as for the text example, OCS angle transformation can be ignored: ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45)) CENTER = (0, 0) START_ANGLE = 45 END_ANGLE = 270 msp.add_arc( center=CENTER, radius=1, start_angle=START_ANGLE, end_angle=END_ANGLE, dxfattribs={'color': 6}, ).transform(ucs.matrix) msp.add_line( start=CENTER, end=Vec3.from_deg_angle(START_ANGLE), dxfattribs={'color': 6}, ).transform(ucs.matrix) msp.add_line( start=CENTER, end=Vec3.from_deg_angle(END_ANGLE), dxfattribs={'color': 6}, ).transform(ucs.matrix) [image: arc in ucs as top view] [image] [image: arc in ucs as front view] [image] Placing Block References in 3D Space Despite the fact that block references (INSERT) can contain true 3D entities like LINE or MESH, the INSERT entity uses the same placing principe as TEXT or ARC shown in the previous chapters. To rotate the block reference 15 degrees around the WCS x-axis, we place the block reference in the origin of the UCS, and rotate the UCS 90 degrees around its local y-axis, to align the UCS z-axis with the WCS x-axis: This is just an excerpt of the important parts, see the whole code of insert.py at github. doc = ezdxf.new('R2010', setup=True) blk = doc.blocks.new('CSYS') setup_csys(blk) msp = doc.modelspace() ucs = UCS().rotate_local_y(angle=math.radians(90)) msp.add_blockref( 'CSYS', insert=(0, 0), # rotation around the block z-axis (= WCS x-axis) dxfattribs={'rotation': 15}, ).transform(ucs.matrix) [image] [image] A more simple approach is to ignore the rotate attribute at all and just rotate the UCS. To rotate a block reference around any axis rather than the block z-axis, rotate the UCS into the desired position. Following example rotates the block reference around the block x-axis by 15 degrees: ucs = UCS(origin=(1, 2, 0)).rotate_local_x(math.radians(15)) blockref = msp.add_blockref('CSYS', insert=(0, 0, 0)) blockref.transform(ucs.matrix) [image] [image] The next example shows how to translate a block references with an already established OCS: # New UCS at the translated location, axis aligned to the WCS ucs = UCS((-3, -1, 1)) # Transform an already placed block reference, including # the transformation of the established OCS. blockref.transform(ucs.matrix) [image] [image] The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle is -90 degrees. The idea is to create an UCS in the origin of the already placed block reference, UCS axis aligned to the block axis and resetting the block reference parameters for a new WCS transformation. # Get UCS at the block reference insert location, UCS axis aligned # to the block axis. ucs = blockref.ucs() # Rotate UCS around the local y-axis. ucs = ucs.rotate_local_y(math.radians(-90)) Reset block reference parameters, this places the block reference in the UCS origin and aligns the block axis to the UCS axis, now we do a new transformation from UCS to WCS: # Reset block reference parameters to place block reference in # UCS origin, without any rotation and OCS. blockref.reset_transformation() # Transform block reference from UCS to WCS blockref.transform(ucs.matrix) [image] [image] Tutorial for Linear Dimensions The Dimension entity is the generic entity for all dimension types, but unfortunately AutoCAD is not willing to show a dimension line defined only by this dimension entity, it also needs an anonymous block which contains the dimension line shape constructed by basic DXF entities like LINE and TEXT entities, this representation is called the dimension line rendering in this documentation, beside the fact this is not a real graphical rendering. BricsCAD is a much more friendly CAD application, which do show the dimension entity without the graphical rendering as block, which was very useful for testing, because there is no documentation how to apply all the dimension style variables (more than 80). This seems to be the reason why dimension lines are rendered so differently by many CAD application. Don’t expect to get the same rendering results by ezdxf as you get from AutoCAD, ezdxf tries to be as close to the results rendered by BricsCAD, but it is not possible to implement all the various combinations of dimension style parameters, which often affect one another. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Text rendering is another problem, because ezdxf has no real rendering engine. Some font properties, like the real text width, which is only available to ezdxf if the Matplotlib package is installed and may also vary slightly for different CAD applications. Without access to the Matplotlib package the text properties in ezdxf are based on an abstract monospaced font and are bigger than required by true type fonts. Not all DIMENSION and DIMSTYLE features are supported by all DXF versions, especially DXF R12 does not support many features, but in this case the required rendering of dimension lines is an advantage, because if the application just shows the rendered block, all features which can be used in DXF R12 are displayed like linetypes, but this features will disappear if the dimension line will be edited in the CAD application. Ezdxf writes only the supported DIMVARS of the used DXF version to avoid invalid DXF files. So it is not that critical to know all the supported features of a DXF version, except for limits and tolerances, ezdxf uses the advanced features of the MTEXT entity to create limits and tolerances and therefore they are not supported (displayed) in DXF R12 files. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table • Source code file standards.py shows how to create your own DIMSTYLES. • The Script dimension_linear.py shows examples for linear dimensions. Horizontal Dimension import ezdxf # Create a DXF R2010 document: # Use argument setup=True to setup the default dimension styles. doc = ezdxf.new("R2010", setup=True) # Add new dimension entities to the modelspace: msp = doc.modelspace() # Add a LINE entity for visualization, not required to create the DIMENSION # entity: msp.add_line((0, 0), (3, 0)) # Add a horizontal linear DIMENSION entity: dim = msp.add_linear_dim( base=(3, 2), # location of the dimension line p1=(0, 0), # 1st measurement point p2=(3, 0), # 2nd measurement point dimstyle="EZDXF", # default dimension style ) # Necessary second step to create the BLOCK entity with the dimension geometry. # Additional processing of the DIMENSION entity could happen between adding # the entity and the rendering call. dim.render() doc.saveas("dim_linear_horiz.dxf") [image] The example above creates a horizontal Dimension entity. The default dimension style “EZDXF” is defined as: • 1 drawing unit = 1m • measurement text height = 0.25 (drawing scale = 1:100) • the length factor dimlfac = 100, which creates a measurement text in cm. • arrow is “ARCHTICK”, arrow size dimasz = 0.175 Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save() or saveas() (e.g. dimension style setup was not initiated). The base point defines the location of the dimension line, ezdxf accepts any point on the dimension line, the point p1 defines the start point of the first extension line, which also defines the first measurement point and the point p2 defines the start point of the second extension line, which also defines the second measurement point. The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as attribute dim.dimension. Vertical and Rotated Dimension Argument angle defines the angle of the dimension line in relation to the x-axis of the WCS or UCS, measurement is the distance between first and second measurement point in direction of angle. # assignment to dim is not necessary, if no additional processing happens msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0), angle=-30).render() doc.saveas("dim_linear_rotated.dxf") [image] For a vertical dimension set argument angle to 90 degree, but in this example the vertical distance would be 0. Aligned Dimension An aligned dimension line is parallel to the line defined by the definition points p1 and p2. The placement of the dimension line is defined by the argument distance, which is the distance between the definition line and the dimension line. The distance of the dimension line is orthogonal to the base line in counter clockwise orientation. msp.add_line((0, 2), (3, 0)) dim = msp.add_aligned_dim(p1=(0, 2), p2=(3, 0), distance=1) doc.saveas("dim_linear_aligned.dxf") [image] Dimension Style Override Many dimension styling options are defined by the associated DimStyle entity. But often you wanna change just a few settings without creating a new dimension style, therefore the DXF format has a protocol to store this changed settings in the dimension entity itself. This protocol is supported by ezdxf and every factory function which creates dimension entities supports the override argument. This override argument is a simple Python dictionary (e.g. override = {"dimtad": 4}, place measurement text below dimension line). The overriding protocol is managed by the DimStyleOverride object, which is returned by the most dimension factory functions. Placing Measurement Text The default location of the measurement text depends on various DimStyle parameters and is applied if no user defined text location is defined. Default Text Locations “Horizontal direction” means in direction of the dimension line and “vertical direction” means perpendicular to the dimension line direction. The “horizontal” location of the measurement text is defined by dimjust: ┌──┬──────────────────────────────────┐ │0 │ Center of dimension line │ ├──┼──────────────────────────────────┤ │1 │ Left side of the dimension line, │ │ │ near first extension line │ ├──┼──────────────────────────────────┤ │2 │ Right side of the dimension │ │ │ line, near second extension line │ ├──┼──────────────────────────────────┤ │3 │ Over first extension line │ ├──┼──────────────────────────────────┤ │4 │ Over second extension line │ └──┴──────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(0, 0), p2=(3, 0), override={"dimjust": 1} ).render() [image] The “vertical” location of the measurement text relative to the dimension line is defined by dimtad: ┌──┬──────────────────────────────────┐ │0 │ Center, it is possible to adjust │ │ │ the vertical location by dimtvp │ ├──┼──────────────────────────────────┤ │1 │ Above │ ├──┼──────────────────────────────────┤ │2 │ Outside, handled like Above by │ │ │ ezdxf │ ├──┼──────────────────────────────────┤ │3 │ JIS, handled like Above by ezdxf │ ├──┼──────────────────────────────────┤ │4 │ Below │ └──┴──────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(0, 0), p2=(3, 0), override={"dimtad": 4} ).render() [image] The distance between text and dimension line is defined by dimgap. The DimStyleOverride object has a method set_text_align() to set the default text location in an easy way, this is also the reason for the 2 step creation process of dimension entities: dim = msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0)) dim.set_text_align(halign="left", valign="center") dim.render() ┌───────┬──────────────────────────────────┐ │halign │ “left”, “right”, “center”, │ │ │ “above1”, “above2” │ ├───────┼──────────────────────────────────┤ │valign │ “above”, “center”, “below” │ └───────┴──────────────────────────────────┘ Run function example_for_all_text_placings_R2007() in the example script dimension_linear.py to create a DXF file with all text placings supported by ezdxf. User Defined Text Locations Beside the default location, it is possible to locate the measurement text freely. Location Relative to Origin The user defined text location can be set by the argument location in most dimension factory functions and always references the midpoint of the measurement text: msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), location=(4, 4) ).render() [image] The location is relative to origin of the active coordinate system or WCS if no UCS is defined in the render() method, the user defined location can also be set by user_location_override(). Location Relative to Center of Dimension Line The method set_location() has additional features for linear dimensions. Argument leader = True adds a simple leader from the measurement text to the center of the dimension line and argument relative = True places the measurement text relative to the center of the dimension line. dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_location(location=(-1, 1), leader=True, relative=True) dim.render() [image] Location Relative to Default Location The method shift_text() shifts the measurement text away from the default text location. The shifting directions are aligned to the text direction, which is the direction of the dimension line in most cases, dh (for delta horizontal) shifts the text parallel to the text direction, dv (for delta vertical) shifts the text perpendicular to the text direction. This method does not support leaders. dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.shift_text(dh=1, dv=1) dim.render() [image] Overriding Text Rotation All factory methods supporting the argument text_rotation can override the measurement text rotation. The user defined rotation is relative to the render UCS x-axis (default is WCS). Measurement Text Formatting and Styling Text Properties ┌─────────┬──────────────────────────────────┐ │DIMVAR │ Description │ ├─────────┼──────────────────────────────────┤ │dimtxsty │ Specifies the text style of the │ │ │ dimension as Textstyle name. │ ├─────────┼──────────────────────────────────┤ │dimtxt │ Text height in drawing units. │ ├─────────┼──────────────────────────────────┤ │dimclrt │ Measurement text color as │ │ │ AutoCAD Color Index (ACI). │ └─────────┴──────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ "dimtxsty": "Standard", "dimtxt": 0.35, "dimclrt": 1, } ).render() [image] Background Filling Background fillings are supported since DXF R2007, and ezdxf uses the MTEXT entity to implement this feature, so setting background filling in DXF R12 has no effect. The DIMVAR dimtfill defines the kind of background filling and the DIMVAR dimtfillclr defines the fill color. ┌────────────┬──────────────────────────────────┐ │DIMVAR │ Description │ ├────────────┼──────────────────────────────────┤ │dimtfill │ Enables background filling if │ │ │ bigger than 0 │ ├────────────┼──────────────────────────────────┤ │dimtfillclr │ Fill color as AutoCAD Color │ │ │ Index (ACI), if dimtfill is 2 │ └────────────┴──────────────────────────────────┘ ┌─────────┬──────────────────────────────┐ │dimtfill │ Description │ ├─────────┼──────────────────────────────┤ │0 │ disabled │ ├─────────┼──────────────────────────────┤ │1 │ canvas color │ ├─────────┼──────────────────────────────┤ │2 │ color defined by dimtfillclr │ └─────────┴──────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ "dimtfill": 2, "dimtfillclr": 1, } ).render() [image] Text Formatting • decimal places: dimdec defines the number of decimal places displayed for the primary units of a dimension. (DXF R2000) • decimal point character: dimdsep defines the decimal point as ASCII code, get the ASCII code by ord('.') • rounding: dimrnd, rounds all dimensioning distances to the specified value, for instance, if dimrnd is set to 0.25, all distances round to the nearest 0.25 unit. If dimrnd is set to 1.0, all distances round to the nearest integer. For more information look at the documentation of the ezdxf.math.xround() function. • zero trimming: dimzin, ezdxf supports only a subset of values: • 4 to suppress leading zeros • 8 to suppress trailing zeros • 12 as the combination of both • measurement factor: scale measurement by factor dimlfac, e.g. to get the dimensioning text in cm for a DXF file where 1 drawing unit represents 1m, set dimlfac to 100. • text template: dimpost, “<>” represents the measurement text, e.g. “~<>cm” produces “~300cm” for measurement in previous example. To set this values the ezdxf.entities.DimStyle.set_text_format() and ezdxf.entities.DimStyleOverride.set_text_format() methods are very recommended. Overriding Measurement Text This feature allows overriding the real measurement text by a custom measurement text, the text is stored as string in the Dimension entity as attribute text. Special values of the text attribute are: one space ” ” to suppress the measurement text at all, an empty string “” or “<>” to display the real measurement. All factory functions have an explicit text argument, which always replaces the text value in the dxfattribs dict. msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0), text=">1m").render() [image] Dimension Line Properties The dimension line color is defined by the DIMVAR dimclrd as AutoCAD Color Index (ACI), dimclrd and also defines the color of the arrows. The linetype is defined by dimltype and requires DXF R2007. The lineweight is defined by dimlwd and requires DXF R2000, see also the lineweight reference for valid values. The dimdle is the extension of the dimension line beyond the extension lines, this dimension line extension is not supported for all arrows. ┌─────────┬──────────────────────────────────┐ │DIMVAR │ Description │ ├─────────┼──────────────────────────────────┤ │dimclrd │ dimension line and arrows color │ │ │ as AutoCAD Color Index (ACI) │ ├─────────┼──────────────────────────────────┤ │dimltype │ linetype of dimension line │ ├─────────┼──────────────────────────────────┤ │dimlwd │ line weight of dimension line │ └─────────┴──────────────────────────────────┘ │dimdle │ extension of dimension line in │ │ │ drawing units │ └─────────┴──────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ "dimclrd": 1, # red "dimdle": 0.25, "dimltype": "DASHED2", "dimlwd": 35, # 0.35mm line weight } ).render() [image] DimStyleOverride() method: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_dimline_format( color=1, linetype="DASHED2", lineweight=35, extension=0.25 ) dim.render() Extension Line Properties The extension line color is defined by the DIMVAR dimclre as AutoCAD Color Index (ACI). The linetype for the first and the second extension line is defined by dimltex1 and dimltex2 and requires DXF R2007. The lineweight is defined by dimlwe and required DXF R2000, see also the lineweight reference for valid values. The dimexe is the extension of the extension line beyond the dimension line, and dimexo defines the offset of the extension line from the measurement point. ┌─────────┬──────────────────────────────────┐ │DIMVAR │ Description │ ├─────────┼──────────────────────────────────┤ │dimclre │ extension line color as AutoCAD │ │ │ Color Index (ACI) │ ├─────────┼──────────────────────────────────┤ │dimltex1 │ linetype of first extension line │ ├─────────┼──────────────────────────────────┤ │dimltex2 │ linetype of second extension │ │ │ line │ ├─────────┼──────────────────────────────────┤ │dimlwe │ line weight of extension line │ ├─────────┼──────────────────────────────────┤ │dimexe │ extension beyond dimension line │ │ │ in drawing units │ ├─────────┼──────────────────────────────────┤ │dimexo │ offset of extension line from │ │ │ measurement point │ ├─────────┼──────────────────────────────────┤ │dimfxlon │ set to 1 to enable fixed length │ │ │ extension line │ ├─────────┼──────────────────────────────────┤ │dimfxl │ length of fixed length extension │ │ │ line in drawing units │ ├─────────┼──────────────────────────────────┤ │dimse1 │ suppress first extension line if │ │ │ 1 │ ├─────────┼──────────────────────────────────┤ │dimse2 │ suppress second extension line │ │ │ if 1 │ └─────────┴──────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ "dimclre": 1, # red "dimltex1": "DASHED2", "dimltex2": "CENTER2", "dimlwe": 35, # 0.35mm line weight "dimexe": 0.3, # length above dimension line "dimexo": 0.1, # offset from measurement point } ).render() [image] DimStyleOverride() methods: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_extline_format(color=1, lineweight=35, extension=0.3, offset=0.1) dim.set_extline1(linetype="DASHED2") dim.set_extline2(linetype="CENTER2") dim.render() Fixed length extension lines are supported in DXF R2007, set dimfxlon to 1 and dimfxl defines the length of the extension line starting at the dimension line. msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ "dimfxlon": 1, # fixed length extension lines "dimexe": 0.2, # length above dimension line "dimfxl": 0.4, # length below dimension line } ).render() [image] DimStyleOverride() method: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_extline_format(extension=0.2, fixed_length=0.4) dim.render() To suppress extension lines set dimse1 to 1 to suppress the first extension line and dimse2 to 1 to suppress the second extension line. msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ "dimse1": 1, # suppress first extension line "dimse2": 1, # suppress second extension line "dimblk": ezdxf.ARROWS.closed_filled, # arrows just looks better } ).render() [image] DimStyleOverride() methods: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_arrows(blk=ezdxf.ARROWS.closed_filled) dim.set_extline1(disable=True) dim.set_extline2(disable=True) dim.render() Arrows “Arrows” mark then beginning and the end of a dimension line, and most of them do not look like arrows. DXF distinguish between the simple tick (a slanted line) and arrows as blocks. To use a simple tick as “arrow” set dimtsz to a value greater than 0, this also disables arrow blocks as side effect: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_tick(size=0.25) dim.render() Ezdxf uses the “ARCHTICK” block at double size to render the tick (AutoCAD and BricsCad just draw a simple line), so there is no advantage of using the tick instead of an arrow. Using arrows: dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0)) dim.set_arrow(blk="OPEN_30", size=0.25) dim.render() ┌────────┬──────────────────────────────────┐ │DIMVAR │ Description │ ├────────┼──────────────────────────────────┤ │dimtsz │ tick size in drawing units, set │ │ │ to 0 to use arrows │ ├────────┼──────────────────────────────────┤ │dimblk │ set both arrow block names at │ │ │ once │ ├────────┼──────────────────────────────────┤ │dimblk1 │ first arrow block name │ ├────────┼──────────────────────────────────┤ │dimblk2 │ second arrow block name │ ├────────┼──────────────────────────────────┤ │dimasz │ arrow size in drawing units │ └────────┴──────────────────────────────────┘ msp.add_linear_dim( base=(3, 2), p1=(3, 0), p2=(6, 0), override={ "dimtsz": 0, # set tick size to 0 to enable arrow usage "dimasz": 0.25, # arrow size in drawing units "dimblk": "OPEN_30", # arrow block name } ).render() The dimension line extension (dimdle) works only for a few arrow blocks and the simple tick: • “ARCHTICK” • “OBLIQUE” • “NONE” • “SMALL” • “DOTSMALL” • “INTEGRAL” Arrow Shapes [image] Arrow Names The arrow names are stored as attributes in the ezdxf.ARROWS object. ┌──────────────────────┬───────────────────┐ │closed_filled │ “” (empty string) │ ├──────────────────────┼───────────────────┤ │dot │ “DOT” │ └──────────────────────┴───────────────────┘ │dot_small │ “DOTSMALL” │ ├──────────────────────┼───────────────────┤ │dot_blank │ “DOTBLANK” │ ├──────────────────────┼───────────────────┤ │origin_indicator │ “ORIGIN” │ ├──────────────────────┼───────────────────┤ │origin_indicator_2 │ “ORIGIN2” │ ├──────────────────────┼───────────────────┤ │open │ “OPEN” │ ├──────────────────────┼───────────────────┤ │right_angle │ “OPEN90” │ ├──────────────────────┼───────────────────┤ │open_30 │ “OPEN30” │ ├──────────────────────┼───────────────────┤ │closed │ “CLOSED” │ ├──────────────────────┼───────────────────┤ │dot_smallblank │ “SMALL” │ ├──────────────────────┼───────────────────┤ │none │ “NONE” │ ├──────────────────────┼───────────────────┤ │oblique │ “OBLIQUE” │ ├──────────────────────┼───────────────────┤ │box_filled │ “BOXFILLED” │ ├──────────────────────┼───────────────────┤ │box │ “BOXBLANK” │ ├──────────────────────┼───────────────────┤ │closed_blank │ “CLOSEDBLANK” │ ├──────────────────────┼───────────────────┤ │datum_triangle_filled │ “DATUMFILLED” │ ├──────────────────────┼───────────────────┤ │datum_triangle │ “DATUMBLANK” │ ├──────────────────────┼───────────────────┤ │integral │ “INTEGRAL” │ ├──────────────────────┼───────────────────┤ │architectural_tick │ “ARCHTICK” │ ├──────────────────────┼───────────────────┤ │ez_arrow │ “EZ_ARROW” │ ├──────────────────────┼───────────────────┤ │ez_arrow_blank │ “EZ_ARROW_BLANK” │ ├──────────────────────┼───────────────────┤ │ez_arrow_filled │ “EZ_ARROW_FILLED” │ └──────────────────────┴───────────────────┘ Tolerances and Limits The tolerances and limits features are implemented by using inline codes for the MText entity, therefore DXF R2000 is required. It is not possible to use both tolerances and limits at the same time. Tolerances Geometrical tolerances are shown as additional text appended to the measurement text. It is recommend to use set_tolerance() method in DimStyleOverride or DimStyle. The attribute dimtp defines the upper tolerance value, dimtm defines the lower tolerance value if present, else the lower tolerance value is the same as the upper tolerance value. Tolerance values are shown as given! Same upper and lower tolerance value: dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0)) dim.set_tolerance(.1, hfactor=.4, align="top", dec=2) dim.render() [image] Different upper and lower tolerance values: dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0)) dim.set_tolerance(upper=.1, lower=.15, hfactor=.4, align="middle", dec=2) dim.render() [image] The attribute dimtfac specifies a scale factor for the text height of limits and tolerance values relative to the dimension text height, as set by dimtxt. For example, if dimtfac is set to 1.0, the text height of fractions and tolerances is the same height as the dimension text. If dimtxt is set to 0.75, the text height of limits and tolerances is three-quarters the size of dimension text. Vertical justification for tolerances is specified by dimtolj: ┌────────┬──────────────────────────────────┐ │dimtolj │ Description │ ├────────┼──────────────────────────────────┤ │0 │ Align with bottom line of │ │ │ dimension text │ ├────────┼──────────────────────────────────┤ │1 │ Align vertical centered to │ │ │ dimension text │ ├────────┼──────────────────────────────────┤ │2 │ Align with top line of dimension │ │ │ text │ └────────┴──────────────────────────────────┘ ┌────────┬──────────────────────────────────┐ │DIMVAR │ Description │ ├────────┼──────────────────────────────────┤ │dimtol │ set to 1 to enable tolerances │ ├────────┼──────────────────────────────────┤ │dimtp │ set the maximum (or upper) │ │ │ tolerance limit for dimension │ │ │ text │ ├────────┼──────────────────────────────────┤ │dimtm │ set the minimum (or lower) │ │ │ tolerance limit for dimension │ │ │ text │ ├────────┼──────────────────────────────────┤ │dimtfac │ specifies a scale factor for the │ │ │ text height of limits and │ │ │ tolerance values relative to the │ │ │ dimension text height, as set by │ │ │ dimtxt. │ ├────────┼──────────────────────────────────┤ │dimtzin │ 4 to suppress leading zeros, 8 │ │ │ to suppress trailing zeros or 12 │ │ │ to suppress both, like dimzin │ │ │ for dimension text, see also │ │ │ Text Formatting │ ├────────┼──────────────────────────────────┤ │dimtolj │ set the vertical justification │ │ │ for tolerance values relative to │ │ │ the nominal dimension text. │ ├────────┼──────────────────────────────────┤ │dimtdec │ set the number of decimal places │ │ │ to display in tolerance values │ └────────┴──────────────────────────────────┘ Limits The geometrical limits are shown as upper and lower measurement limit and replaces the usual measurement text. It is recommend to use set_limits() method in DimStyleOverride or DimStyle. For limits the tolerance values are drawing units scaled by measurement factor dimlfac, the upper limit is scaled measurement value + dimtp and the lower limit is scaled measurement value - dimtm. The attributes dimtfac, dimtzin and dimtdec have the same meaning for limits as for tolerances. dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0)) dim.set_limits(upper=.1, lower=.15, hfactor=.4, dec=2) dim.render() [image] ┌───────┬───────────────────────────┐ │DIMVAR │ Description │ ├───────┼───────────────────────────┤ │dimlim │ set to 1 to enable limits │ └───────┴───────────────────────────┘ Alternative Units Alternative units are not supported. Tutorial for Radius Dimensions Please read the Tutorial for Linear Dimensions before, if you haven’t. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. import ezdxf # DXF R2010 drawing, official DXF version name: 'AC1024', # setup=True setups the default dimension styles doc = ezdxf.new("R2010", setup=True) msp = doc.modelspace() # add new dimension entities to the modelspace msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required # add default radius dimension, measurement text is located outside dim = msp.add_radius_dim( center=(0, 0), radius=3, angle=45, dimstyle="EZ_RADIUS" ) # necessary second step, to create the BLOCK entity with the dimension geometry. dim.render() doc.saveas("radius_dimension.dxf") The example above creates a 45 degrees slanted radius Dimension entity, the default dimension style “EZ_RADIUS” is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100, which creates a measurement text in cm, the default location for the measurement text is outside of the circle. The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle radius, which is also the measurement, and angle defines the slope of the dimension line, it is also possible to define the circle by a measurement point mpoint on the circle. The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. Placing Measurement Text There are different predefined DIMSTYLES to achieve various text placing locations. The basic DIMSTYLE “EZ_RADIUS” settings are: • 1 drawing unit = 1m • scale 1:100 • the length factor dimlfac = 100, which creates a measurement text in cm. • uses a closed filled arrow, arrow size dimasz = 0.25 NOTE: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the radial dimension there are less features implemented than for the linear dimension because of the lack of good documentation. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table • Source code file standards.py shows how to create your own DIMSTYLES. • The Script dimension_radius.py shows examples for radius dimensions. Default Text Locations Outside Advanced “EZ_RADIUS” settings for placing the text outside of the circle: ┌───────┬──────────────────────────────────┐ │tmove │ 1 = add a leader when dimension │ │ │ text is moved, this is the best │ │ │ setting for text outside to │ │ │ preserve the appearance of the │ │ │ DIMENSION entity, if editing │ │ │ afterwards in a CAD application. │ ├───────┼──────────────────────────────────┤ │dimtad │ 1 = place the text vertical │ │ │ above the dimension line │ └───────┴──────────────────────────────────┘ dim = msp.add_radius_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS" ) dim.render() # always required, but not shown in the following examples [image] To force text outside horizontal set dimtoh to 1: dim = msp.add_radius_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS", override={"dimtoh": 1} ) [image] Default Text Locations Inside DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location. The basic DIMSTYLE “EZ_RADIUS_INSIDE” settings are: • 1 drawing unit = 1m • scale 1:100, length_factor is 100 which creates • the length factor dimlfac = 100, which creates a measurement text in cm. • uses a closed filled arrow, arrow size dimasz = 0.25 Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle: ┌─────────┬──────────────────────────────────┐ │tmove │ 0 = moves the dimension line │ │ │ with dimension text, this is the │ │ │ best setting for text inside to │ │ │ preserve the appearance of the │ │ │ DIMENSION entity, if editing │ │ │ afterwards in a CAD application. │ ├─────────┼──────────────────────────────────┤ │dimtix │ 1 = force text inside │ ├─────────┼──────────────────────────────────┤ │dimatfit │ 0 = force text inside, required │ │ │ by BricsCAD and AutoCAD │ └─────────┴──────────────────────────────────┘ │dimtad │ 0 = center text vertical, │ │ │ BricsCAD and AutoCAD always │ │ │ create a vertical centered text, │ │ │ ezdxf let you choose the │ │ │ vertical placement (above, │ │ │ below, center), but editing the │ │ │ DIMENSION in BricsCAD or AutoCAD │ │ │ will reset text to center │ │ │ placement. │ └─────────┴──────────────────────────────────┘ dim = msp.add_radius_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS_INSIDE" ) [image] [image] To force text inside horizontal set dimtih to 1: dim = msp.add_radius_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS_INSIDE", override={"dimtih": 1} ) [image] User Defined Text Locations Beside the default location it is always possible to override the text location by a user defined location. This location also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not necessary to force text inside (dimtix=1), because the location of the text is explicit given, therefore the DIMSTYLE “EZ_RADIUS” can be used for all this examples. User defined location outside of the circle: dim = msp.add_radius_dim( center=(0, 0), radius=2.5, location=(4, 4), dimstyle="EZ_RADIUS" ) [image] User defined location outside of the circle and forced horizontal text: dim = msp.add_radius_dim( center=(0, 0), radius=2.5, location=(4, 4), dimstyle="EZ_RADIUS", override={"dimtoh": 1} ) [image] User defined location inside of the circle: dim = msp.add_radius_dim( center=(0, 0), radius=2.5, location=(1, 1), dimstyle="EZ_RADIUS" ) [image] [image] User defined location inside of the circle and forced horizontal text: dim = msp.add_radius_dim( center=(0, 0), radius=2.5, location=(1, 1), dimstyle="EZ_RADIUS", override={"dimtih": 1}, ) [image] Center Mark/Lines Center mark/lines are controlled by dimcen, default value is 0 for predefined dimstyles “EZ_RADIUS” and “EZ_RADIUS_INSIDE”: ┌───┬──────────────────────────────────┐ │0 │ Center mark is off │ ├───┼──────────────────────────────────┤ │>0 │ Create center mark of given size │ ├───┼──────────────────────────────────┤ │<0 │ Create center lines │ └───┴──────────────────────────────────┘ dim = msp.add_radius_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS", override={"dimcen": 0.25}, ) [image] Overriding Measurement Text See Linear Dimension Tutorial: Overriding Measurement Text Measurement Text Formatting and Styling See Linear Dimension Tutorial: Measurement Text Formatting and Styling Tutorial for Diameter Dimensions Please read the Tutorial for Radius Dimensions before, if you haven’t. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. This is a repetition of the radius tutorial, just with diameter dimensions. import ezdxf # setup=True setups the default dimension styles doc = ezdxf.new("R2010", setup=True) msp = doc.modelspace() # add new dimension entities to the modelspace msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required # add default diameter dimension, measurement text is located outside dim = msp.add_diameter_dim( center=(0, 0), radius=3, angle=45, dimstyle="EZ_RADIUS" ) dim.render() doc.saveas("diameter_dimension.dxf") The example above creates a 45 degrees slanted diameter Dimension entity, the default dimension style “EZ_RADIUS” (same as for radius dimensions) is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100, which creates a measurement text in cm, the default location for the measurement text is outside of the circle. The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle radius and angle defines the slope of the dimension line, it is also possible to define the circle by a measurement point mpoint on the circle. The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. Placing Measurement Text There are different predefined DIMSTYLES to achieve various text placing locations. The basic DIMSTYLE “EZ_RADIUS” settings are: • 1 drawing unit = 1m • scale 1:100 • the length factor dimlfac = 100, which creates a measurement text in cm. • uses a closed filled arrow, arrow size dimasz = 0.25 NOTE: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the diameter dimension there are less features implemented than for the linear dimension because of the lack of good documentation. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table • Source code file standards.py shows how to create your own DIMSTYLES. • The Script dimension_diameter.py shows examples for radius dimensions. Default Text Locations Outside “EZ_RADIUS” default settings for to place text outside: ┌───────┬──────────────────────────────────┐ │tmove │ 1 = add a leader when dimension │ │ │ text is moved, this is the best │ │ │ setting for text outside to │ │ │ preserve the appearance of the │ │ │ DIMENSION entity, if editing │ │ │ afterwards in a CAD application. │ ├───────┼──────────────────────────────────┤ │dimtad │ 1 = place the text vertical │ │ │ above the dimension line │ └───────┴──────────────────────────────────┘ dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS" ) dim.render() # always required, but not shown in the following examples [image] To force text outside horizontal set dimtoh to 1: dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS", override={"dimtoh": 1} ) [image] Default Text Locations Inside DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location. The basic DIMSTYLE settings are: • 1 drawing unit = 1m • scale 1:100, length_factor is 100 which creates • the length factor dimlfac = 100, which creates a measurement text in cm. • uses a closed filled arrow, arrow size dimasz = 0.25 Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle: ┌─────────┬──────────────────────────────────┐ │tmove │ 0 = moves the dimension line │ │ │ with dimension text, this is the │ │ │ best setting for text inside to │ │ │ preserve the appearance of the │ │ │ DIMENSION entity, if editing │ │ │ afterwards in a CAD application. │ ├─────────┼──────────────────────────────────┤ │dimtix │ 1 = force text inside │ ├─────────┼──────────────────────────────────┤ │dimatfit │ 0 = force text inside, required │ │ │ by BricsCAD and AutoCAD │ ├─────────┼──────────────────────────────────┤ │dimtad │ 0 = center text vertical, │ │ │ BricsCAD and AutoCAD always │ │ │ create a vertical centered text, │ │ │ ezdxf let you choose the │ │ │ vertical placement (above, │ │ │ below, center), but editing the │ │ │ DIMENSION in BricsCAD or AutoCAD │ │ │ will reset text to center │ │ │ placement. │ └─────────┴──────────────────────────────────┘ dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS_INSIDE" ) [image] To force text inside horizontal set dimtih to 1: dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, angle=45, dimstyle="EZ_RADIUS_INSIDE", override={"dimtih": 1} ) [image] User Defined Text Locations Beside the default location it is always possible to override the text location by a user defined location. This location also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not necessary to force text inside (dimtix=1), because the location of the text is explicit given, therefore the DIMSTYLE “EZ_RADIUS” can be used for all this examples. User defined location outside of the circle: dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, location=(4, 4), dimstyle="EZ_RADIUS" ) [image] User defined location outside of the circle and forced horizontal text: dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, location=(4, 4), dimstyle="EZ_RADIUS", override={"dimtoh": 1} ) [image] User defined location inside of the circle: dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, location=(1, 1), dimstyle="EZ_RADIUS" ) [image] User defined location inside of the circle and forced horizontal text: dim = msp.add_diameter_dim( center=(0, 0), radius=2.5, location=(1, 1), dimstyle="EZ_RADIUS", override={"dimtih": 1}, ) [image] Center Mark/Lines See Radius Dimension Tutorial: Center Mark/Lines Overriding Measurement Text See Linear Dimension Tutorial: Overriding Measurement Text Measurement Text Formatting and Styling See Linear Dimension Tutorial: Measurement Text Formatting and Styling Tutorial for Angular Dimensions Please read the Tutorial for Linear Dimensions before, if you haven’t. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Dimension Style “EZ_CURVED” All factory methods to create angular dimensions uses the dimension style “EZ_CURVED” for curved dimension lines which is defined as: • angle unit is decimal degrees, dimaunit = 0 • measurement text height = 0.25 (drawing scale = 1:100) • measurement text location is above the dimension line • closed filled arrow and arrow size dimasz = 0.25 • dimazin = 2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5) This DIMENSION style only exist if the argument setup is True for creating a new DXF document by ezdxf.new(). Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save() or saveas() (e.g. dimension style setup was not initiated). Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document: import ezdxf from ezdxf.tools.standards import setup_drawing doc = ezdxf.readfile("your.dxf") setup_drawing(doc, topics="all") Factory Methods to Create Angular Dimensions Defined by Center, Radius and Angles The first example shows an angular dimension defined by the center point, radius, start- and end angles: import ezdxf # Create a DXF R2010 document: # Use argument setup=True to setup the default dimension styles. doc = ezdxf.new("R2010", setup=True) # Add new entities to the modelspace: msp = doc.modelspace() # Add an angular DIMENSION defined by the center point, start- and end angles, # the measurement text is placed at the default location above the dimension # line: dim = msp.add_angular_dim_cra( center=(5, 5), # center point of the angle radius= 7, # distance from center point to the start of the extension lines start_angle=60, # start angle in degrees end_angle=120, # end angle in degrees distance=3, # distance from start of the extension lines to the dimension line dimstyle="EZ_CURVED", # default angular dimension style ) # Necessary second step to create the BLOCK entity with the dimension geometry. # Additional processing of the DIMENSION entity could happen between adding # the entity and the rendering call. dim.render() doc.saveas("angular_dimension_cra.dxf") The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. [image] Angle by 2 Lines The next example shows an angular dimension for an angle defined by two lines: import ezdxf doc = ezdxf.new(setup=True) msp = doc.modelspace() # Setup the geometric parameters for the DIMENSION entity: base = (5.8833, -6.3408) # location of the dimension line p1 = (2.0101, -7.5156) # start point of 1st leg p2 = (2.7865, -10.4133) # end point of 1st leg p3 = (6.7054, -7.5156) # start point of 2nd leg p4 = (5.9289, -10.4133) # end point of 2nd leg # Draw the lines for visualization, not required to create the # DIMENSION entity: msp.add_line(p1, p2) msp.add_line(p3, p4) # Add an angular DIMENSION defined by two lines, the measurement text is # placed at the default location above the dimension line: dim = msp.add_angular_dim_2l( base=base, # defines the location of the dimension line line1=(p1, p2), # start leg of the angle line2=(p3, p4), # end leg of the angle dimstyle="EZ_CURVED", # default angular dimension style ) # Necessary second step to create the dimension line geometry: dim.render() doc.saveas("angular_dimension_2l.dxf") The example above creates an angular Dimension entity to measures the angle between two lines (line1 and line2). The base point defines the location of the dimension line (arc), any point on the dimension line is valid. The points p1 and p2 define the first leg of the angle, p1 also defines the start point of the first extension line. The points p3 and p4 define the second leg of the angle and point p3 also defines the start point of the second extension line. The measurement of the DIMENSION entity is the angle enclosed by the first and the second leg and where the dimension line passes the base point. [image] Angle by 3 Points The next example shows an angular dimension defined by three points, a center point and the two end points of the angle legs: import ezdxf doc = ezdxf.new(setup=True) msp = doc.modelspace() msp.add_angular_dim_3p( base=(0, 7), # location of the dimension line center=(0, 0), # center point p1=(-3, 5), # end point of 1st leg = start angle p2=(3, 5), # end point of 2nd leg = end angle ).render() [image] Angle from ConstructionArc The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool can be created from an ARC entity. Add an angular dimension to an ARC entity: import ezdxf doc = ezdxf.new(setup=True) msp = doc.modelspace() arc = msp.add_arc( center=(0, 0), radius=5, start_angle = 60, end_angle = 120, ) msp.add_angular_dim_arc( arc.construction_tool(), distance=2, ).render() [image] Placing Measurement Text The default location of the measurement text depends on various DimStyle parameters and is applied if no user defined text location is defined. NOTE: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the angular dimension there are less features implemented than for the linear dimension because of the lack of good documentation. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table • Source code file standards.py shows how to create your own DIMSTYLES. • The Script dimension_angular.py shows examples for angular dimensions. Default Text Locations The DIMSTYLE “EZ_CURVED” places the measurement text in the center of the angle above the dimension line. The first examples above show the measurement text at the default text location. The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this angle is manually overridden. The “vertical” location of the measurement text relative to the dimension line is defined by dimtad: ┌──┬──────────────────────────────────┐ │0 │ Center, it is possible to adjust │ │ │ the vertical location by dimtvp │ ├──┼──────────────────────────────────┤ │1 │ Above │ ├──┼──────────────────────────────────┤ │2 │ Outside, handled like Above by │ │ │ ezdxf │ ├──┼──────────────────────────────────┤ │3 │ JIS, handled like Above by ezdxf │ ├──┼──────────────────────────────────┤ │4 │ Below │ └──┴──────────────────────────────────┘ msp.add_angular_dim_cra( center=(3, 3), radius=3, distance=1, start_angle=60, end_angle=120, override={ "dimtad": 1, # 0=center; 1=above; 4=below; }, ).render() [image] Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t sufficient. This overrides the dimtad value by 1 (“above”). Ezdxf follows its own rules, ignores the dimatfit attribute and works similar to dimatfit = 1, move arrows first, then text: [image] Shift Text From Default Location The method shift_text() shifts the measurement text away from the default location. The shifting direction is aligned to the text rotation of the default measurement text. dim = msp.add_angular_dim_cra( center=(3, 3), radius=3, distance=1, start_angle=60, end_angle=120, ) # shift text from default text location: dim.shift_text(0.5, 1.0) dim.render() [image] This is just a rendering effect, editing the dimension line in a CAD application resets the text to the default location. User Defined Text Locations Beside the default location it is always possible to override the text location by a user defined location. The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the WCS. Absolute User Location Absolute placing of the measurement text means relative to the origin of the render UCS. The user location is stored in the DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location. This location also determines the rotation of the measurement text. dim = msp.add_angular_dim_cra( center=(3, 3), radius=3, distance=1, start_angle=60, end_angle=120, location=(5, 8), # user defined measurement text location ) dim.render() [image] Relative User Location Relative placing of the measurement text means relative to the middle of the dimension line. This is only possible by calling the set_location() method, and the argument relative has to be True. The user location is stored in the DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location. This location also determines the rotation of the measurement text. dim = msp.add_angular_dim_cra( center=(3, 3), radius=3, distance=1, start_angle=60, end_angle=120, ) dim.set_location((1, 2), relative=True) dim.render() [image] Adding a Leader The method set_location() has the option to add a leader line to the measurement text. This also aligns the text rotation to the render UCS x-axis, this means in the default case the measurement text is horizontal. The leader line can be “below” the text or start at the “left” or “right” center of the text, this location is defined by the dimtad attribute, 0 means “center” and any value != 0 means “below”. for dimtad, x in [(0, 0), (4, 6)]: dim = msp.add_angular_dim_cra( center=(3 + x, 3), radius=3, distance=1, start_angle=60, end_angle=120, override={"dimtad": dimtad} # "center" == 0; "below" != 0; ) dim.set_location((1, 2), relative=True, leader=True) dim.render() [image] Advanced version which calculates the relative text location: The user location vector has a length 2 and the orientation is defined by center_angle pointing away from the center of the angle. import ezdxf from ezdxf.math import Vec3 doc = ezdxf.new(setup=True) msp = doc.modelspace() for dimtad, y, leader in [ [0, 0, False], [0, 7, True], [4, 14, True], ]: for x, center_angle in [ (0, 0), (7, 45), (14, 90), (21, 135), (26, 225), (29, 270) ]: dim = msp.add_angular_dim_cra( center=(x, y), radius=3.0, distance=1.0, start_angle=center_angle - 15.0, end_angle=center_angle + 15.0, override={"dimtad": dimtad}, ) # The user location is relative to the center of the dimension line: usr_location = Vec3.from_deg_angle(angle=center_angle, length=2.0) dim.set_location(usr_location, leader=leader, relative=True) dim.render() [image] Overriding Text Rotation All factory methods supporting the argument text_rotation can override the measurement text rotation. The user defined rotation is relative to the render UCS x-axis (default is WCS). This example uses a relative text location without a leader and forces the text rotation to 90 degrees: for x, center_angle in [(7, 45), (14, 90), (21, 135)]: dim = msp.add_angular_dim_cra( center=(x, 0), radius=3.0, distance=1.0, start_angle=center_angle - 15.0, end_angle=center_angle + 15.0, text_rotation=90, # vertical text ) usr_location = Vec3.from_deg_angle(angle=center_angle, length=1.0) dim.set_location(usr_location, leader=False, relative=True) dim.render() [image] Angular Units Angular units are set by dimaunit: ┌──┬──────────────────────────────────┐ │0 │ Decimal degrees │ ├──┼──────────────────────────────────┤ │1 │ Degrees/Minutes/Seconds, dimadec │ │ │ controls the shown precision │ │ │ │ │ │ • dimadec=0: 30° │ │ │ │ │ │ • dimadec=2: 30°35’ │ │ │ │ │ │ • dimadec=4: 30°35’25” │ │ │ │ │ │ • dimadec=7: 30°35’25.15” │ ├──┼──────────────────────────────────┤ │2 │ Grad │ ├──┼──────────────────────────────────┤ │3 │ Radians │ └──┴──────────────────────────────────┘ d1 = 15 d2 = 15.59031944 for x, (dimaunit, dimadec) in enumerate( [ (0, 4), (1, 7), (2, 4), (3, 4), ] ): dim = msp.add_angular_dim_cra( center=(x * 4.0, 0.0), radius=3.0, distance=1.0, start_angle=90.0 - d1, end_angle=90.0 + d2, override={ "dimaunit": dimaunit, "dimadec": dimadec, }, ) dim.render() [image] [image] Overriding Measurement Text See Linear Dimension Tutorial: Overriding Measurement Text Measurement Text Formatting and Styling See Linear Dimension Tutorial: Measurement Text Formatting and Styling Tolerances and Limits See Linear Dimension Tutorial: Tolerances and Limits Tutorial for Arc Dimensions Please read the Tutorial for Linear Dimensions before, if you haven’t. This is a repetition of the Tutorial for Angular Dimensions, because ezdxf reuses the angular dimension to render arc dimensions. This approach is very different to CAD applications, but also much less work. NOTE: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE variables, so the rendering results are very different from CAD applications. Dimension Style “EZ_CURVED” All factory methods to create arc dimensions uses the dimension style “EZ_CURVED” for curved dimension lines which is defined as: • angle unit is decimal degrees, dimaunit = 0 • measurement text height = 0.25 (drawing scale = 1:100) • measurement text location is above the dimension line • closed filled arrow and arrow size dimasz = 0.25 • dimzin = 2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5) • dimarcsym = 2, disables the arc symbol, 0 renders only an open round bracket “(” in front of the text and 1 for arc symbol above the text is not supported, renders like disabled For more information go to: Dimension Style “EZ_CURVED” Factory Methods to Create Arc Dimensions Defined by Center, Radius and Angles The first example shows an arc dimension defined by the center point, radius, start- and end angles: import ezdxf # Use argument setup=True to setup the default dimension styles. doc = ezdxf.new(setup=True) # Add new entities to the modelspace: msp = doc.modelspace() # Add an arc DIMENSION defined by the center point, start- and end angles, # the measurement text is placed at the default location above the dimension # line: dim = msp.add_arc_dim_cra( center=(5, 5), # center point of the angle radius=5, # distance from center point to the start of the extension lines start_angle=60, # start angle in degrees end_angle=120, # end angle in degrees distance=2, # distance from start of the extension lines to the dimension line dimstyle="EZ_CURVED", # default angular dimension style ) # Necessary second step to create the BLOCK entity with the dimension geometry. # Additional processing of the DIMENSION entity could happen between adding # the entity and the rendering call. dim.render() doc.saveas("arc_dimension_cra.dxf") The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. [image] Arc by 3 Points The next example shows an angular dimension defined by three points, a center point and the two end points of the angle legs, the first point defines the radius, the second point defines only the end angle, the distance from the center point is not relevant: import ezdxf doc = ezdxf.new(setup=True) msp = doc.modelspace() msp.add_arc_dim_3p( base=(0, 7), # location of the dimension line center=(0, 0), # center point p1=(2.5, 4.330127018922193), # 1st point of arc defines start angle and radius p2=(-2.5, 4.330127018922194), # 2nd point defines the end angle ).render() [image] Angle from ConstructionArc The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool can be created from an ARC entity. Add an angular dimension to an ARC entity: import ezdxf doc = ezdxf.new(setup=True) msp = doc.modelspace() arc = msp.add_arc( center=(0, 0), radius=5, start_angle = 60, end_angle = 120, ) msp.add_arc_dim_arc( arc.construction_tool(), distance=2, ).render() Placing Measurement Text The default location of the measurement text depends on various DimStyle parameters and is applied if no user defined text location is defined. NOTE: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the arc dimension there are less features implemented than for the linear dimension because of the lack of good documentation. If the arc symbol is enabled (dimarcsym = 0) only an open round bracket “(” is rendered in front of the measurement text! SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table • Source code file standards.py shows how to create your own DIMSTYLES. • The Script dimension_arc.py shows examples for angular dimensions. Default Text Locations The DIMSTYLE “EZ_CURVED” places the measurement text in the center of the angle above the dimension line. The first examples above show the measurement text at the default text location. The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this angle is manually overridden. Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t sufficient. For more information go to: Default Text Locations Shift Text From Default Location The method shift_text() shifts the measurement text away from the default location. The shifting direction is aligned to the text rotation of the default measurement text. For more information go to: Shift Text From Default Location User Defined Text Locations Beside the default location it is always possible to override the text location by a user defined location. The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the WCS. For more information go to: User Defined Text Locations Absolute User Location Absolute placing of the measurement text means relative to the origin of the render UCS. For more information go to: User Defined Text Locations Relative User Location Relative placing of the measurement text means relative to the middle of the dimension line. For more information go to: User Defined Text Locations Adding a Leader Add a leader line to the measurement text and set the text rotation to “horizontal”. For more information go to: User Defined Text Locations Overriding Text Rotation All factory methods supporting the argument text_rotation can override the measurement text rotation. The user defined rotation is relative to the render UCS x-axis (default is WCS). For more information go to: User Defined Text Locations Overriding Measurement Text See Linear Dimension Tutorial: Overriding Text Rotation Measurement Text Formatting and Styling See Linear Dimension Tutorial: Measurement Text Formatting and Styling Tolerances and Limits See Linear Dimension Tutorial: Tolerances and Limits Tutorial for Ordinate Dimensions Please read the Tutorial for Linear Dimensions before, if you haven’t. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Local Coordinate System Ordinate dimensioning is used when the x- and the y-coordinates from a location (feature), are the only dimensions necessary. The dimensions to each feature, originate from one datum location, called “origin” in this tutorial. The local coordinate system (LCS) in which the measurement is done, is defined by the origin and the rotation angle around the z-axis in the rendering UCS, which is the WCS by default. Factory Methods to Create Ordinate Dimensions All factory methods for creating ordinate dimensions expect global coordinates to define the feature location. Global Feature Location The first example shows ordinate dimensions defined in the render UCS, in this example the WCS, this is how the DIMENSION entity expects the coordinates of the feature location: import ezdxf from ezdxf.math import Vec3 from ezdxf.render import forms # Use argument setup=True to setup the default dimension styles. doc = ezdxf.new(setup=True) # Add new entities to the modelspace: msp = doc.modelspace() # Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3) origin = Vec3(2, 3) msp.add_lwpolyline( forms.translate(forms.box(4, 2.5), origin), close=True ) # Add an x-type ordinate DIMENSION with global feature locations: msp.add_ordinate_x_dim( # lower left corner feature_location=origin + (0, 0), # feature location in the WCS offset=(0, -2), # end of leader, relative to the feature location origin=origin, ).render() msp.add_ordinate_x_dim( # lower right corner feature_location=origin + (4, 0), # feature location in the WCS offset=(0, -2), origin=origin, ).render() # Add an y-type ordinate DIMENSION with global feature locations: msp.add_ordinate_y_dim( # lower right corner feature_location=origin + (4, 0), # feature location in the WCS offset=(2, 0), origin=origin, ).render() msp.add_ordinate_y_dim( # upper right corner feature_location=origin + (4, 2.5), # feature location in the WCS offset=(2, 0), origin=origin, ).render() # Necessary second step to create the BLOCK entity with the dimension geometry. # Additional processing of the DIMENSION entity could happen between adding # the entity and the rendering call. doc.saveas("ord_global_features.dxf") The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity is stored as dim.dimension. [image] Local Feature Location The previous examples shows that the calculation of the global feature location is cumbersome and it gets even more complicated for a rotated LCS. This example shows how to use a render UCS for using locale coordinates to define the feature locations: import ezdxf from ezdxf.math import Vec3, UCS from ezdxf.render import forms doc = ezdxf.new(setup=True) msp = doc.modelspace() # Create a special DIMSTYLE for "vertical" centered measurement text: dimstyle = doc.dimstyles.duplicate_entry("EZDXF", "ORD_CENTER") dimstyle.dxf.dimtad = 0 # "vertical" centered measurement text # Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3), # rotated about 30 degrees: origin = Vec3(2, 3) msp.add_lwpolyline( forms.translate(forms.rotate(forms.box(4, 2.5), 30), origin), close=True ) # Define the rotated local render UCS. # The origin is the lower-left corner of the rectangle and the axis are # aligned to the rectangle edges: # The y-axis "uy" is calculated automatically by the right-hand rule. ucs = UCS(origin, ux=Vec3.from_deg_angle(30), uz=(0, 0, 1)) # Add a x-type ordinate DIMENSION with local feature locations: # the origin is now the origin of the UCS, which is (0, 0) the default value of # "origin" and the feature coordinates are located in the UCS: msp.add_ordinate_x_dim( # lower left corner feature_location=(0, 0), # feature location in the UCS offset=(0.25, -2), # # leader with a "knee" dimstyle="ORD_CENTER", ).render(ucs=ucs) # Important when using a render UCS! msp.add_ordinate_x_dim( # lower right corner feature_location=(4, 0), # feature location in the UCS offset=(0.25, -2), # leader with a "knee" dimstyle="ORD_CENTER", ).render(ucs=ucs) # Important when using a render UCS! # Add a y-type ordinate DIMENSION with local feature coordinates: msp.add_ordinate_y_dim( # lower right corner feature_location=(4, 0), # feature location in the UCS offset=(2, 0.25), # leader with a "knee" dimstyle="ORD_CENTER", ).render(ucs=ucs) # Important when using a render UCS! msp.add_ordinate_y_dim( # upper right corner feature_location=(4, 2.5), # feature location in the UCS offset=(2, 0.25), # leader with a "knee" dimstyle="ORD_CENTER", ).render(ucs=ucs) # Important when using a render UCS! doc.saveas("ord_local_features.dxf") [image] Placing Measurement Text The ezdxf ordinate DIMENSION renderer places the measurement text always at the default location, because the location of the leader end point is given by the argument offset in the factory methods, which provides a flexible way to place the measurement text, overriding the text location by an explicit user location is not supported, also the user text rotation is not supported, the text is always aligned to the local coordinate system x- and y-axis. SEE ALSO: • Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table • Source code file standards.py shows how to create your own DIMSTYLES. • The Script dimension_ordinate.py shows examples for angular dimensions. Overriding Measurement Text See Linear Dimension Tutorial: Overriding Text Rotation Measurement Text Formatting and Styling See Linear Dimension Tutorial: Measurement Text Formatting and Styling Tolerances and Limits See Linear Dimension Tutorial: Tolerances and Limits Tutorial for the Geo Add-on This tutorial shows how to load a GPS track into a geo located DXF file and also the inverse operation, exporting geo located DXF entities as GeoJSON files. Please read the section Intended Usage in the documentation of the ezdxf.addons.geo module first. WARNING: TO ALL BEGINNERS! If you are just learning to work with geospatial data, using DXF files is not the way to go! DXF is not the first choice for storing data for spatial data analysts. If you run into problems I cannot help you as I am just learning myself. The complete source code and test data for this tutorial are available in the github repository: https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo Setup Geo Location Reference The first step is setting up the geo location reference, which is not doable with ezdxf yet - this feature may come in the future - but for now you have to use a CAD application to do this. If the DXF file has no geo location reference the projected 2D coordinates are most likely far away from the WCS origin (0, 0), use the CAD command “ZOOM EXTENDS” to find the data. Load GPX Data The GPX format stores GPS data in a XML format, use the ElementTree class to load the data: def load_gpx_track(p: Path) -> Iterable[Tuple[float, float]]: """Load all track points from all track segments at once.""" gpx = ET.parse(p) root = gpx.getroot() for track_point in root.findall(".//gpx:trkpt", GPX_NS): data = track_point.attrib # Elevation is not supported by the geo add-on. yield float(data["lon"]), float(data["lat"]) The loaded GPS data has a WSG84 EPSG:4326 projection as longitude and latitude in decimal degrees. The next step is to create a GeoProxy object from this data, the GeoProxy.parse() method accepts a __geo_interface__ mapping or a Python object with a __geo_interface__ attribute/property. In this case as simple “LineString” object for all GPS points is sufficient: def add_gpx_track(msp, track_data, layer: str): geo_mapping = { "type": "LineString", "coordinates": track_data, } geo_track = geo.GeoProxy.parse(geo_mapping) Transform the data from the polar representation EPSG:4326 into a 2D cartesian map representation EPSG:3395 called “World Mercator”, this is the only projection supported by the add-on, without the need to write a custom transformation function: geo_track.globe_to_map() The data is now transformed into 2D cartesian coordinates in meters and most likely far away from origin (0, 0), the data stored in the GEODATA entity helps to transform the data into the DXF WCS in modelspace units, if the DXF file has no geo location reference you have to stick with the large coordinates: # Load geo data information from the DXF file: geo_data = msp.get_geodata() if geo_data: # Get the transformation matrix and epsg code: m, epsg = geo_data.get_crs_transformation() else: # Identity matrix for DXF files without a geo location reference: m = Matrix44() epsg = 3395 # Check for compatible projection: if epsg == 3395: # Transform CRS coordinates into DXF WCS: geo_track.crs_to_wcs(m) # Create DXF entities (LWPOLYLINE) for entity in geo_track.to_dxf_entities(dxfattribs={"layer": layer}): # Add entity to the modelspace: msp.add_entity(entity) else: print(f"Incompatible CRS EPSG:{epsg}") We are ready to save the final DXF file: doc.saveas(str(out_path)) In BricsCAD the result looks like this, the underlying images were added by the BricsCAD command MAPCONNECT and such a feature is not planned for the add-on: [image] Export DXF Entities as GeoJSON This will only work with a proper geo location reference, the code shown accepts also WCS data from DXF files without a GEODATA object, but the result is just unusable - but in valid GeoJSON notation. First get epsg code and the CRS transformation matrix: # Get the geo location information from the DXF file: geo_data = msp.get_geodata() if geo_data: # Get transformation matrix and epsg code: m, epsg = geo_data.get_crs_transformation() else: # Identity matrix for DXF files without geo reference data: m = Matrix44() Query the DXF entities to export: for track in msp.query("LWPOLYLINE"): export_geojson(track, m) Create a GeoProxy object from the DXF entity: def export_geojson(entity, m): # Convert DXF entity into a GeoProxy object: geo_proxy = geo.proxy(entity) Transform DXF WCS coordinates in modelspace units into the CRS coordinate system by the transformation matrix m: # Transform DXF WCS coordinates into CRS coordinates: geo_proxy.wcs_to_crs(m) The next step assumes a EPSG:3395 projection, everything else needs a custom transformation function: # Transform 2D map projection EPSG:3395 into globe (polar) # representation EPSG:4326 geo_proxy.map_to_globe() Use the json module from the Python standard library to write the GeoJSON data, provided by the GeoProxy.__geo_interface__ property: # Export GeoJSON data: name = entity.dxf.layer + ".geojson" with open(TRACK_DATA / name, "wt", encoding="utf8") as fp: json.dump(geo_proxy.__geo_interface__, fp, indent=2) The content of the GeoJSON file looks like this: { "type": "LineString", "coordinates": [ [ 15.430999, 47.06503 ], [ 15.431039, 47.064797 ], [ 15.431206, 47.064582 ], [ 15.431283, 47.064342 ], ... } Custom Transformation Function This sections shows how to use the GDAL package to write a custom transformation function. The example reimplements the builtin transformation from unprojected WGS84 coordinates to 2D map coordinates EPSG:3395 “World Mercator”: from osgeo import osr from ezdxf.math import Vec3 # GPS track in WGS84, load_gpx_track() code see above gpx_points = list(load_gpx_track('track1.gpx')) # Create source coordinate system: src_datum = osr.SpatialReference() src_datum.SetWellKnownGeoCS('WGS84') # Create target coordinate system: target_datum = osr.SpatialReference() target_datum.SetWellKnownGeoCS('EPSG:3395') # Create transformation object: ct = osr.CoordinateTransform(src_datum, target_datum) # Create GeoProxy() object: geo_proxy = GeoProxy.parse({ 'type': 'LineString', 'coordinates': gpx_points }) # Apply a custom transformation function to all coordinates: geo_proxy.apply(lambda v: Vec3(ct.TransformPoint(v.x, v.y))) The same example with the pyproj package: from pyproj import Transformer from ezdxf.math import Vec3 # GPS track in WGS84, load_gpx_track() code see above gpx_points = list(load_gpx_track('track1.gpx')) # Create transformation object: ct = Transformer.from_crs('EPSG:4326', 'EPSG:3395') # Create GeoProxy() object: geo_proxy = GeoProxy.parse({ 'type': 'LineString', 'coordinates': gpx_points }) # Apply a custom transformation function to all coordinates: geo_proxy.apply(lambda v: Vec3(ct.transform(v.x, v.y))) Polygon Validation by Shapely Ezdxf tries to avoid to create invalid polygons from HATCH entities like a hole in another hole, but not all problems are detected by ezdxf, especially overlapping polygons. For a reliable and robust result use the Shapely package to check for valid polygons: import ezdxf from ezdxf.addons import geo from shapley.geometry import shape # Load DXF document including HATCH entities. doc = ezdxf.readfile('hatch.dxf') msp = doc.modelspace() # Test a single entity # Get the first DXF hatch entity: hatch_entity = msp.query('HATCH').first # Create GeoProxy() object: hatch_proxy = geo.proxy(hatch_entity) # Shapely supports the __geo_interface__ shapley_polygon = shape(hatch_proxy) if shapely_polygon.is_valid: ... else: print(f'Invalid Polygon from {str(hatch_entity)}.') # Remove invalid entities by a filter function def validate(geo_proxy: geo.GeoProxy) -> bool: # Multi-entities are divided into single entities: # e.g. MultiPolygon is verified as multiple single Polygon entities. if geo_proxy.geotype == 'Polygon': return shape(geo_proxy).is_valid return True # The gfilter() function let only pass compatible DXF entities msp_proxy = geo.GeoProxy.from_dxf_entities(geo.gfilter(msp)) # remove all mappings for which validate() returns False msp_proxy.filter(validate) Interface to GDAL/OGR The GDAL/OGR package has no direct support for the __geo_interface__, but has builtin support for the GeoJSON format: from osgeo import ogr from ezdxf.addons import geo from ezdxf.render import random_2d_path import json p = geo.GeoProxy({'type': 'LineString', 'coordinates': list(random_2d_path(20))}) # Create a GeoJSON string from the __geo_interface__ object by the json # module and feed the result into ogr: line_string = ogr.CreateGeometryFromJson(json.dumps(p.__geo_interface__)) # Parse the GeoJSON string from ogr by the json module and feed the result # into a GeoProxy() object: p2 = geo.GeoProxy.parse(json.loads(line_string.ExportToJson())) Storing Custom Data in DXF Files This tutorial describes how to store custom data in DXF files using standard DXF features. Saving data in comments is not covered in this section, because comments are not a reliable way to store information in DXF files and ezdxf does not support adding comments to DXF files. Comments are also ignored by ezdxf and many other DXF libraries when loading DXF files, but there is a ezdxf.comments module to load comments from DXF files. The DXF data format is a very versatile and flexible data format and supports various ways to store custom data. This starts by setting special header variables, storing XData, AppData and extension dictionaries in DXF entities and objects, storing XRecords in the OBJECTS section and ends by using proxy entities or even extending the DXF format by user defined entities and objects. This is the common prolog for all Python code examples shown in this tutorial: import ezdxf doc = ezdxf.new() msp = doc.modelspace() Retrieving User Data Retrieving the is a simple task by ezdxf, but often not possible in CAD applications without using the scripting features (AutoLISP) or even the SDK. AutoLISP Resources • Autodesk Developer Documentation • AfraLISP • Lee Mac Programming WARNING: I have no experience with AutoLISP so far and I created this scripts for AutoLISP while writing this tutorial. There may be better ways to accomplish these tasks, and feedback on this is very welcome. Everything is tested with BricsCAD and should also work with the full version of AutoCAD. Header Section The HEADER section has tow ways to store custom data. Predefined User Variables There are ten predefined user variables, five 16-bit integer variables called $USERI1 up to $USERI5 and five floating point variables (reals) called $USERR1 up to $USERR5. This is very limited and the data maybe will be overwritten by the next application which opens and saves the DXF file. Advantage of this methods is, it works for all supported DXF versions starting at R12. Settings the data: doc.header["$USERI1"] = 4711 doc.header["$USERR1"] = 3.141592 Getting the data by ezdxf: i1 = doc.header["$USERI1"] r1 = doc.header["$USERR1"] Getting the data in BricsCAD at the command line: : USERI1 New current value for USERI1 (-32768 to 32767) <4711>: Getting the data by AutoLISP: : (getvar 'USERI1) 4711 Setting the value by AutoLISP: : (setvar 'USERI1 1234) 1234 Custom Document Properties This method defines custom document properties, but requires at least DXF R2004. The custom document properties are stored in a CustomVars instance in the custom_vars attribute of the HeaderSection object and supports only string values. Settings the data: doc.header.custom_vars.append("MyFirstVar", "First Value") Getting the data by ezdxf: my_first_var = doc.header.custom_vars.get("MyFirstVar", "Default Value") The document property MyFirstVar is available in BricsCAD as FIELD variable: [image] AutoLISP script for getting the custom document properties: (defun C:CUSTOMDOCPROPS (/ Info Num Index Custom) (vl-load-com) (setq acadObject (vlax-get-acad-object)) (setq acadDocument (vla-get-ActiveDocument acadObject)) ;;Get the SummaryInfo (setq Info (vlax-get-Property acadDocument 'SummaryInfo)) (setq Num (vla-NumCustomInfo Info)) (setq Index 0) (repeat Num (vla-getCustomByIndex Info Index 'ID 'Value) (setq Custom (cons (cons ID Value) Custom)) (setq Index (1+ Index)) ) ;repeat (if Custom (reverse Custom)) ) Running the script in BricsCAD: : (load "customdocprops.lsp") C:CUSTOMDOCPROPS : CUSTOMDOCPROPS (("MyFirstVar" . "First Value")) Meta Data Starting with version v0.16.4 ezdxf stores some meta data in the DXF file and the AppID EZDXF will be created. Two entries will be added to the MetaData instance, the CREATED_BY_EZDXF for DXF documents created by ezdxf and the entry WRITTEN_BY_EZDXF if the DXF document will be saved by ezdxf. The marker string looks like this "0.17b0 @ 2021-09-18T05:14:37.921826+00:00" and contains the ezdxf version and an UTC timestamp in ISO format. You can add your own data to the MetaData instance as a string with a maximum of 254 characters and choose a good name which may never be used by ezdxf in the future. metadata = doc.ezdxf_metadata() metadata["MY_UNIQUE_KEY"] = "my additional meta data" print(metadata.get("CREATED_BY_EZDXF")) print(metadata.get("MY_UNIQUE_KEY")) The data is stored as XDATA in then BLOCK entity of the model space for DXF R12 and for DXF R2000 and later as a DXF Dictionary in the root dictionary by the key EZDXF_META. See following chapters for accessing such data by AutoLISP. XDATA Extended Data (XDATA) is a way to attach arbitrary data to DXF entities. Each application needs a unique AppID registered in the AppID table to add XDATA to an entity. The AppID ACAD is reserved and by using ezdxf the AppID EZDXF is also registered automatically. The total size of XDATA for a single DXF entity is limited to 16kB for AutoCAD. XDATA is supported by all DXF versions and is accessible by AutoLISP. The valid group codes for extended data are limited to the following values, see also the internals of Extended Data: ┌───────────┬──────────────────────────────────┐ │Group Code │ Description │ ├───────────┼──────────────────────────────────┤ │1000 │ Strings up to 255 bytes long │ ├───────────┼──────────────────────────────────┤ │1001 │ (fixed) Registered application │ │ │ name up to 31 bytes long │ ├───────────┼──────────────────────────────────┤ │1002 │ (fixed) An extended data control │ │ │ string '{' or '}' │ ├───────────┼──────────────────────────────────┤ │1004 │ Binary data │ ├───────────┼──────────────────────────────────┤ │1005 │ Database Handle of entities in │ │ │ the drawing database │ ├───────────┼──────────────────────────────────┤ │1010 │ 3D point, in the order X, Y, Z │ │ │ that will not be modified at any │ │ │ transformation of the entity │ ├───────────┼──────────────────────────────────┤ │1011 │ A WCS point that is moved, │ │ │ scaled, rotated and mirrored │ │ │ along with the entity │ ├───────────┼──────────────────────────────────┤ │1012 │ A WCS displacement that is │ │ │ scaled, rotated and mirrored │ │ │ along with the entity, but not │ │ │ moved │ ├───────────┼──────────────────────────────────┤ │1013 │ A WCS direction that is rotated │ │ │ and mirrored along with the │ │ │ entity but not moved and scaled. │ ├───────────┼──────────────────────────────────┤ │1040 │ A real value │ ├───────────┼──────────────────────────────────┤ │1041 │ Distance, a real value that is │ │ │ scaled along with the entity │ ├───────────┼──────────────────────────────────┤ │1042 │ Scale Factor, a real value that │ │ │ is scaled along with the entity │ ├───────────┼──────────────────────────────────┤ │1070 │ A 16-bit integer (signed or │ │ │ unsigned) │ ├───────────┼──────────────────────────────────┤ │1071 │ A 32-bit signed (long) integer │ └───────────┴──────────────────────────────────┘ Group codes are not unique in the XDATA section and can be repeated, therefore tag order matters. # register your appid APPID = "YOUR_UNIQUE_ID" doc.appids.add(APPID) # create a DXF entity line = msp.add_line((0, 0), (1, 0)) # setting the data line.set_xdata(APPID, [ # basic types (1000, "custom text"), (1040, 3.141592), (1070, 4711), # 16bit (1071, 1_048_576), # 32bit # points and vectors (1010, (10, 20, 30)), (1011, (11, 21, 31)), (1012, (12, 22, 32)), (1013, (13, 23, 33)), # scaled distances and factors (1041, 10), (1042, 10), ]) # getting the data if line.has_xdata(APPID): tags = line.get_xdata(APPID) print(f"{str(line)} has {len(tags)} tags of XDATA for AppID {APPID!r}") for tag in tags: print(tag) AutoLISP script for getting XDATA for AppID YOUR_UNIQUE_ID: (defun C:SHOWXDATA (/ entity_list xdata_list) (setq entity_list (entget (car (entsel)) '("YOUR_UNIQUE_ID"))) (setq xdata_list (assoc -3 entity_list)) (car (cdr xdata_list)) ) Script output: : SHOWXDATA Select entity: ("YOUR_UNIQUE_ID" (1000 . "custom text") (1040 . 3.141592) ... SEE ALSO: • AfraLISP XDATA tutorial • Extended Data (XDATA) Reference XDATA Helper Classes The XDataUserList and XDataUserDict are helper classes to manage XDATA content in a simple way. Both classes store the Python types int, float and str and the ezdxf type Vec3. As the names suggests has the XDataUserList a list-like interface and the XDataUserDict a dict-like interface. This classes can not contain additional container types, but multiple lists and/or dicts can be stored in the same XDATA section for the same AppID. These helper classes uses a fixed group code for each data type: ┌─────┬──────────────────────────┐ │1001 │ strings (max. 255 chars) │ ├─────┼──────────────────────────┤ │1040 │ floats │ ├─────┼──────────────────────────┤ │1071 │ 32-bit ints │ ├─────┼──────────────────────────┤ │1010 │ Vec3 │ └─────┴──────────────────────────┘ Additional required imports for these examples: from ezdxf.math import Vec3 from ezdxf.entities.xdata import XDataUserDict, XDataUserList Example for XDataUserDict: Each XDataUserDict has a unique name, the default name is “DefaultDict” and the default AppID is EZDXF. If you use your own AppID, don’t forget to create the requited AppID table entry like doc.appids.new("MyAppID"), otherwise AutoCAD will not open the DXF file. doc = ezdxf.new() msp = doc.modelspace() line = msp.add_line((0, 0), (1, 0)) with XDataUserDict.entity(line) as user_dict: user_dict["CreatedBy"] = "mozman" user_dict["Float"] = 3.1415 user_dict["Int"] = 4711 user_dict["Point"] = Vec3(1, 2, 3) If you modify the content of without using the context manager entity(), you have to call commit() by yourself, to transfer the modified data back into the XDATA section. Getting the data back from an entity: with XDataUserDict.entity(line) as user_dict: print(user_dict) # acts like any other dict() storage = dict(user_dict) Example for XDataUserList: This example stores the data in a XDataUserList named “AppendedPoints”, the default name is “DefaultList” and the default AppID is EZDXF. with XDataUserList.entity(line, name="AppendedPoints") as user_list: user_list.append(Vec3(1, 0, 0)) user_list.append(Vec3(0, 1, 0)) user_list.append(Vec3(0, 0, 1)) Now the content of both classes are stored in the same XDATA section for AppID EZDXF. The XDataUserDict is stored by the name “DefaultDict” and the XDataUserList is stored by the name “AppendedPoints”. Getting the data back from an entity: with XDataUserList.entity(line, name="AppendedPoints") as user_list: print(user_list) storage = list(user_list) print(f"Copy of XDataUserList: {storage}") SEE ALSO: • XDataUserList class • XDataUserDict class Extension Dictionaries Extension dictionaries are another way to attach custom data to any DXF entity. This method requires DXF R13/14 or later. I will use the short term XDICT for extension dictionaries in this tutorial. The Extension Dictionary is a regular DXF Dictionary which can store (key, value) pairs where the key is a string and the value is a DXF object from the OBJECTS section but not graphical DXF entities. The usual objects to store custom data are DictionaryVar to store simple strings and XRecord to store complex data. Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity! This example shows how to manage the XDICT and to store simple strings as DictionaryVar objects in the XDICT, to store more complex data go to the next section XRecord. 1. Get or create the XDICT for an entity: # create a DXF entity line = msp.add_line((0, 0), (1, 0)) if line.has_extension_dict: # get the extension dictionary xdict = line.get_extension_dict() else: # create a new extension dictionary xdict = line.new_extension_dict() 2. Add strings as DictionaryVar objects to the XDICT. No AppIDs required, but existing keys will be overridden, so be careful by choosing your keys: xdict.add_dictionary_var("DATA1", "Your custom data string 1") xdict.add_dictionary_var("DATA2", "Your custom data string 2") 3. Retrieve the strings from the XDICT as DictionaryVar objects: print(f"DATA1 is '{xdict['DATA1'].value}'") print(f"DATA2 is '{xdict['DATA2'].value}'") The AutoLISP access to DICTIONARIES is possible, but it gets complex and I’m only referring to the AfraLISP Dictionaries and XRecords tutorial. SEE ALSO: • AfraLISP Dictionaries and XRecords Tutorial • Extension Dictionary Reference • DXF Dictionary Reference • DictionaryVar Reference XRecord The XRecord object can store arbitrary data like the XDATA section, but is not limited by size and can use all group codes in the range from 1 to 369 for DXF Tags. The XRecord can be referenced by any DXF Dictionary, other XRecord objects (tricky ownership!), the XDATA section (store handle by group code 1005) or any other DXF object by adding the XRecord object to the Extension Dictionary of the DXF entity. It is recommend to follow the DXF reference to assign appropriate group codes to DXF Tags. My recommendation is shown in the table below, but all group codes from 1 to 369 are valid. I advice against using the group codes 100 and 102 (structure tags) to avoid confusing generic tag loaders. Unfortunately, Autodesk doesn’t like general rules and uses DXF format exceptions everywhere. ┌────┬──────────────────────────────────┐ │1 │ strings (max. 2049 chars) │ ├────┼──────────────────────────────────┤ │2 │ structure tags as strings like │ │ │ "{" and "}" │ ├────┼──────────────────────────────────┤ │10 │ points and vectors │ ├────┼──────────────────────────────────┤ │40 │ floats │ ├────┼──────────────────────────────────┤ │90 │ integers │ ├────┼──────────────────────────────────┤ │330 │ handles │ └────┴──────────────────────────────────┘ Group codes are not unique in XRecord and can be repeated, therefore tag order matters. This example shows how to attach a XRecord object to a LINE entity by Extension Dictionary: line = msp.add_line((0, 0), (1, 0)) line2 = msp.add_line((0, 2), (1, 2)) if line.has_extension_dict: xdict = line.get_extension_dict() else: xdict = line.new_extension_dict() xrecord = xdict.add_xrecord("DATA1") xrecord.reset([ (1, "text1"), # string (40, 3.141592), # float (90, 256), # 32-bit int (10, (1, 2, 0)), # points and vectors (330, line2.dxf.handle) # handles ]) print(xrecord.tags) Script output: [DXFTag(1, 'text1'), DXFTag(40, 3.141592), DXFTag(90, 256), DXFVertex(10, (1.0, 2.0, 0.0)), DXFTag(330, '30')] Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity! To react to entity modifications by a CAD applications it is possible to write event handlers by AutoLISP, see the AfraLISP Reactors Tutorial for more information. This very advanced stuff! SEE ALSO: • AfraLISP Dictionaries and XRecords Tutorial • AfraLISP Reactors Tutorial • XRecord Reference • helper functions: ezdxf.lldxf.types.dxftag() and ezdxf.lldxf.types.tuples_to_tags() XRecord Helper Classes The UserRecord and BinaryRecord are helper classes to manage XRECORD content in a simple way. The UserRecord manages the data as plain Python types: dict, list, int, float, str and the ezdxf types Vec2 and Vec3. The top level type for the UserRecord.data attribute has to be a list. The BinaryRecord stores arbitrary binary data as BLOB. These helper classes uses fixed group codes to manage the data in XRECORD, you have no choice to change them. Additional required imports for these examples: from pprint import pprint import ezdxf from ezdxf.math import Vec3 from ezdxf.urecord import UserRecord, BinaryRecord from ezdxf.entities import XRecord import zlib Example 1: Store entity specific data in the Extension Dictionary: line = msp.add_line((0, 0), (1, 0)) xdict = line.new_extension_dict() xrecord = xdict.add_xrecord("MyData") with UserRecord(xrecord) as user_record: user_record.data = [ # top level has to be a list! "MyString", 4711, 3.1415, Vec3(1, 2, 3), { "MyIntList": [1, 2, 3], "MyFloatList": [4.5, 5.6, 7.8], }, ] Example 1: Get entity specific data back from the Extension Dictionary: if line.has_extension_dict: xdict = line.get_extension_dict() xrecord = xdict.get("MyData") if isinstance(xrecord, XRecord): user_record = UserRecord(xrecord) pprint(user_record.data) If you modify the content of UserRecord.data without using the context manager, you have to call commit() by yourself, to store the modified data back into the XRECORD. Example 2: Store arbitrary data in DICTIONARY objects. The XRECORD is stored in the named DICTIONARY, called rootdict in ezdxf. This DICTIONARY is the root entity for the tree-like data structure stored in the OBJECTS section, see also the documentation of the ezdxf.sections.objects module. # Get the existing DICTIONARY object or create a new DICTIONARY object: my_dict = doc.objects.rootdict.get_required_dict("MyDict") # Create a new XRECORD object, the DICTIONARY object is the owner of this # new XRECORD: xrecord = my_dict.add_xrecord("MyData") # This example creates the user record without the context manager. user_record = UserRecord(xrecord) # Store user data: user_record.data = [ "Just another user record", 4711, 3.1415, ] # Store user data in associated XRECORD: user_record.commit() Example 2: Get user data back from the DICTIONARY object my_dict = doc.rootdict.get_required_dict("MyDict") entity = my_dict["MyData"] if isinstance(entity, XRecord): user_record = UserRecord(entity) pprint(user_record.data) Example 3: Store arbitrary binary data my_dict = doc.rootdict.get_required_dict("MyDict") xrecord = my_dict.add_xrecord("MyBinaryData") with BinaryRecord(xrecord) as binary_record: # The content is stored as hex strings (e.g. ABBAFEFE...) in one or more # group code 310 tags. # A preceding group code 160 tag stores the data size in bytes. data = b"Store any binary data, even line breaks\r\n" * 20 # compress data if required binary_record.data = zlib.compress(data, level=9) Example 3: Get binary data back from the DICTIONARY object entity = my_dict["MyBinaryData"] if isinstance(entity, XRecord): binary_record = BinaryRecord(entity) print("\ncompressed data:") pprint(binary_record.data) print("\nuncompressed data:") pprint(zlib.decompress(binary_record.data)) HINT: Don’t be fooled, the ability to save any binary data such as images, office documents, etc. in the DXF file doesn’t impress AutoCAD, it simply ignores this data, this data only has a meaning for your application! SEE ALSO: • urecord module • UserRecord class • BinaryRecord class AppData Application-Defined Data (AppData) was introduced in DXF R13/14 and is used by AutoCAD internally to store the handle to the Extension Dictionary and the Reactors in DXF entities. Ezdxf supports these kind of data storage for any AppID and the data is preserved by AutoCAD and BricsCAD, but I haven’t found a way to access this data by AutoLISP or even the SDK. So I don’t recommend this feature to store application defined data, because Extended Data (XDATA) and the Extension Dictionary are well documented and safe ways to attach custom data to entities. # register your appid APPID = "YOUR_UNIQUE_ID" doc.appids.add(APPID) # create a DXF entity line = msp.add_line((0, 0), (1, 0)) # setting the data line.set_app_data(APPID, [(300, "custom text"), (370, 4711), (460, 3.141592)]) # getting the data if line.has_app_data(APPID): tags = line.get_app_data(APPID) print(f"{str(line)} has {len(tags)} tags of AppData for AppID {APPID!r}") for tag in tags: print(tag) Printed output: LINE(#30) has 3 tags of AppData for AppID 'YOUR_UNIQUE_ID' (300, 'custom text') (370, 4711) (460, 3.141592) Tutorial for MultiLeader New in version 0.18. A multileader object typically consists of an arrowhead, a horizontal landing (a.k.a. “dogleg”), a leader line or curve, and either a MTEXT object or a BLOCK. Factory methods of the BaseLayout class to create new MultiLeader entities: • add_multileader_mtext() • add_multileader_block() Because of the complexity of the MULTILEADER entity, the factory method add_multileader_mtext() returns a MultiLeaderMTextBuilder instance to build a new entity and the factory method add_multileader_block() returns a MultiLeaderBlockBuilder instance. Due of the lack of good documentation it’s not possible to support all combinations of MULTILEADER properties with decent quality, so stick to recipes and hints shown in this tutorial to get usable results otherwise, you will enter uncharted territory. The rendering result of the MULTILEADER entity is highly dependent on the CAD application. The MULTILEADER entity does not have a pre-rendered anonymous block of DXF primitives like all DIMENSION entities, so results may vary from CAD application to CAD application. The general support for this entity is only good in Autodesk products other CAD applications often struggle when rendering MULTILEADERS, even my preferred testing application BricsCAD has rendering issues. IMPORTANT: MULTILEADER support has flaws in many CAD applications except Autodesk products! SEE ALSO: • ezdxf.render.MultiLeaderBuilder classes • ezdxf.entities.MultiLeader class • ezdxf.entities.MLeaderStyle class • ezdxf.tools.text.MTextEditor class • MULTILEADER Internals MTEXT Quick Draw Full Python script: mtext_quick_leader.py The quick_leader() method of a MTEXT - MULTILEADER entity constructs the geometry parameters in reverse manner, starting from a given target point: DXF document setup: doc = ezdxf.new(setup=True) # Create a new custom MLEADERSTYLE: mleaderstyle = doc.mleader_styles.duplicate_entry("Standard", "EZDXF") # The required TEXT style "OpenSans" was created by ezdxf.new() because setup is True: mleaderstyle.set_mtext_style("OpenSans") msp = doc.modelspace() Draw a red circle to mark the target point: target_point = Vec2(40, 15) msp.add_circle( target_point, radius=0.5, dxfattribs=GfxAttribs(color=colors.RED) ) Create four horizontal placed MULTILEADER entities pointing at the target point, the first segment of the leader line is determined by an angle in this example pointing away from the target point: for angle in [45, 135, 225, -45]: ml_builder = msp.add_multileader_mtext("EZDXF") ml_builder.quick_leader( f"angle={angle}°\n2nd text line", target=target_point, segment1=Vec2.from_deg_angle(angle, 14), ) [image] The content is automatically aligned to the end of the leader line. The first segment is a relative vector to the target point and the optional second segment vector is relative to the end of the first segment. The default connection type is horizontal but can be changed to vertical: A smaller text size is required: mleaderstyle = doc.mleader_styles.duplicate_entry("Standard", "EZDXF") mleaderstyle.set_mtext_style("OpenSans") mleaderstyle.dxf.char_height = 2.0 # set the default char height of MTEXT Adding vertical placed MULTILEADER entities: for angle in [45, 135, 225, -45]: ml_builder = msp.add_multileader_mtext("EZDXF") ml_builder.quick_leader( f"angle={angle}°\n2nd text line", target=target_point, segment1=Vec2.from_deg_angle(angle, 14), connection_type=mleader.VerticalConnection.center_overline, This example already shows the limitation caused by different text renderings in various CAD applications. The ezdxf text measurement by matplotlib is different to AutoCAD and BricsCAD and the result is a misalignment of the overline and the leader line. The DXF file shown in BricsCAD: [image] The same DXF file shown with the ezdxf view command (drawing add-on): [image] My advice is to avoid vertical placed MULTILEADER entities at all and for horizontal placed MULTILEADER entities avoid styles including an “underline” or an “overline”. The quick_leader() method is not very customizable for ease of use, but follows the settings of the associated MLeaderStyle. The following sections show how to have more control when adding MULTILEADER entities. Create MTEXT Content Full Python script: mtext_content.py This section shows how to create a MULTILEADER entity with MTEXT content the manual way with full control over all settings. For good results the MTEXT alignment should match the leader connection side, e.g. if you attach leaders to the left side also align the MTEXT to the left side, for leaders attached at the right side, align the MTEXT to the right side and if you attach leaders at both sides one side will fit better than the other or maybe a center aligned MTEXT is a good solution, for further details see section MTEXT Alignment. The first example uses the default connection type of the MLEADERSTYLE “Standard” which is “middle of the top line” for left and right attached leaders. The render UCS for this example is the WCS to keep things simple. Create a new MULTILEADER entity. msp = doc.modelspace() Set MTEXT content, text style and alignment. ml_builder = msp.add_multileader_mtext("Standard") ml_builder.set_content( "Line1\nLine2", style="OpenSans", alignment=mleader.TextAlignment.left, # set MTEXT alignment! Add the first leader on the left side. The leader points always to the first given vertex and all vertices are given in render UCS coordinates (= WCS in this example). ) More than one vertex per leader can be used: ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)]) ml_builder.add_leader_line( mleader.ConnectionSide.left, [Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)], The insert point of the build() method is the alignment point for the MTEXT content. ) The “dogleg” settings are defined by the MLEADERSTYLE “Standard”. [image] This example shows a leader attached to the right side and the MTEXT aligned to the right side. msp = doc.modelspace() ml_builder = msp.add_multileader_mtext("Standard") ml_builder.set_content( "Line1\nLine2", style="OpenSans", alignment=mleader.TextAlignment.right, # set MTEXT alignment! ) ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)]) [image] This example shows two leaders attached to both sides and the MTEXT aligned to the left side, which shows that the right landing gap (space between text and start of vertex) is bigger than the gap on the left size. This is due to the different text size calculations from AutoCAD/BricsCAD and Matplotlib. The longer the text, the greater the error. msp = doc.modelspace() ml_builder = msp.add_multileader_mtext("Standard") ml_builder.set_content( "Line1\nLine1", style="OpenSans", alignment=mleader.TextAlignment.left, # set MTEXT alignment! ) ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)]) ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)]) [image] A centered MTEXT alignment gives a more even result. msp = doc.modelspace() ml_builder = msp.add_multileader_mtext("Standard") ml_builder.set_content( "First Line\n2. Line", style="OpenSans", alignment=mleader.TextAlignment.center, # set MTEXT alignment! ) ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)]) ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)]) [image] But even this has its disadvantages, the attachment calculation is always based on the bounding box of the MTEXT content. [image] MTEXT Connection Types There are four connection sides defined by the enum ezdxf.render.ConnectionSide: • left • right • top • bottom The MultiLeader entity supports as the name says multiple leader lines, but all have to have a horizontal (left/right) connection side or a vertical (top/bottom) connection side, it’s not possible to mix left/right and top/bottom connection sides. This is determined by the DXF format. There are different connection types available for the horizontal and the vertical connection sides. All leaders connecting to the same side have the same connection type. The horizontal connection sides support following connection types, defined by the enum ezdxf.render.HorizontalConnection: • by_style • top_of_top_line • middle_of_top_line • middle_of_text • middle_of_bottom_line • bottom_of_bottom_line • bottom_of_bottom_line_underline (not recommended) • bottom_of_top_line_underline (not recommended) • bottom_of_top_line • bottom_of_top_line_underline_all (not recommended) The vertical connection sides support following connection types, defined by the enum ezdxf.render.VerticalConnection: • by_style • center • center_overline (not recommended) The connection type for each side can be set by the method set_connection_types(), the default for all sides is by_style: ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)]) ml_builder.set_connection_types( left=mleader.HorizontalConnection.middle_of_top_line, right=mleader.HorizontalConnection.middle_of_bottom_line, [image] HINT: As shown in the quick draw section using connection types including underlines or overlines do not render well in AutoCAD/BricsCAD because of the different text measurement of matplotlib, therefore it’s not recommended to use any of these connection types when creating MULTILEADERS by ezdxf. MTEXT Alignment In contrast to the standalone MTEXT entity supports the MTEXT content entity only three text alignments defined by the enum ezdxf.render.TextAlignment. • left • center • right The MTEXT alignment is set as argument alignment of the set_content() method and the alignment point is the insert point of the build() method. Create BLOCK Content Full Python script: block_content.py This section shows how to create a MULTILEADER entity with BLOCK content the manual way with full control over all settings. The BLOCK content consist of a BLOCK layout and optional ATTDEF entities which defines the location and DXF attributes of dynamically created ATTRIB entities. Create the BLOCK content, the full create_square_block() function can be found in the block_content.py script. block = create_square_block( doc, size=8.0, margin=0.25, base_point=base_point ) Create the MULTILEADER and set the content: ml_builder = msp.add_multileader_block(style="Standard") ml_builder.set_content( name=block.name, alignment=mleader.BlockAlignment.insertion_point ) Set the BLOCK attribute content as text: ml_builder.set_attribute("ONE", "Data1") ml_builder.set_attribute("TWO", "Data2") Add some leader lines to the left and right side of the BLOCK: Construction plane of the entity is defined by a render UCS. The leader lines vertices are expected in render UCS coordinates, which means relative to the UCS origin and this example shows the simple case where the UCS is the WCS which is also the default setting. ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(x2, y1)]) ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(x2, y2)]) ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(x1, y1)]) ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(x1, y2)]) Last step is to build the final MULTILEADER entity. This example uses the alignment type insertion_point where the insert point of the build() method is the base point of the BLOCK: ml_builder.build(insert=Vec2(5, 2), rotation=30) [image] The result is shown in BricsCAD as expected, although BricsCAD shows “Center extents” as attachment type in the properties dialog instead of the correct attachment type “Insertion point”. BLOCK Connection Types There are four connection sides defined by the enum ezdxf.render.ConnectionSide: • left • right • top • bottom The connection point for leader lines is always the center of the side of the block bounding box the leader is connected to and has the same limitation as for the MTEXT content, it’s not possible to mix the connection sides left/right and top/bottom. The connection side is set when adding the leader line by the add_leader_line() method. Unfortunately BricsCAD has an error in version 22.2.03 and renders all connection types as left/right, this is top/bottom connection shown in Autodesk TrueView 2022: [image] The top/bottom connection type does not support the “dogleg” feature. BLOCK Alignment There are two alignments types, defined by the enum ezdxf.render.BlockAlignment • center_extents • insertion_point The alignment is set by the set_content() method. The alignment type center_extent inserts the BLOCK with the center of the bounding box at the insert point of the build() method. The insert point is (5, 2) in this example: [image] The same MULTILEADER with alignment type insert_point: [image] BLOCK Scaling The BLOCK content can be scaled independently from the overall scaling of the MULTILEADER entity: The block scaling factor is set by the set_content() method: ml_builder.set_content( name=block.name, scale=2.0, alignment=mleader.BlockAlignment.center_extents ) This is the first example with a block scaling factor of 2. The BLOCK and the attached ATTRIB entities are scaled but not the arrows. [image] BLOCK Rotation The rotation around the render UCS z-axis in degrees is applied by the build() method: ml_builder.build(insert=Vec2(5, 2), rotation=30) This is the first example with a rotation of 30 degrees. The BLOCK, the attached ATTRIB entities and the last connection lines (“dogleg”) are rotated. [image] BLOCK Attributes BLOCK attributes are defined as ATTDEF entities in the BLOCK layout. This ATTDEF entities will be replaced by ATTRIB entities at the rendering process of the CAD application. Only the text content and the text width factor can be changed for each MULTILEADER entity individually by the set_attribute() method. The ATTDEF is addressed by it’s DXF tag attribute: ml_builder.set_attribute("ONE", "Data1") ml_builder.set_attribute("TWO", "Data2") Leader Properties “Dogleg” Properties The “dogleg” is the last line segment from the last leader vertex to the MULTILEADER content for polyline leaders. [image] The length of the dogleg and the landing gap size is set by the set_connection_properties(). Polyline Leader A polygon leader line has only straight line segments and is added by the add_leader_line(): ml_builder.add_leader_line( mleader.ConnectionSide.left, [Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)], ) [image] All leader line vertices have render UCS coordinates and the start- and end-vertex of the “dogleg” is calculated automatically. Spline Leader A spline leader line has a single curved line as leader line and is also added by the add_leader_line(). This is spline leader has the same vertices as the previous created polyline leader: ml_builder.set_leader_properties(leader_type=mleader.LeaderType.splines) ml_builder.add_leader_line( mleader.ConnectionSide.left, [Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)], ) [image] The spline leader has no “dogleg” and spline leaders and polyline leaders can not be mixed in a single MULTILEADER entity. The leader type is set by the set_leader_properties() method. The LeaderType enum: • none • straight_lines • splines Line Styling The leader color, linetype and lineweight is set by the set_leader_properties() method: ml_builder.set_leader_properties( color=colors.MAGENTA, linetype="DASHEDX2", lineweight=70, ) [image] All leader lines have the same properties. Arrowheads The arrow head is set by the set_arrow_properties() method: from ezdxf.render import ARROWS ml_builder.set_arrow_properties(name=ARROWS.closed_blank, size=8.0) [image] All leader lines have the same arrow head and size. The available arrow heads are defined in the ARROWS object. Overall Scaling The overall scaling has to be applied by the set_overall_scaling() method and scales the MTEXT or BLOCK content and the arrows. Setup MLEADERSTYLE The MLeaderStyle stores many of the MULTILEADER settings but most of them are copied to the MULTILINE entity at initialization. So changing the MLEADERSTYLE style afterwards has little to no effect for existing MULTILEADER entities. Create a new MLEADERSTYLE called “MY_STYLE” and set the MTEXT style to “OpenSans”: my_style = doc.mleader_styles.duplicate_entry("Standard", "MY_STYLE") my_style.set_mtext_style("OpenSans") The style for a MULTILEADER is set at the add_multileader_mtext() and add_multileader_block() factory methods.
HOWTO
The Howto section show how to accomplish specific tasks with ezdxf in a straight forward way without teaching basics or internals, if you are looking for more information about the ezdxf internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section or to the Basic Concepts section. General Document General preconditions: import sys import ezdxf try: doc = ezdxf.readfile("your_dxf_file.dxf") except IOError: print(f"Not a DXF file or a generic I/O error.") sys.exit(1) except ezdxf.DXFStructureError: print(f"Invalid or corrupted DXF file.") sys.exit(2) msp = doc.modelspace() This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. Load DXF Files with Structure Errors If you know the files you will process have most likely minor or major flaws, use the ezdxf.recover module: import sys from ezdxf import recover try: # low level structure repair: doc, auditor = recover.readfile(name) except IOError: print(f"Not a DXF file or a generic I/O error.") sys.exit(1) except ezdxf.DXFStructureError: print(f"Invalid or corrupted DXF file: {name}.") sys.exit(2) # DXF file can still have unrecoverable errors, but this is maybe # just a problem when saving the recovered DXF file. if auditor.has_errors: print(f"Found unrecoverable errors in DXF file: {name}.") auditor.print_error_report() For more loading scenarios follow the link: ezdxf.recover Set/Get Header Variables ezdxf has an interface to get and set HEADER variables: doc.header["VarName"] = value value = doc.header["VarName"] SEE ALSO: HeaderSection and online documentation from Autodesk for available header variables. Set DXF Drawing Units The header variable $INSUNITS defines the drawing units for the modelspace and therefore for the DXF document if no further settings are applied. The most common units are 6 for meters and 1 for inches. Use this HEADER variables to setup the default units for CAD applications opening the DXF file. This setting is not relevant for ezdxf API calls, which are unitless for length values and coordinates and decimal degrees for angles (in most cases). Sets drawing units: doc.header["$INSUNITS"] = 6 For more information see section DXF Units. Create More Readable DXF Files (DXF Pretty Printer) DXF files are plain text files, you can open this files with every text editor which handles bigger files. But it is not really easy to get quick the information you want. Create a more readable HTML file (DXF Pretty Printer): # Call as executable script from the command line: ezdxf pp FILE [FILE ...] # Call as module on Windows: py -m ezdxf pp FILE [FILE ...] # Call as module on Linux/Mac python3 -m ezdxf pp FILE [FILE ...] This creates a HTML file with a nicer layout than a plain text file, and handles are links between DXF entities, this simplifies the navigation between the DXF entities. Changed in version 0.16: The dxfpp command was replaced by a sub-command of the ezdxf launcher. usage: ezdxf pp [-h] [-o] [-r] [-x] [-l] FILE [FILE ...] positional arguments: FILE DXF files pretty print optional arguments: -h, --help show this help message and exit -o, --open open generated HTML file with the default web browser -r, --raw raw mode - just print tags, no DXF structure interpretation -x, --nocompile don't compile points coordinates into single tags (only in raw mode) -l, --legacy legacy mode - reorders DXF point coordinates IMPORTANT: This does not render the graphical content of the DXF file to a HTML canvas element. Calculate Extents for the Modelspace Since ezdxf v0.16 exist a ezdxf.bbox module to calculate bounding boxes for DXF entities. This module makes the extents calculation very easy, but read the documentation for the bbox module to understand its limitations. import ezdxf from ezdxf import bbox doc = ezdxf.readfile("your.dxf") msp = doc.modelspace() extents = bbox.extents(msp) The returned extents is a ezdxf.math.BoundingBox object. Set Initial View/Zoom for the Modelspace To show an arbitrary location of the modelspace centered in the CAD application window, set the '*Active' VPORT to this location. The DXF attribute dxf.center defines the location in the modelspace, and the dxf.height specifies the area of the modelspace to view. Shortcut function: doc.set_modelspace_vport(height=10, center=(10, 10)) New in version 0.16. The new ezdxf.zoom module of ezdxf v0.16, makes this task much easier. Setting the initial view to the extents of all entities in the modelspace: import ezdxf from ezdxf import zoom doc = ezdxf.readfile("your.dxf") msp = doc.modelspace() zoom.extents(msp) Setting the initial view to the extents of just some entities: lines = msp.query("LINES") zoom.objects(lines) The zoom module also works for paperspace layouts. IMPORTANT: The zoom module uses the bbox module to calculate the bounding boxes for DXF entities. Read the documentation for the bbox module to understand its limitations and the bounding box calculation for large documents can take a while! Hide the UCS Icon The visibility of the UCS icon is controlled by the DXF ucs_icon attribute of the VPort entity: • bit 0: 0=hide, 1=show • bit 1: 0=display in lower left corner, 1=display at origin The state of the UCS icon can be set in conjunction with the initial VPort of the model space, this code turns off the UCS icon: doc.set_modelspace_vport(10, center=(10, 10), dxfattribs={"ucs_icon": 0}) Alternative: turn off UCS icons for all VPort entries in the active viewport configuration: for vport in doc.viewports.get_config("*Active"): vport.dxf.ucs_icon = 0 Show Lineweights in DXF Viewers By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable $LWDISPLAY to 1 the DXF viewer should display lineweights, if supported by the viewer. doc.header["$LWDISPLAY"] = 1 Add ezdxf Resources to Existing DXF Document Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document: import ezdxf from ezdxf.tools.standards import setup_drawing doc = ezdxf.readfile("your.dxf") setup_drawing(doc, topics="all") Set Logging Level of ezdxf Set the logging level of the ezdxf package to a higher level to minimize logging messages from ezdxf. At level ERROR only severe errors will be logged and WARNING, INFO and DEBUG messages will be suppressed: import logging logging.getLogger("ezdxf").setLevel(logging.ERROR) DXF Viewer A360 Viewer Problems AutoDesk web service A360 seems to be more picky than the AutoCAD desktop applications, may be it helps to use the latest DXF version supported by ezdxf, which is DXF R2018 (AC1032) in the year of writing this lines (2018). DXF Entities Are Not Displayed in the Viewer ezdxf does not automatically locate the main viewport of the modelspace at the entities, you have to perform the “Zoom to Extends” command, here in TrueView 2020: [image] And here in the Autodesk Online Viewer: [image] Add this line to your code to relocate the main viewport, adjust the center (in modelspace coordinates) and the height (in drawing units) arguments to your needs: doc.set_modelspace_vport(height=10, center=(0, 0)) Show IMAGES/XREFS on Loading in AutoCAD If you are adding XREFS and IMAGES with relative paths to existing drawings and they do not show up in AutoCAD immediately, change the HEADER variable $PROJECTNAME='' to (not really) solve this problem. The ezdxf templates for DXF R2004 and later have $PROJECTNAME='' as default value. Thanks to David Booth: If the filename in the IMAGEDEF contains the full path (absolute in AutoCAD) then it shows on loading, otherwise it won’t display (reports as unreadable) until you manually reload using XREF manager. A workaround (to show IMAGES on loading) appears to be to save the full file path in the DXF or save it as a DWG. So far - no solution for showing IMAGES with relative paths on loading. Set Initial View/Zoom for the Modelspace See section “General Document”: Set Initial View/Zoom for the Modelspace Show Lineweights in DXF Viewers By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable $LWDISPLAY to 1 the DXF viewer should display lineweights, if supported by the viewer. doc.header["$LWDISPLAY"] = 1 DXF Content General preconditions: import sys import ezdxf try: doc = ezdxf.readfile("your_dxf_file.dxf") except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file.') sys.exit(2) msp = doc.modelspace() Get/Set Entity Color The entity color is stored as ACI (AutoCAD Color Index): aci = entity.dxf.color Default value is 256 which means BYLAYER: layer = doc.layers.get(entity.dxf.layer) aci = layer.get_color() The special get_color() method is required, because the color attribute Layer.dxf.color is misused as layer on/off flag, a negative color value means the layer is off. ACI value 0 means BYBLOCK, which means the color from the block reference (INSERT entity). Set color as ACI value as int in range [0, 256]: entity.dxf.color = 1 The ACI value 7 has a special meaning, it is white on dark backgrounds and white on light backgrounds. Get/Set Entity RGB Color RGB true color values are supported since DXF R13 (AC1012), the 24-bit RGB value is stored as integer in the DXF attribute true_color: # 24 bit binary value: 0bRRRRRRRRGGGGGGGGBBBBBBBB or hex value: 0xRRGGBB # set true color value to red entity.dxf.true_color = 0xFF0000 Use the helper functions from the ezdxf.colors module for RGB integer value handling: from ezdxf import colors entity.dxf.true_color = colors.rgb2int((0xFF, 0, 0)) r, g, b = colors.int2rgb(entity.dxf.true_color) The RGB values of the AutoCAD default colors are not officially documented, but an accurate translation table is included in ezdxf: # Warning: ACI value 256 (BYLAYER) raises an IndexError! rgb24 = colors.DXF_DEFAULT_COLORS[aci] print(f"RGB Hex Value: #{rgb24:06X}") r, g, b = colors.int2rgb(rgb24) print(f"RGB Channel Values: R={r:02X} G={g:02X} b={b:02X}") If color and true_color values are set, BricsCAD and AutoCAD use the true_color value as display color for the entity. Get/Set True Color as RGB-Tuple Get/Set the true color value as (r, g, b)-tuple by the rgb property of the DXFGraphic entity: # set true color value to red entity.rgb = (0xFF, 0, 0) # get true color values r, g, b = entity.rgb Get/Set Block Reference Attributes Block references (Insert) can have attached attributes (Attrib), these are simple text annotations with an associated tag appended to the block reference. Iterate over all appended attributes: # get all INSERT entities with entity.dxf.name == "Part12" blockrefs = msp.query('INSERT[name=="Part12"]') if len(blockrefs): entity = blockrefs[0] # process first entity found for attrib in entity.attribs: if attrib.dxf.tag == "diameter": # identify attribute by tag attrib.dxf.text = "17mm" # change attribute content Get attribute by tag: diameter = entity.get_attrib('diameter') if diameter is not None: diameter.dxf.text = "17mm" Adding XDATA to Entities Adding XDATA as list of tuples (group code, value) by set_xdata(), overwrites data if already present: doc.appids.new('YOUR_APPID') # IMPORTANT: create an APP ID entry circle = msp.add_circle((10, 10), 100) circle.set_xdata( 'YOUR_APPID', [ (1000, 'your_web_link.org'), (1002, '{'), (1000, 'some text'), (1002, '{'), (1071, 1), (1002, '}'), (1002, '}') ]) For group code meaning see DXF reference section DXF Group Codes in Numerical Order Reference, valid group codes are in the range 1000 - 1071. Method get_xdata() returns the extended data for an entity as Tags object. SEE ALSO: Tutorial: Storing Custom Data in DXF Files Get Overridden DIMSTYLE Values from DIMENSION In general the Dimension styling and config attributes are stored in the Dimstyle entity, but every attribute can be overridden for each DIMENSION entity individually, get overwritten values by the DimstyleOverride object as shown in the following example: for dimension in msp.query('DIMENSION'): dimstyle_override = dimension.override() # requires v0.12 dimtol = dimstyle_override['dimtol'] if dimtol: print(f'{str(dimension)} has tolerance values:') dimtp = dimstyle_override['dimtp'] dimtm = dimstyle_override['dimtm'] print(f'Upper tolerance: {dimtp}') print(f'Lower tolerance: {dimtm}') The DimstyleOverride object returns the value of the underlying DIMSTYLE objects if the value in DIMENSION was not overwritten, or None if the value was neither defined in DIMSTYLE nor in DIMENSION. Override DIMSTYLE Values for DIMENSION Same as above, the DimstyleOverride object supports also overriding DIMSTYLE values. But just overriding this values have no effect on the graphical representation of the DIMENSION entity, because CAD applications just show the associated anonymous block which contains the graphical representation on the DIMENSION entity as simple DXF entities. Call the render method of the DimstyleOverride object to recreate this graphical representation by ezdxf, but ezdxf does not support all DIMENSION types and DIMVARS yet, and results will differ from AutoCAD or BricsCAD renderings. dimstyle_override = dimension.override() dimstyle_override.set_tolerance(0.1) # delete associated geometry block del doc.blocks[dimension.dxf.geometry] # recreate geometry block dimstyle_override.render() Fonts Rendering SHX Fonts The SHX font format is not documented nor supported by many libraries/packages like Matplotlib and Qt, therefore only SHX fonts which have corresponding TTF-fonts can be rendered by these backends. The mapping from/to SHX/TTF fonts is hard coded in the source code file: ezdxf/tools/fonts.py Rebuild Internal Font Cache Ezdxf uses Matplotlib to manage fonts and caches the collected information. If you wanna use new installed fonts which are not included in the default cache files of ezdxf you have to rebuild the cache files: import ezdxf from ezdxf.tools import fonts # xdg_path() returns "$XDG_CACHE_HOME/ezdxf" or "~/.cache/ezdxf" if # $XDG_CACHE_HOME is not set font_cache_dir = ezdxf.options.xdg_path("XDG_CACHE_HOME", ".cache") fonts.build_system_font_cache(path=font_cache_dir) ezdxf.options.font_cache_directory = font_cache_dir # Save changes to the default config file "~/.config/ezdxf/ezdxf.ini" # to load the font cache always from the new location. ezdxf.options.write_home_config() For more information see the ezdxf.options and the ezdxf.tools.fonts module. Matplotlib Doesn’t Find Fonts If Matplotlib does not find an installed font and rebuilding the matplotlib font cache does not help, deleting the cache file ~/.matplotlib/fontlist-v330.json (or similar file in newer versions) may help. For more information see the ezdxf.tools.fonts module.
FAQ
What is the Relationship between ezdxf, dxfwrite and dxfgrabber? In 2010 I started my first Python package for creating DXF documents called dxfwrite, this package can’t read DXF files and writes only the DXF R12 (AC1009) version. While dxfwrite works fine, I wanted a more versatile package, that can read and write DXF files and maybe also supports newer DXF formats than DXF R12. This was the start of the ezdxf package in 2011, but the progress was so slow, that I created a spin off in 2012 called dxfgrabber, which implements only the reading part of ezdxf, which I needed for my work and I wasn’t sure if ezdxf will ever be usable. Luckily in 2014 the first usable version of ezdxf could be released. The ezdxf package has all the features of dxfwrite and dxfgrabber and much more, but with a different API. So ezdxf is not a drop-in replacement for dxfgrabber or dxfwrite. Since ezdxf can do all the things that dxfwrite and dxfgrabber can do, I focused on the development of ezdxf, dxfwrite and dxfgrabber are in maintenance-only mode and will not get any new features, just bugfixes. There are no advantages of dxfwrite over ezdxf, dxfwrite has a smaller memory footprint, but the r12writer add-on does the same job as dxfwrite without any in-memory structures by writing direct to a stream or file and there is also no advantage of dxfgrabber over ezdxf for ordinary DXF files, the smaller memory footprint of dxfgrabber is not noticeable and for really big files the iterdxf add-on does a better job. Imported ezdxf package has no content. (readfile, new) 1. AttributeError: partially initialized module ‘ezdxf’ has no attribute ‘readfile’ (most likely due to a circular import) Did you name your file/script “ezdxf.py”? This causes problems with circular imports. Renaming your file/script should solve this issue. 2. AttributeError: module ‘ezdxf’ has no attribute ‘readfile’ This could be a hidden permission error, for more information about this issue read Petr Zemeks article: https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/ How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE? The BODY, 3DSOLID, SURFACE, REGION and so on, are stored as ACIS data embedded in the DXF file. The ACIS data is stored as SAT (text) format in the entity itself for DXF R2000-R2010 and as SAB (binary) format in the ACDSDATA section for DXF R2013+. Ezdxf can read SAT and SAB data, but only write SAT data. The ACIS data is a proprietary format from Spatial Inc., and there exist no free available documentation or open source libraries to create or edit SAT or SAB data, and also ezdxf provides no functionality for creating or editing ACIS data. The ACIS support provided by ezdxf is only useful for users which have access to the ACIS SDK from Spatial Inc.. Are OLE/OLE2 entities supported? TLDR; NO! The Wikipedia definition of OLE: Object Linking & Embedding (OLE) is a proprietary technology developed by Microsoft that allows embedding and linking to documents and other objects. For developers, it brought OLE Control Extension (OCX), a way to develop and use custom user interface elements. On a technical level, an OLE object is any object that implements the IOleObject interface, possibly along with a wide range of other interfaces, depending on the object’s needs. Therefore ezdxf does not support this entities in any way, this only work on Windows and with the required editing application installed. The binary data stored in the OLE objects cannot be used without the editing application. In my opinion, using OLE objects in a CAD drawing is a very bad design decision that can and will cause problems opening these files in the future, even in AutoCAD on Windows when the required editing application is no longer available or the underlying technology is no longer supported. All of this is unacceptable for a data storage format that should be accessed for many years or decades (e.g. construction drawings for buildings or bridges). Rendering SHX Fonts The SHX font format is not documented nor supported by many libraries/packages like Matplotlib and Qt, therefore only SHX fonts which have corresponding TTF-fonts can be rendered by these backends. See also how-tos about Fonts
REFERENCE
The DXF Reference is online available at Autodesk. Quoted from the original DXF 12 Reference which is not available on the web: Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes significantly as new features are added to AutoCAD, we do not document its format and do not recommend that you attempt to write programs to read it directly. To assist in interchanging drawings between AutoCAD and other programs, a Drawing Interchange file format (DXF) has been defined. All implementations of AutoCAD accept this format and are able to convert it to and from their internal drawing file representation. DXF Document Document Management Create New Drawings ezdxf.new(dxfversion='AC1027', setup=False, units=6) -> Drawing Create a new Drawing from scratch, dxfversion can be either “AC1009” the official DXF version name or “R12” the AutoCAD release name. new() can create drawings for following DXF versions: ┌────────┬─────────────────┐ │Version │ AutoCAD Release │ ├────────┼─────────────────┤ │AC1009 │ AutoCAD R12 │ ├────────┼─────────────────┤ │AC1015 │ AutoCAD R2000 │ ├────────┼─────────────────┤ │AC1018 │ AutoCAD R2004 │ ├────────┼─────────────────┤ │AC1021 │ AutoCAD R2007 │ └────────┴─────────────────┘ │AC1024 │ AutoCAD R2010 │ ├────────┼─────────────────┤ │AC1027 │ AutoCAD R2013 │ ├────────┼─────────────────┤ │AC1032 │ AutoCAD R2018 │ └────────┴─────────────────┘ The units argument defines th document and modelspace units. The header variable $MEASUREMENT will be set according to the given units, 0 for inch, feet, miles, … and 1 for metric units. For more information go to module ezdxf.units Parameters • dxfversion – DXF version specifier as string, default is “AC1027” respectively “R2013” • setup – setup default styles, False for no setup, True to setup everything or a list of topics as strings, e.g. [“linetypes”, “styles”] to setup only some topics: ┌─────────────┬──────────────────────────────────┐ │Topic │ Description │ ├─────────────┼──────────────────────────────────┤ │linetypes │ setup line types │ ├─────────────┼──────────────────────────────────┤ │styles │ setup text styles │ ├─────────────┼──────────────────────────────────┤ │dimstyles │ setup default ezdxf dimension │ │ │ styles │ ├─────────────┼──────────────────────────────────┤ │visualstyles │ setup 25 standard visual styles │ └─────────────┴──────────────────────────────────┘ • units – document and modelspace units, default is 6 for meters Open Drawings Open DXF drawings from file system or text stream, byte stream usage is not supported. DXF files prior to R2007 requires file encoding defined by header variable $DWGCODEPAGE, DXF R2007 and later requires an UTF-8 encoding. ezdxf supports reading of files for following DXF versions: ┌─────────┬─────────┬──────────────┬─────────────────────┐ │Version │ Release │ Encoding │ Remarks │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │< AC1009 │ │ $DWGCODEPAGE │ pre AutoCAD R12 │ │ │ │ │ upgraded to AC1009 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1009 │ R12 │ $DWGCODEPAGE │ AutoCAD R12 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1012 │ R13 │ $DWGCODEPAGE │ AutoCAD R13 │ │ │ │ │ upgraded to AC1015 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1014 │ R14 │ $DWGCODEPAGE │ AutoCAD R14 │ │ │ │ │ upgraded to AC1015 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1015 │ R2000 │ $DWGCODEPAGE │ AutoCAD R2000 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1018 │ R2004 │ $DWGCODEPAGE │ AutoCAD R2004 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1021 │ R2007 │ UTF-8 │ AutoCAD R2007 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1024 │ R2010 │ UTF-8 │ AutoCAD R2010 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1027 │ R2013 │ UTF-8 │ AutoCAD R2013 │ ├─────────┼─────────┼──────────────┼─────────────────────┤ │AC1032 │ R2018 │ UTF-8 │ AutoCAD R2018 │ └─────────┴─────────┴──────────────┴─────────────────────┘ ezdxf.readfile(filename: Union[str, Path], encoding: Optional[str] = None, errors: str = 'surrogateescape') -> Drawing Read the DXF document filename from the file-system. This is the preferred method to load existing ASCII or Binary DXF files, the required text encoding will be detected automatically and decoding errors will be ignored. Override encoding detection by setting argument encoding to the estimated encoding. (use Python encoding names like in the open() function). If this function struggles to load the DXF document and raises a DXFStructureError exception, try the ezdxf.recover.readfile() function to load this corrupt DXF document. Parameters • filename – filename of the ASCII- or Binary DXF document • encoding – use None for auto detect (default), or set a specific encoding like “utf-8”, argument is ignored for Binary DXF files • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • IOError – not a DXF file or file does not exist • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.read(stream: TextIO) -> Drawing Read a DXF document from a text-stream. Open stream in text mode (mode='rt') and set correct text encoding, the stream requires at least a readline() method. Since DXF version R2007 (AC1021) file encoding is always “utf-8”, use the helper function dxf_stream_info() to detect the required text encoding for prior DXF versions. To preserve possible binary data in use errors='surrogateescape' as error handler for the import stream. If this function struggles to load the DXF document and raises a DXFStructureError exception, try the ezdxf.recover.read() function to load this corrupt DXF document. Parameters stream – input text stream opened with correct encoding Raises DXFStructureError – for invalid or corrupted DXF structures ezdxf.readzip(zipfile: str, filename: Optional[str] = None, errors: str = 'surrogateescape') -> Drawing Load a DXF document specified by filename from a zip archive, or if filename is None the first DXF document in the zip archive. Parameters • zipfile – name of the zip archive • filename – filename of DXF file, or None to load the first DXF document from the zip archive. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • IOError – not a DXF file or file does not exist or if filename is None - no DXF file found • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.decode_base64(data: bytes, errors: str = 'surrogateescape') -> Drawing Load a DXF document from base64 encoded binary data, like uploaded data to web applications. Parameters • data – DXF document base64 encoded binary data • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs HINT: This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or major flaws look at the ezdxf.recover module. Save Drawings Save the DXF document to the file system by Drawing methods save() or saveas(). Write the DXF document to a text stream with write(), the text stream requires at least a write() method. Get required output encoding for text streams by property Drawing.output_encoding Drawing Settings The HeaderSection stores meta data like modelspace extensions, user name or saving time and current application settings, like actual layer, text style or dimension style settings. These settings are not necessary to process DXF data and therefore many of this settings are not maintained by ezdxf automatically. Header variables set at new ┌─────────────────┬──────────────────────────────────┐ │$ACADVER │ DXF version │ ├─────────────────┼──────────────────────────────────┤ │$TDCREATE │ date/time at creating the │ │ │ drawing │ ├─────────────────┼──────────────────────────────────┤ │$FINGERPRINTGUID │ every drawing gets a GUID │ └─────────────────┴──────────────────────────────────┘ Header variables updated at saving ┌─────────────┬──────────────────────────────────┐ │$TDUPDATE │ actual date/time at saving │ ├─────────────┼──────────────────────────────────┤ │$HANDSEED │ next available handle as hex │ │ │ string │ ├─────────────┼──────────────────────────────────┤ │$DWGCODEPAGE │ encoding setting │ ├─────────────┼──────────────────────────────────┤ │$VERSIONGUID │ every saved version gets a new │ │ │ GUID │ └─────────────┴──────────────────────────────────┘ SEE ALSO: • Howto: Set/Get Header Variables • Howto: Set DXF Drawing Units Ezdxf Metadata New in version 0.17. Store internal metadata like ezdxf version and creation time for a new created document as metadata in the DXF file. Only standard DXF features are used to store meta data and this meta data is preserved by Autodesk products, BricsCAD and of course ezdxf. Other 3rd party DXF libraries may remove this meta data. For DXF R12 the meta data is stored as XDATA by AppID EZDXF in the model space BLOCK entity in the BLOCKS section. For DXF R2000+ the meta data is stored in the “root” DICTIONARY in the OBJECTS section as a DICTIONARY object by the key EZDXF_META. The MetaData object has a dict-like interface and can also store custom metadata: metadata = doc.ezdxf_metadata() # set data metadata["MY_CUSTOM_META_DATA"] = "a string with max. length of 254" # get data, raises a KeyError() if key not exist value = metadata["MY_CUSTOM_META_DATA"] # get data, returns an empty string if key not exist value = metadata.get("MY_CUSTOM_META_DATA") # delete entry, raises a KeyError() if key not exist del metadata["MY_CUSTOM_META_DATA"] # discard entry, does not raise a KeyError() if key not exist metadata.discard("MY_CUSTOM_META_DATA") Keys and values are limited to strings with a max. length of 254 characters and line ending \n will be replaced by \P. Keys used by ezdxf: • WRITTEN_BY_EZDXF: ezdxf version and UTC time in ISO format • CREATED_BY_EZDXF: ezdxf version and UTC time in ISO format Example of the ezdxf marker string: 0.16.4b1 @ 2021-06-12T07:35:34.898808+00:00 class ezdxf.document.MetaData abstract MetaData.__contains__(key: str) -> bool Returns key in self. abstract MetaData.__getitem__(key: str) -> str Returns the value for self[key]. Raises KeyError – key does not exist MetaData.get(key: str, default: str = '') -> str Returns the value for key. Returns default if key not exist. abstract MetaData.__setitem__(key: str, value: str) -> None Set self[key] to value. abstract MetaData.__delitem__(key: str) -> None Delete self[key]. Raises KeyError – key does not exist MetaData.discard(key: str) -> None Remove key, does not raise an exception if key not exist. Drawing Object class ezdxf.document.Drawing The Drawing class manages all entities and tables related to a DXF drawing. dxfversion Actual DXF version like 'AC1009', set by ezdxf.new() or ezdxf.readfile(). For supported DXF versions see Document Management acad_release The AutoCAD release name like 'R12' or 'R2000' for actual dxfversion. encoding Text encoding of Drawing, the default encoding for new drawings is 'cp1252'. Starting with DXF R2007 (AC1021), DXF files are written as UTF-8 encoded text files, regardless of the attribute encoding. The text encoding can be changed to encodings listed below. see also: DXF File Encoding ┌──────────┬────────────────┐ │supported │ encodings │ ├──────────┼────────────────┤ │'cp874' │ Thai │ ├──────────┼────────────────┤ │'cp932' │ Japanese │ ├──────────┼────────────────┤ │'gbk' │ UnifiedChinese │ ├──────────┼────────────────┤ │'cp949' │ Korean │ ├──────────┼────────────────┤ │'cp950' │ TradChinese │ ├──────────┼────────────────┤ │'cp1250' │ CentralEurope │ ├──────────┼────────────────┤ │'cp1251' │ Cyrillic │ ├──────────┼────────────────┤ │'cp1252' │ WesternEurope │ ├──────────┼────────────────┤ │'cp1253' │ Greek │ ├──────────┼────────────────┤ │'cp1254' │ Turkish │ ├──────────┼────────────────┤ │'cp1255' │ Hebrew │ ├──────────┼────────────────┤ │'cp1256' │ Arabic │ ├──────────┼────────────────┤ │'cp1257' │ Baltic │ ├──────────┼────────────────┤ │'cp1258' │ Vietnam │ └──────────┴────────────────┘ output_encoding Returns required output encoding for saving to filesystem or encoding to binary data. filename Drawing filename, if loaded by ezdxf.readfile() else None. rootdict Reference to the root dictionary of the OBJECTS section. header Reference to the HeaderSection, get/set drawing settings as header variables. entities Reference to the EntitySection of the drawing, where all graphical entities are stored, but only from modelspace and the active paperspace layout. Just for your information: Entities of other paperspace layouts are stored as BlockLayout in the BlocksSection. objects Reference to the objects section, see also ObjectsSection. blocks Reference to the blocks section, see also BlocksSection. tables Reference to the tables section, see also TablesSection. classes Reference to the classes section, see also ClassesSection. layouts Reference to the layout manager, see also Layouts. groups Collection of all groups, see also GroupCollection. requires DXF R13 or later layers Shortcut for Drawing.tables.layers Reference to the layers table, where you can create, get and remove layers, see also Table and Layer styles Shortcut for Drawing.tables.styles Reference to the styles table, see also Style. dimstyles Shortcut for Drawing.tables.dimstyles Reference to the dimstyles table, see also DimStyle. linetypes Shortcut for Drawing.tables.linetypes Reference to the linetypes table, see also Linetype. views Shortcut for Drawing.tables.views Reference to the views table, see also View. viewports Shortcut for Drawing.tables.viewports Reference to the viewports table, see also Viewport. ucs Shortcut for Drawing.tables.ucs Reference to the ucs table, see also UCS. appids Shortcut for Drawing.tables.appids Reference to the appids table, see also AppID. materials MaterialCollection of all Material objects. mline_styles MLineStyleCollection of all MLineStyle objects. mleader_styles MLeaderStyleCollection of all MLeaderStyle objects. units Get and set the document/modelspace base units as enum, for more information read this: DXF Units. save(encoding: Optional[str] = None, fmt: str = 'asc') -> None Write drawing to file-system by using the filename attribute as filename. Override file encoding by argument encoding, handle with care, but this option allows you to create DXF files for applications that handles file encoding different than AutoCAD. Parameters • encoding – override default encoding as Python encoding string like 'utf-8' • fmt – 'asc' for ASCII DXF (default) or 'bin' for Binary DXF saveas(filename: Union[str, Path], encoding: str = None, fmt: str = 'asc') -> None Set Drawing attribute filename to filename and write drawing to the file system. Override file encoding by argument encoding, handle with care, but this option allows you to create DXF files for applications that handles file encoding different than AutoCAD. Parameters • filename – file name as string • encoding – override default encoding as Python encoding string like 'utf-8' • fmt – 'asc' for ASCII DXF (default) or 'bin' for Binary DXF write(stream: Union[TextIO, BinaryIO], fmt: str = 'asc') -> None Write drawing as ASCII DXF to a text stream or as Binary DXF to a binary stream. For DXF R2004 (AC1018) and prior open stream with drawing encoding and mode='wt'. For DXF R2007 (AC1021) and later use encoding='utf-8', or better use the later added Drawing property output_encoding which returns the correct encoding automatically. The correct and required error handler is errors='dxfreplace'! If writing to a StringIO stream, use Drawing.encode() to encode the result string from StringIO.get_value(): binary = doc.encode(stream.get_value()) Parameters • stream – output text stream or binary stream • fmt – 'asc' for ASCII DXF (default) or 'bin' for binary DXF encode_base64() -> bytes Returns DXF document as base64 encoded binary data. encode(s: str) -> bytes Encode string s with correct encoding and error handler. query(query: str = '*') -> EntityQuery Entity query over all layouts and blocks, excluding the OBJECTS section. Parameters query – query string SEE ALSO: Entity Query String and Retrieve entities by query language groupby(dxfattrib='', key=None) -> dict Groups DXF entities of all layouts and blocks (excluding the OBJECTS section) by a DXF attribute or a key function. Parameters • dxfattrib – grouping DXF attribute like 'layer' • key – key function, which accepts a DXFEntity as argument and returns a hashable grouping key or None to ignore this entity. SEE ALSO: groupby() documentation modelspace() -> Modelspace Returns the modelspace layout, displayed as 'Model' tab in CAD applications, defined by block record named '*Model_Space'. layout(name: str = None) -> Layout Returns paperspace layout name or returns first layout in tab order if name is None. active_layout() -> Layout Returns the active paperspace layout, defined by block record name '*Paper_Space'. layout_names() -> Iterable[str] Returns all layout names (modelspace 'Model' included) in arbitrary order. layout_names_in_taborder() -> Iterable[str] Returns all layout names in tab order, layout “Model” (model space) is always the first name. new_layout(name, dxfattribs=None) -> Layout Create a new paperspace layout name. Returns a Layout object. DXF R12 (AC1009) supports only one paperspace layout, only the active paperspace layout is saved, other layouts are dismissed. Parameters • name – unique layout name • dxfattribs – additional DXF attributes for the DXFLayout entity Raises DXFValueError – Layout name already exist delete_layout(name: str) -> None Delete paper space layout name and all entities owned by this layout. Available only for DXF R2000 or later, DXF R12 supports only one paperspace and it can’t be deleted. add_image_def(filename: str, size_in_pixel: Tuple[int, int], name=None) Add an image definition to the objects section. Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or absolute path and size_in_pixel is the image size in pixel as (x, y) tuple. To avoid dependencies to external packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to create an image reference. name is the internal image name, if set to None, name is auto-generated. Absolute image paths works best for AutoCAD but not really good, you have to update external references manually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also have to use: set_raster_variables(). Parameters • filename – image file name (absolute path works best for AutoCAD) • size_in_pixel – image size in pixel as (x, y) tuple • name – image name for internal use, None for using filename as name (best for AutoCAD) SEE ALSO: Tutorial for Image and ImageDef set_raster_variables(frame: int = 0, quality: int = 1, units: str = 'm') Set raster variables. Parameters • frame – 0 = do not show image frame; 1 = show image frame • quality – 0 = draft; 1 = high • units – units for inserting images. This defines the real world unit for one drawing unit for the purpose of inserting and scaling images with an associated resolution. ┌───┬───────────────────────┐ │mm │ Millimeter │ ├───┼───────────────────────┤ │cm │ Centimeter │ ├───┼───────────────────────┤ │m │ Meter (ezdxf default) │ ├───┼───────────────────────┤ │km │ Kilometer │ ├───┼───────────────────────┤ │in │ Inch │ ├───┼───────────────────────┤ │ft │ Foot │ ├───┼───────────────────────┤ │yd │ Yard │ ├───┼───────────────────────┤ │mi │ Mile │ └───┴───────────────────────┘ set_wipeout_variables(frame=0) Set wipeout variables. Parameters frame – 0 = do not show image frame; 1 = show image frame add_underlay_def(filename: str, fmt: str = 'ext', name: Optional[str] = None) Add an UnderlayDef entity to the drawing (OBJECTS section). filename is the underlay file name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to create an underlay reference. Parameters • filename – underlay file name • fmt – file format as string 'pdf'|'dwf'|'dgn' or 'ext' for getting file format from filename extension • name – pdf format = page number to display; dgn format = 'default'; dwf: ???? SEE ALSO: Tutorial for Underlay and UnderlayDefinition add_xref_def(filename: str, name: str, flags: int = 20) Add an external reference (xref) definition to the blocks section. Parameters • filename – external reference filename • name – name of the xref block • flags – block flags layouts_and_blocks() -> Iterator[GenericLayoutType] Iterate over all layouts (modelspace and paperspace) and all block definitions. chain_layouts_and_blocks() -> Iterator[DXFEntity] Chain entity spaces of all layouts and blocks. Yields an iterator for all entities in all layouts and blocks. reset_fingerprint_guid() Reset fingerprint GUID. reset_version_guid() Reset version GUID. set_modelspace_vport(height, center=(0, 0), *, dxfattribs=None) -> VPort Set initial view/zoom location for the modelspace, this replaces the current “*Active” viewport configuration (VPort) and reset the coordinate system to the WCS. Parameters • height – modelspace area to view • center – modelspace location to view in the center of the CAD application window. • dxfattribs – additional DXF attributes for the VPORT entity Changed in version 0.17.2: added argument dxfattribs to pass additional DXF attributes to the VPORT entity audit() -> Auditor Checks document integrity and fixes all fixable problems, not fixable problems are stored in Auditor.errors. If you are messing around with internal structures, call this method before saving to be sure to export valid DXF documents, but be aware this is a long running task. validate(print_report=True) -> bool Simple way to run an audit process. Fixes all fixable problems, return False if not fixable errors occurs, to get more information about not fixable errors use audit() method instead. Parameters print_report – print report to stdout Returns: True if no errors occurred ezdxf_metadata() -> MetaData Returns the ezdxf ezdxf.document.MetaData object, which manages ezdxf and custom metadata in DXF files. For more information see: Ezdxf Metadata. New in version 0.17. Recover New in version v0.14. This module provides functions to “recover” ASCII DXF documents with structural flaws, which prevents the regular ezdxf.read() and ezdxf.readfile() functions to load the document. The read() and readfile() functions will repair as much flaws as possible and run the required audit process automatically afterwards and return the result of this audit process: import sys import ezdxf from ezdxf import recover try: doc, auditor = recover.readfile("messy.dxf") except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file.') sys.exit(2) # DXF file can still have unrecoverable errors, but this is maybe just # a problem when saving the recovered DXF file. if auditor.has_errors: auditor.print_error_report() This efforts cost some time, loading the DXF document with ezdxf.read() or ezdxf.readfile() will be faster. WARNING: This module will load DXF files which have decoding errors, most likely binary data stored in XRECORD entities, these errors are logged as unrecoverable AuditError.DECODE_ERRORS in the Auditor.errors attribute, but no DXFStructureError exception will be raised, because for many use cases this errors can be ignored. Writing such files back with ezdxf may create invalid DXF files, or at least some information will be lost - handle with care! To avoid this problem use recover.readfile(filename, errors='strict') which raises an UnicodeDecodeError exception for such binary data. Catch the exception and handle this DXF files as unrecoverable. Loading Scenarios 1. It will work Mostly DXF files from AutoCAD or BricsCAD (e.g. for In-house solutions): try: doc = ezdxf.readfile(name) except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file: {name}.') sys.exit(2) 2. DXF file with minor flaws DXF files have only minor flaws, like undefined resources: try: doc = ezdxf.readfile(name) except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file: {name}.') sys.exit(2) auditor = doc.audit() if auditor.has_errors: auditor.print_error_report() 3. Try Hard From trusted and untrusted sources but with good hopes, the worst case works like a cache miss, you pay for the first try and pay the extra fee for the recover mode: try: # Fast path: doc = ezdxf.readfile(name) except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) # Catch all DXF errors: except ezdxf.DXFError: try: # Slow path including fixing low level structures: doc, auditor = recover.readfile(name) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file: {name}.') sys.exit(2) # DXF file can still have unrecoverable errors, but this is maybe # just a problem when saving the recovered DXF file. if auditor.has_errors: print(f'Found unrecoverable errors in DXF file: {name}.') auditor.print_error_report() 4. Just use the slow recover module Untrusted sources and expecting many invalid or corrupted DXF files, you always pay an extra fee for the recover mode: try: # Slow path including fixing low level structures: doc, auditor = recover.readfile(name) except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file: {name}.') sys.exit(2) # DXF file can still have unrecoverable errors, but this is maybe # just a problem when saving the recovered DXF file. if auditor.has_errors: print(f'Found unrecoverable errors in DXF file: {name}.') auditor.print_error_report() 5. Unrecoverable Decoding Errors If files contain binary data which can not be decoded by the document encoding, it is maybe the best to ignore this files, this works in normal and recover mode: try: doc, auditor = recover.readfile(name, errors='strict') except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file: {name}.') sys.exit(2) except UnicodeDecodeError: print(f'Decoding error in DXF file: {name}.') sys.exit(3) 6. Ignore/Locate Decoding Errors Sometimes ignoring decoding errors can recover DXF files or at least you can detect where the decoding errors occur: try: doc, auditor = recover.readfile(name, errors='ignore') except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file: {name}.') sys.exit(2) if auditor.has_errors: auditor.print_report() The error messages with code AuditError.DECODING_ERROR shows the approximate line number of the decoding error: “Fixed unicode decoding error near line: xxx.” HINT: This functions can handle only ASCII DXF files! ezdxf.recover.readfile(filename: Union[str, Path], errors: str = 'surrogateescape') -> Tuple['Drawing', 'Auditor'] Read a DXF document from file system similar to ezdxf.readfile(), but this function will repair as much flaws as possible, runs the required audit process automatically the DXF document and the Auditor. Parameters • filename – file-system name of the DXF document to load • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.recover.read(stream: BinaryIO, errors: str = 'surrogateescape') -> Tuple['Drawing', 'Auditor'] Read a DXF document from a binary-stream similar to ezdxf.read(), but this function will detect the text encoding automatically and repair as much flaws as possible, runs the required audit process afterwards and returns the DXF document and the Auditor. Parameters • stream – data stream to load in binary read mode • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.recover.explore(filename: Union[str, Path], errors: str = 'ignore') -> Tuple['Drawing', 'Auditor'] Read a DXF document from file system similar to readfile(), but this function will use a special tag loader, which synchronise the tag stream if invalid tags occur. This function is intended to load corrupted DXF files and should only be used to explore such files, data loss is very likely. Parameters • filename – file-system name of the DXF document to load • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – for invalid or corrupted DXF structures • UnicodeDecodeError – if errors is “strict” and a decoding error occurs Application Settings New in version 0.18. This is a high-level module for working with CAD application settings and behaviors. None of these settings have any influence on the behavior of ezdxf, since ezdxf only takes care of the content of the DXF file and not of the way it is presented to the user. IMPORTANT: You need to understand that these settings work at the application level, ezdxf cannot force an application to do something in a certain way! The functionality of this module has been tested with Autodesk TrueView and BricsCAD, other applications may show different results or ignore the settings. Set Current Properties The current properties are used by the CAD application to create new entities, these settings do not affect how ezdxf creates new entities. The module ezdxf.gfxattribs provides the class GfxAttribs(), which can load the current graphical entity settings from the HEADER section for creating new entities by ezdxf: load_from_header() ezdxf.appsettings.set_current_layer(doc: Drawing, name: str) Set current layer. ezdxf.appsettings.set_current_color(doc: Drawing, color: int) Set current AutoCAD Color Index (ACI). ezdxf.appsettings.set_current_linetype(doc: Drawing, name: str) Set current linetype. ezdxf.appsettings.set_current_lineweight(doc: Drawing, lineweight: int) Set current lineweight, see Lineweights reference for valid values. ezdxf.appsettings.set_current_linetype_scale(doc: Drawing, scale: float) Set current linetype scale. ezdxf.appsettings.set_current_textstyle(doc: Drawing, name: str) Set current textstyle. ezdxf.appsettings.set_current_dimstyle(doc: Drawing, name: str) Set current dimstyle. Restore the WCS ezdxf.appsettings.restore_wcs(doc: Drawing) Restore the UCS settings in the HEADER section to the WCS and reset all active viewports to the WCS. Update Extents ezdxf.appsettings.update_extents(doc: Drawing) -> BoundingBox Calculate the extents of the model space, update the HEADER variables $EXTMIN and $EXTMAX and returns the result as ezdxf.math.BoundingBox. Note that this function uses the ezdxf.bbox module to calculate the extent of the model space. This module is not very fast and not very accurate for text and ignores all ACIS based entities. The function updates only the values in the HEADER section, to zoom the active viewport to this extents, use this recipe: import ezdxf from ezdxf import zoom, appsettings doc = ezdxf.readfile("your.dxf") extents = appsettings.update_extents(doc) zoom.center(doc.modelspace(), extents.center, extents.size) SEE ALSO: • the ezdxf.bbox module to understand the limitations of the extent calculation • the ezdxf.zoom module Show Lineweight ezdxf.appsettings.show_lineweight(doc: Drawing, state=True) -> None The CAD application or DXF viewer should show lines and curves with “thickness” (lineweight) if state is True. DXF Structures Sections Header Section The drawing settings are stored in the HEADER section, which is accessible by the header attribute of the Drawing object. See the online documentation from Autodesk for available header variables. SEE ALSO: DXF Internals: HEADER Section class ezdxf.sections.header.HeaderSection custom_vars Stores the custom drawing properties in a CustomVars object. __len__() -> int Returns count of header variables. __contains__(key) -> bool Returns True if header variable key exist. varnames() -> KeysView Returns an iterable of all header variable names. get(key: str, default: Optional[Any] = None) -> Any Returns value of header variable key if exist, else the default value. __getitem__(key: str) -> Any Get header variable key by index operator like: drawing.header['$ACADVER'] __setitem__(key: str, value: Any) -> None Set header variable key to value by index operator like: drawing.header['$ANGDIR'] = 1 __delitem__(key: str) -> None Delete header variable key by index operator like: del drawing.header['$ANGDIR'] reset_wcs() Reset the current UCS settings to the WCS. class ezdxf.sections.header.CustomVars Stores custom properties in the DXF header as $CUSTOMPROPERTYTAG and $CUSTOMPROPERTY values. Custom properties are just supported by DXF R2004 (AC1018) or later. ezdxf can create custom properties at older DXF versions, but AutoCAD will not show this properties. properties List of custom drawing properties, stored as string tuples (tag, value). Multiple occurrence of the same custom tag is allowed, but not well supported by the interface. This is a standard python list and it is save to change this list as long you store just tuples of strings in the format (tag, value). __len__() -> int Count of custom properties. __iter__() -> Iterable[Tuple[str, str]] Iterate over all custom properties as (tag, value) tuples. clear() -> None Remove all custom properties. get(tag: str, default: Optional[str] = None) Returns the value of the first custom property tag. has_tag(tag: str) -> bool Returns True if custom property tag exist. append(tag: str, value: str) -> None Add custom property as (tag, value) tuple. replace(tag: str, value: str) -> None Replaces the value of the first custom property tag by a new value. Raises DXFValueError if tag does not exist. remove(tag: str, all: bool = False) -> None Removes the first occurrence of custom property tag, removes all occurrences if all is True. Raises :class:`DXFValueError if tag does not exist. Classes Section The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in Layout objects. As usual package user there is no need to bother about CLASSES. SEE ALSO: DXF Internals: CLASSES Section class ezdxf.sections.classes.ClassesSection classes Storage of all DXFClass objects, they are not stored in the entities database, because CLASS has no handle attribute. register() add_class(name: str) Register a known class by name. get(name: str) -> DXFClass Returns the first class matching name. Storage key is the (name, cpp_class_name) tuple, because there are some classes with the same name but different cpp_class_names. add_required_classes(dxfversion: str) -> None Add all required CLASS definitions for dxfversion. update_instance_counters() -> None Update CLASS instance counter for all registered classes, requires DXF R2004+. class ezdxf.entities.DXFClass Information about application-defined classes. dxf.name Class DXF record name. dxf.cpp_class_name C++ class name. Used to bind with software that defines object class behavior. dxf.app_name Application name. Posted in Alert box when a class definition listed in this section is not currently loaded. dxf.flags Proxy capabilities flag ┌──────┬──────────────────────────────────┐ │0 │ No operations allowed (0) │ ├──────┼──────────────────────────────────┤ │1 │ Erase allowed (0x1) │ ├──────┼──────────────────────────────────┤ │2 │ Transform allowed (0x2) │ ├──────┼──────────────────────────────────┤ │4 │ Color change allowed (0x4) │ ├──────┼──────────────────────────────────┤ │8 │ Layer change allowed (0x8) │ ├──────┼──────────────────────────────────┤ │16 │ Linetype change allowed (0x10) │ ├──────┼──────────────────────────────────┤ │32 │ Linetype scale change allowed │ │ │ (0x20) │ ├──────┼──────────────────────────────────┤ │64 │ Visibility change allowed (0x40) │ ├──────┼──────────────────────────────────┤ │128 │ Cloning allowed (0x80) │ ├──────┼──────────────────────────────────┤ │256 │ Lineweight change allowed │ │ │ (0x100) │ ├──────┼──────────────────────────────────┤ │512 │ Plot Style Name change allowed │ │ │ (0x200) │ ├──────┼──────────────────────────────────┤ │895 │ All operations except cloning │ │ │ allowed (0x37F) │ ├──────┼──────────────────────────────────┤ │1023 │ All operations allowed (0x3FF) │ ├──────┼──────────────────────────────────┤ │1024 │ Disables proxy warning dialog │ │ │ (0x400) │ ├──────┼──────────────────────────────────┤ │32768 │ R13 format proxy (0x8000) │ └──────┴──────────────────────────────────┘ dxf.instance_count Instance count for a custom class. dxf.was_a_proxy Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise. dxf.is_an_entity Set to 1 if class was derived from the DXFGraphic class and can reside in layouts. If 0, instances may appear only in the OBJECTS section. key Unique name as (name, cpp_class_name) tuple. Tables Section The TABLES section is the home of all TABLE objects of a DXF document. SEE ALSO: DXF Internals: TABLES Section class ezdxf.sections.tables.TablesSection layers LayerTable object for Layer objects linetypes LineTypesTable object for Linetype objects styles TextstyleTable object for Textstyle objects dimstyles DimStyleTable object for DimStyle objects appids AppIDTable object for AppID objects ucs UCSTable object for UCSTable objects views ViewTable object for View objects viewports ViewportTable object for VPort objects block_records BlockRecordTable object for BlockRecord objects Blocks Section The BLOCKS section is the home all block definitions (BlockLayout) of a DXF document. SEE ALSO: DXF Internals: BLOCKS Section and Block Management Structures class ezdxf.sections.blocks.BlocksSection __iter__() -> Iterator[BlockLayout] Iterable of all BlockLayout objects. __contains__(name: str) -> bool Returns True if BlockLayout name exist. __getitem__(name: str) -> BlockLayout Returns BlockLayout name, raises DXFKeyError if name not exist. __delitem__(name: str) -> None Deletes BlockLayout name and all of its content, raises DXFKeyError if name not exist. get(name: str, default=None) -> BlockLayout Returns BlockLayout name, returns default if name not exist. new(name: str, base_point: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), dxfattribs: Optional[dict] = None) -> BlockLayout Create and add a new BlockLayout, name is the BLOCK name, base_point is the insertion point of the BLOCK. new_anonymous_block(type_char: str = 'U', base_point: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0)) -> BlockLayout Create and add a new anonymous BlockLayout, type_char is the BLOCK type, base_point is the insertion point of the BLOCK. ┌──────────┬──────────────────────────────────┐ │type_char │ Anonymous Block Type │ ├──────────┼──────────────────────────────────┤ │'U' │ '*U###' anonymous BLOCK │ ├──────────┼──────────────────────────────────┤ │'E' │ '*E###' anonymous non-uniformly │ │ │ scaled BLOCK │ ├──────────┼──────────────────────────────────┤ │'X' │ '*X###' anonymous HATCH graphic │ ├──────────┼──────────────────────────────────┤ │'D' │ '*D###' anonymous DIMENSION │ │ │ graphic │ └──────────┴──────────────────────────────────┘ │'A' │ '*A###' anonymous GROUP │ ├──────────┼──────────────────────────────────┤ │'T' │ '*T###' anonymous block for │ │ │ ACAD_TABLE content │ └──────────┴──────────────────────────────────┘ rename_block(old_name: str, new_name: str) -> None Rename BlockLayout old_name to new_name delete_block(name: str, safe: bool = True) -> None Delete block. If save is True, check if block is still referenced. Parameters • name – block name (case insensitive) • safe – check if block is still referenced or special block without explicit references Raises • DXFKeyError – if block not exists • DXFBlockInUseError – if block is still referenced, and save is True delete_all_blocks() -> None Delete all blocks without references except modelspace- or paperspace layout blocks, special arrow- and anonymous blocks (DIMENSION, ACAD_TABLE). WARNING: There could exist undiscovered references to blocks which are not documented in the DXF reference, hidden in extended data sections or application defined data, which could produce invalid DXF documents if such referenced blocks will be deleted. Changed in version 0.14: removed unsafe mode Entities Section The ENTITIES section is the home of all Modelspace and active Paperspace layout entities. This is a real section in the DXF file, for ezdxf the EntitySection is just a proxy for modelspace and the active paperspace linked together. SEE ALSO: DXF Internals: ENTITIES Section class ezdxf.sections.entities.EntitySection __iter__() -> Iterator[DXFEntity] Iterable for all entities of modelspace and active paperspace. __len__() -> int Returns count of all entities of modelspace and active paperspace. Objects Section The OBJECTS section is the home of all none graphical objects of a DXF document. The OBJECTS section is accessible by Drawing.objects. Convenience methods of the Drawing object to create required structures in the OBJECTS section: • IMAGEDEF: add_image_def() • UNDERLAYDEF: add_underlay_def() • RASTERVARIABLES: set_raster_variables() • WIPEOUTVARIABLES: set_wipeout_variables() SEE ALSO: DXF Internals: OBJECTS Section class ezdxf.sections.objects.ObjectsSection rootdict Returns the root DICTIONARY, or as AutoCAD calls it: the named DICTIONARY. __len__() -> int Returns count of DXF objects. __iter__() Returns iterable of all DXF objects in the OBJECTS section. __getitem__(index) -> DXFObject Get entity at index. The underlying data structure for storing DXF objects is organized like a standard Python list, therefore index can be any valid list indexing or slicing term, like a single index objects[-1] to get the last entity, or an index slice objects[:10] to get the first 10 or less objects as List[DXFObject]. __contains__(entity) Returns True if entity stored in OBJECTS section. Parameters entity – DXFObject or handle as hex string query(query: str = '*') -> EntityQuery Get all DXF objects matching the Entity Query String. add_dictionary(owner: str = '0', hard_owned: bool = True) -> Dictionary Add new Dictionary object. Parameters • owner – handle to owner as hex string. • hard_owned – True to treat entries as hard owned. add_dictionary_with_default(owner='0', default='0', hard_owned: bool = True) -> DictionaryWithDefault Add new DictionaryWithDefault object. Parameters • owner – handle to owner as hex string. • default – handle to default entry. • hard_owned – True to treat entries as hard owned. add_dictionary_var(owner: str = '0', value: str = '') -> DictionaryVar Add a new DictionaryVar object. Parameters • owner – handle to owner as hex string. • value – value as string add_geodata(owner: str = '0', dxfattribs: dict = None) -> GeoData Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OBJECTS section and NOT in the layout entity space and it is linked to the layout by an extension dictionary located in BLOCK_RECORD of the layout. The GEODATA entity requires DXF version R2010+. The DXF Reference does not document if other layouts than model space supports geo referencing, so getting/setting geo data may only make sense for the model space layout, but it is also available in paper space layouts. Parameters • owner – handle to owner as hex string • dxfattribs – DXF attributes for GeoData entity add_image_def(filename: str, size_in_pixel: Tuple[int, int], name=None) -> ImageDef Add an image definition to the objects section. Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or absolute path and size_in_pixel is the image size in pixel as (x, y) tuple. To avoid dependencies to external packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to create an image reference. name is the internal image name, if set to None, name is auto-generated. Absolute image paths works best for AutoCAD but not really good, you have to update external references manually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also have to use: set_raster_variables(). Parameters • filename – image file name (absolute path works best for AutoCAD) • size_in_pixel – image size in pixel as (x, y) tuple • name – image name for internal use, None for using filename as name (best for AutoCAD) add_placeholder(owner: str = '0') -> Placeholder Add a new Placeholder object. Parameters owner – handle to owner as hex string. add_underlay_def(filename: str, fmt: str = 'pdf', name: str = None) -> UnderlayDefinition Add an UnderlayDefinition entity to the drawing (OBJECTS section). filename is the underlay file name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to create an underlay reference. Parameters • filename – underlay file name • fmt – file format as string 'pdf'|'dwf'|'dgn' • name – pdf format = page number to display; dgn format = 'default'; dwf: ???? add_xrecord(owner: str = '0') -> XRecord Add a new XRecord object. Parameters owner – handle to owner as hex string. set_raster_variables(frame: int = 0, quality: int = 1, units: str = 'm') -> None Set raster variables. Parameters • frame – 0 = do not show image frame; 1 = show image frame • quality – 0 = draft; 1 = high • units – units for inserting images. This defines the real world unit for one drawing unit for the purpose of inserting and scaling images with an associated resolution. ┌───┬───────────────────────┐ │mm │ Millimeter │ ├───┼───────────────────────┤ │cm │ Centimeter │ ├───┼───────────────────────┤ │m │ Meter (ezdxf default) │ ├───┼───────────────────────┤ │km │ Kilometer │ ├───┼───────────────────────┤ │in │ Inch │ ├───┼───────────────────────┤ │ft │ Foot │ ├───┼───────────────────────┤ │yd │ Yard │ ├───┼───────────────────────┤ │mi │ Mile │ └───┴───────────────────────┘ (internal API), public interface set_raster_variables() set_wipeout_variables(frame: int = 0) -> None Set wipeout variables. Parameters frame – 0 = do not show image frame; 1 = show image frame (internal API) Tables Table Classes Generic Table Class class ezdxf.sections.table.Table Generic collection of table entries. Table entry names are case insensitive: “Test” == “TEST”. static key(name: str) -> str Unified table entry key. has_entry(name: str) -> bool Returns True if an table entry name exist. __contains__(name: str) -> bool Returns True if an table entry name exist. __len__() -> int Count of table entries. __iter__() -> Iterator[T] Iterable of all table entries. new(name: str, dxfattribs: Optional[dict] = None) -> T Create a new table entry name. Parameters • name – name of table entry, case insensitive • dxfattribs – additional DXF attributes for table entry get(name: str) -> T Get table entry name (case insensitive). Raises DXFValueError if table entry does not exist. remove(name: str) -> None Removes table entry name. Raises DXFValueError if table-entry does not exist. duplicate_entry(name: str, new_name: str) -> T Returns a new table entry new_name as copy of name, replaces entry new_name if already exist. Raises DXFValueError – name does not exist Layer Table class ezdxf.sections.table.LayerTable Subclass of Table. Collection of Layer objects. add(name: str, *, color: int = 256, true_color: int = None, linetype: str = 'Continuous', lineweight: int = - 1, plot: bool = True, transparency: Optional[float] = None, dxfattribs: Dict = None) -> Layer Add a new Layer. Parameters • name (str) – layer name • color (int) – AutoCAD Color Index (ACI) value, default is BYLAYER • true_color (int) – true color value, use ezdxf.rgb2int() to create int values from RGB values • linetype (str) – line type name, default is “Continuous” • lineweight (int) – line weight, default is BYLAYER • plot (bool) – plot layer as bool, default is True • transparency – transparency value in the range [0, 1], where 1 is 100% transparent and 0 is opaque • dxfattribs (dict) – additional DXF attributes New in version 0.17. Linetype Table class ezdxf.sections.table.LinetypeTable Subclass of Table. Collection of Linetype objects. add(name: str, pattern: Union[List[float], str], *, description: str = '', length: float = 0.0, dxfattribs: Dict = None) -> Linetype Add a new line type entry. The simple line type pattern is a list of floats [total_pattern_length, elem1, elem2, ...] where an element > 0 is a line, an element < 0 is a gap and an element == 0.0 is a dot. The definition for complex line types are strings, like: 'A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25' similar to the line type definitions stored in the line definition .lin files, for more information see the tutorial about complex line types. Be aware that not many CAD applications and DXF viewers support complex linetypes. SEE ALSO: • Tutorial for simple line types • Tutorial for complex line types Parameters • name (str) – line type name • pattern – line type pattern as list of floats or as a string • description (str) – line type description, optional • length (float) – total pattern length, only for complex line types required • dxfattribs (dict) – additional DXF attributes New in version 0.17. Style Table class ezdxf.sections.table.TextstyleTable Subclass of Table. Collection of Textstyle objects. add(name: str, *, font: str, dxfattribs: Dict = None) -> Textstyle Add a new text style entry for TTF fonts. The entry must not yet exist, otherwise an DXFTableEntryError exception will be raised. Finding the TTF font files is the task of the DXF viewer and each viewer is different (hint: support files). Parameters • name (str) – text style name • font (str) – TTF font file name like “Arial.ttf”, the real font file name from the file system is required and remember only Windows is case insensitive. • dxfattribs (dict) – additional DXF attributes New in version 0.17. add_shx(shx_file: str, *, dxfattribs: Dict = None) -> Textstyle Add a new shape font (SHX file) entry. These are special text style entries and have no name. The entry must not yet exist, otherwise an DXFTableEntryError exception will be raised. Finding the SHX files is the task of the DXF viewer and each viewer is different (hint: support files). Parameters • shx_file (str) – shape file name like “gdt.shx” • dxfattribs (dict) – additional DXF attributes New in version 0.17. get_shx(shx_file: str) -> Textstyle Get existing entry for a shape file (SHX file), or create a new entry. Finding the SHX files is the task of the DXF viewer and each viewer is different (hint: support files). Parameters shx_file (str) – shape file name like “gdt.shx” find_shx(shx_file: str) -> Optional[Textstyle] Find the shape file (SHX file) text style table entry, by a case insensitive search. A shape file table entry has no name, so you have to search by the font attribute. Parameters shx_file (str) – shape file name like “gdt.shx” DimStyle Table class ezdxf.sections.table.DimStyleTable Subclass of Table. Collection of DimStyle objects. add(name: str, *, dxfattribs: Dict = None) -> DimStyle Add a new dimension style table entry. Parameters • name (str) – dimension style name • dxfattribs (dict) – DXF attributes New in version 0.17. AppID Table class ezdxf.sections.table.AppIDTable Subclass of Table. Collection of AppID objects. add(name: str, *, dxfattribs: Dict = None) -> AppID Add a new appid table entry. Parameters • name (str) – appid name • dxfattribs (dict) – DXF attributes New in version 0.17. UCS Table class ezdxf.sections.table.UCSTable Subclass of Table. Collection of UCSTableEntry objects. add(name: str, *, dxfattribs: Dict = None) -> UCSTableEntry Add a new UCS table entry. Parameters • name (str) – UCS name • dxfattribs (dict) – DXF attributes New in version 0.17. View Table class ezdxf.sections.table.ViewTable Subclass of Table. Collection of View objects. add(name: str, *, dxfattribs: Dict = None) -> View Add a new view table entry. Parameters • name (str) – view name • dxfattribs (dict) – DXF attributes New in version 0.17. Viewport Table class ezdxf.sections.table.ViewportTable The viewport table stores the modelspace viewport configurations. A viewport configuration is a tiled view of multiple viewports or just one viewport. In contrast to other tables the viewport table can have multiple entries with the same name, because all viewport entries of a multi-viewport configuration are having the same name - the viewport configuration name. The name of the actual displayed viewport configuration is “*ACTIVE”. Duplication of table entries is not supported: duplicate_entry() raises NotImplementedError add(name: str, *, dxfattribs: Dict = None) -> VPort Add a new modelspace viewport entry. A modelspace viewport configuration can consist of multiple viewport entries with the same name. Parameters • name (str) – viewport name, multiple entries possible • dxfattribs (dict) – additional DXF attributes New in version 0.17. get_config(self, name: str) -> List[VPort] Returns a list of VPort objects, for the multi-viewport configuration name. delete_config(name: str) -> None Delete all VPort objects of the multi-viewport configuration name. Block Record Table class ezdxf.sections.table.BlockRecordTable Subclass of Table. Collection of BlockRecord objects. add(name: str, *, dxfattribs: Dict = None) -> BlockRecord Add a new block record table entry. Parameters • name (str) – block record name • dxfattribs (dict) – DXF attributes New in version 0.17. Layer LAYER (DXF Reference) definition, defines attribute values for entities on this layer for their attributes set to BYLAYER. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'LAYER' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.layers.new() │ └─────────────────┴──────────────────────────┘ SEE ALSO: Layer Concept and Tutorial for Layers class ezdxf.entities.Layer dxf.handle DXF handle (feature for experts) dxf.owner Handle to owner (LayerTable). dxf.name Layer name, case insensitive and can not contain any of this characters: <>/\":;?*|=` (str) dxf.flags Layer flags (bit-coded values, feature for experts) ┌───┬──────────────────────────────────┐ │1 │ Layer is frozen; otherwise layer │ │ │ is thawed; use is_frozen(), │ │ │ freeze() and thaw() │ ├───┼──────────────────────────────────┤ │2 │ Layer is frozen by default in │ │ │ new viewports │ └───┴──────────────────────────────────┘ │4 │ Layer is locked; use │ │ │ is_locked(), lock(), unlock() │ ├───┼──────────────────────────────────┤ │16 │ If set, table entry is │ │ │ externally dependent on an xref │ ├───┼──────────────────────────────────┤ │32 │ If both this bit and bit 16 are │ │ │ set, the externally dependent │ │ │ xref has been successfully │ │ │ resolved │ ├───┼──────────────────────────────────┤ │64 │ If set, the table entry was │ │ │ referenced by at least one │ │ │ entity in the drawing the last │ │ │ time the drawing was edited. │ │ │ (This flag is for the benefit of │ │ │ AutoCAD commands. It can be │ │ │ ignored by most programs that │ │ │ read DXF files and need not be │ │ │ set by programs that write DXF │ │ │ files) │ └───┴──────────────────────────────────┘ dxf.color Layer color, but use property Layer.color to get/set color value, because color is negative for layer status off (int) dxf.true_color Layer true color value as int, use property Layer.rgb to set/get true color value as (r, g, b) tuple. (requires DXF R2004) dxf.linetype Name of line type (str) dxf.plot Plot flag (int). Whether entities belonging to this layer should be drawn when the document is exported (plotted) to pdf. Does not affect visibility inside the CAD application itself. ┌──┬────────────────────────────┐ │1 │ plot layer (default value) │ ├──┼────────────────────────────┤ │0 │ don’t plot layer │ └──┴────────────────────────────┘ dxf.lineweight Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line weight is 200, values outside this range prevents AutoCAD from loading the file. ezdxf.lldxf.const.LINEWEIGHT_DEFAULT for using global default line weight. (requires DXF R13) dxf.plotstyle_handle Handle to plot style name? (requires DXF R13) dxf.material_handle Handle to default Material. (requires DXF R13) rgb Get/set DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute dxf.true_color is not set. layer.rgb = (30, 40, 50) r, g, b = layer.rgb This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level attribute dxf.true_color. color Get/set layer color, preferred method for getting the layer color, because dxf.color is negative for layer status off. description Get/set layer description as string transparency Get/set layer transparency as float value in the range from 0 to 1. 0 for no transparency (opaque) and 1 for 100% transparency. is_frozen() -> bool Returns True if layer is frozen. freeze() -> None Freeze layer. thaw() -> None Thaw layer. is_locked() -> bool Returns True if layer is locked. lock() -> None Lock layer, entities on this layer are not editable - just important in CAD applications. unlock() -> None Unlock layer, entities on this layer are editable - just important in CAD applications. is_off() -> bool Returns True if layer is off. is_on() -> bool Returns True if layer is on. on() -> None Switch layer on (visible). off() -> None Switch layer off (invisible). get_color() -> int Use property Layer.color instead. set_color(value: int) -> None Use property Layer.color instead. rename(name: str) -> None Rename layer and all known (documented) references to this layer. WARNING: Renaming layers may damage the DXF file in some circumstances! Parameters name – new layer name Raises • ValueError – name contains invalid characters: <>/":;?*|=` • ValueError – layer name already exist • ValueError – renaming of layers '0' and 'DEFPOINTS' not possible get_vp_overrides() -> LayerOverrides Returns the LayerOverrides object for this layer. LayerOverrides class ezdxf.entities.LayerOverrides This object stores the layer attribute overridden in Viewport entities, where each Viewport can have individual layer attribute overrides. Layer attributes which can be overridden: • ACI color • true color (rgb) • linetype • lineweight • transparency Get the override object for a certain layer by the Layer.get_vp_overrides() method. It is important to write changes back by calling commit(), otherwise the changes are lost. IMPORTANT: The implementation of this feature as DXF structures is not documented by the DXF reference, so if you encounter problems or errors, ALWAYS provide the DXF files, otherwise it is not possible to help. has_overrides(vp_handle: Optional[str] = None) -> bool Returns True if attribute overrides exist for the given Viewport handle. Returns True if any attribute overrides exist if the given handle is None. commit() -> None Write Viewport overrides back into the Layer entity. Without a commit() all changes are lost! get_color(vp_handle: str) -> int Returns the AutoCAD Color Index (ACI) override or the original layer value if no override exist. set_color(vp_handle: str, value: int) -> None Override the AutoCAD Color Index (ACI). Raises ValueError – invalid color value get_rgb(vp_handle: str) -> Optional[Tuple[int, int, int]] Returns the RGB override or the original layer value if no override exist. Returns None if no true color value is set. set_rgb(vp_handle: str, value: Optional[Tuple[int, int, int]]) Set the RGB override as (red, gree, blue) tuple or None to remove the true color setting. Raises ValueError – invalid RGB value get_transparency(vp_handle: str) -> float Returns the transparency override or the original layer value if no override exist. Returns 0.0 for opaque and 1.0 for fully transparent. set_transparency(vp_handle: str, value: float) -> None Set the transparency override. A transparency of 0.0 is opaque and 1.0 is fully transparent. Raises ValueError – invalid transparency value get_linetype(vp_handle: str) -> str Returns the linetype override or the original layer value if no override exist. set_linetype(vp_handle: str, value: str) -> None Set the linetype override. Raises ValueError – linetype without a LTYPE table entry get_lineweight(vp_handle: str) -> int Returns the lineweight override or the original layer value if no override exist. set_lineweight(vp_handle: str, value: int) -> None Set the lineweight override. Raises ValueError – invalid lineweight value discard(vp_handle: Optional[str] = None) -> None Discard all attribute overrides for the given Viewport handle or for all Viewport entities if the handle is None. Style IMPORTANT: DXF is not a layout preserving data format like PDF. It is more similar to the MS Word format. Many applications can open MS Word documents, but the displayed or printed document does not look perfect like the result of MS Word. The final rendering of DXF files is highly dependent on the interpretation of DXF entities by the rendering engine, and the DXF reference does not provide any guidelines for rendering entities. The biggest visual differences of CAD applications are the text renderings, therefore the only way to get the exact same result is to use the same CAD application. The DXF format does not and can not embed TTF fonts like the PDF format! The Textstyle entity defines a text style (DXF Reference), and can be used by the entities: Text, Attrib, Attdef, MText, Dimension, Leader and MultiLeader. Example to create a new text style “Arial” and to apply this text style: doc.styles.add("Arial", font="Arial.ttf") msp = doc.modelspace() msp.add_text("my text", dxfattribs={"style": "Arial"}) The settings stored in the Textstyle entity are the default text style values used by CAD applications if the text settings are not stored in the text entity itself. But not all setting are substituted by the default value. The height or width attribute must be stored in the text entities itself in order to influence the appearance of the text. It is recommended that you do not rely on the default settings in the Textstyle entity, set all attributes in the text entity itself if supported. Font Settings Just a few settings are available exclusive by the Textstyle entity: The most important setting is the font attribute, this attribute defines the rendering font as raw TTF file name, e.g. “Arial.ttf” or “OpenSansCondensed-Light.ttf”, this file name is often not the name displayed in GUI application and you have to digg down into the fonts folder e.g. (“C:\Windows\Fonts”) to get the real file name for the TTF font. Do not include the path! [image] AutoCAD supports beyond the legacy SHX fonts only TTF fonts. The SHX font format is not documented and only available in some CAD applications. The ezdxf drawing add-on replaces the SHX fonts by TTF fonts, which look similar to the SHX fonts, unfortunately the license of these fonts is unclear, therefore they can not be packaged with ezdxf. They are installed automatically if you use an Autodesk product like TrueView, or search the internet at you own risk for these TTF fonts. The extended font data can provide extra information for the font, it is stored in the XDATA section, not well documented and not widely supported. IMPORTANT: The DXF format does not and can not embed TTF fonts like the PDF format! You need to make sure that the CAD application is properly configured to have access to the system fonts. The DXF format has no setting where the CAD application should search for fonts, and does not guarantee that the text rendering on other computers or operating systems looks the same as on your current system on which you created the DXF. The second exclusive setting is the vertical text flag in Textstyle.flags. The vertical text style is enabled for all entities using the text style. Vertical text works only for SHX fonts and is not supported for TTF fonts (in AutoCAD) and is works only for the single line entities Text and Attrib. Most CAD applications beside AutoCAD and BricsCAD do not support vertical text rendering and even AutoCAD and BricsCAD have problems with vertical text rendering in some circumstances. Using the vertical text feature is not recommended. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'STYLE' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.styles.new() │ └─────────────────┴──────────────────────────┘ SEE ALSO: Tutorial for Text and DXF internals for DIMSTYLE Table. class ezdxf.entities.Textstyle property is_backward: bool Get/set text generation flag BACKWARDS, for mirrored text along the x-axis. property is_upside_down: bool Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis. property is_vertical_stacked: bool Get/set style flag VERTICAL_STACKED, for vertical stacked text. dxf.handle DXF handle (feature for experts). dxf.owner Handle to owner (TextstyleTable). dxf.name Style name (str) dxf.flags Style flags (feature for experts). ┌───┬──────────────────────────────────┐ │1 │ If set, this entry describes a │ │ │ shape │ └───┴──────────────────────────────────┘ │4 │ Vertical text │ ├───┼──────────────────────────────────┤ │16 │ If set, table entry is │ │ │ externally dependent on an xref │ ├───┼──────────────────────────────────┤ │32 │ If both this bit and bit 16 are │ │ │ set, the externally dependent │ │ │ xref has been successfully │ │ │ resolved │ ├───┼──────────────────────────────────┤ │64 │ If set, the table entry was │ │ │ referenced by at least one │ │ │ entity in the drawing the last │ │ │ time the drawing was edited. │ │ │ (This flag is only for the │ │ │ benefit of AutoCAD)commands. It │ │ │ can be ignored by most programs │ │ │ that read DXF files and need not │ │ │ be set by programs that write │ │ │ DXF files) │ └───┴──────────────────────────────────┘ dxf.height Fixed height in drawing units as float value, 0 for not fixed. dxf.width Width factor as float value, default value is 1. dxf.oblique Oblique (slanting) angle in degrees as float value, default value is 0 for no slanting. dxf.generation_flags Text generations flags as int value. ┌──┬──────────────────────────────────┐ │2 │ text is backward (mirrored along │ │ │ the x-axis) │ ├──┼──────────────────────────────────┤ │4 │ text is upside down (mirrored │ │ │ about the base line) │ └──┴──────────────────────────────────┘ dxf.last_height Last height used in drawing units as float value. dxf.font Raw font file name as string without leading path, e.g. “Arial.ttf” for TTF fonts or the SHX font name like “TXT” or “TXT.SHX”. dxf.bigfont Big font name as string, blank if none. No documentation how to use this feature, maybe just a legacy artifact. property has_extended_font_data: bool Returns True if extended font data is present. get_extended_font_data() -> Tuple[str, bool, bool] Returns extended font data as tuple (font-family, italic-flag, bold-flag). The extended font data is optional and not reliable! Returns (“”, False, False) if extended font data is not present. set_extended_font_data(family: str = '', *, italic=False, bold=False) -> None Set extended font data, the font-family name family is not validated by ezdxf. Overwrites existing data. discard_extended_font_data() Discard extended font data. make_font(cap_height: float = None, width_factor: float = None) -> AbstractFont Returns a font abstraction AbstractFont for this text style. Returns a font for a cap height of 1, if the text style has auto height (‐ Textstyle.dxf.height is 0) and the given cap_height is None or 0. Uses the Textstyle.dxf.width attribute if the given width_factor is None or 0, the default value is 1. The attribute Textstyle.dxf.big_font is ignored. Linetype Defines a linetype (DXF Reference). ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ └─────────────────┴──────────────────────────┘ │DXF type │ 'LTYPE' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.linetypes.new() │ └─────────────────┴──────────────────────────┘ SEE ALSO: Tutorial for Linetypes DXF Internals: LTYPE Table class ezdxf.entities.Linetype dxf.name Linetype name (str). dxf.owner Handle to owner (Table). dxf.description Linetype description (str). dxf.length Total pattern length in drawing units (float). dxf.items Number of linetype elements (int). DimStyle [image] [image] DIMSTYLE (DXF Reference) defines the appearance of Dimension entities. Each of this dimension variables starting with "dim..." can be overridden for any Dimension entity individually. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'DIMSTYLE' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.dimstyles.new() │ └─────────────────┴──────────────────────────┘ class ezdxf.entities.DimStyle dxf.owner Handle to owner (Table). dxf.name Dimension style name. dxf.flags Standard flag values (bit-coded values): ┌───┬──────────────────────────────────┐ │16 │ If set, table entry is │ │ │ externally dependent on an xref │ ├───┼──────────────────────────────────┤ │32 │ If both this bit and bit 16 are │ │ │ set, the externally dependent │ │ │ XREF has been successfully │ │ │ resolved │ ├───┼──────────────────────────────────┤ │64 │ If set, the table entry was │ │ │ referenced by at least one │ │ │ entity in the drawing the last │ │ │ time the drawing was edited. │ │ │ (This flag is only for the │ │ │ benefit of AutoCAD) │ └───┴──────────────────────────────────┘ dxf.dimpost Prefix/suffix for primary units dimension values. dxf.dimapost Prefix/suffix for alternate units dimensions. dxf.dimblk Block type to use for both arrowheads as name string. dxf.dimblk1 Block type to use for first arrowhead as name string. dxf.dimblk2 Block type to use for second arrowhead as name string. dxf.dimscale Global dimension feature scale factor. (default=1) dxf.dimasz Dimension line and arrowhead size. (default=0.25) dxf.dimexo Distance from origin points to extension lines. (default imperial=0.0625, default metric=0.625) dxf.dimdli Incremental spacing between baseline dimensions. (default imperial=0.38, default metric=3.75) dxf.dimexe Extension line distance beyond dimension line. (default imperial=0.28, default metric=2.25) dxf.dimrnd Rounding value for decimal dimensions. (default=0) Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer. dxf.dimdle Dimension line extension beyond extension lines. (default=0) dxf.dimtp Upper tolerance value for tolerance dimensions. (default=0) dxf.dimtm Lower tolerance value for tolerance dimensions. (default=0) dxf.dimtxt Size of dimension text. (default imperial=0.28, default metric=2.5) dxf.dimcen Controls placement of center marks or centerlines. (default imperial=0.09, default metric=2.5) dxf.dimtsz Controls size of dimension line tick marks drawn instead of arrowheads. (default=0) dxf.dimaltf Alternate units dimension scale factor. (default=25.4) dxf.dimlfac Scale factor for linear dimension values. (default=1) dxf.dimtvp Vertical position of text above or below dimension line if dimtad is 0. (default=0) dxf.dimtfac Scale factor for fractional or tolerance text size. (default=1) dxf.dimgap Gap size between dimension line and dimension text. (default imperial=0.09, default metric=0.625) dxf.dimaltrnd Rounding value for alternate dimension units. (default=0) dxf.dimtol Toggles creation of appended tolerance dimensions. (default imperial=1, default metric=0) dxf.dimlim Toggles creation of limits-style dimension text. (default=0) dxf.dimtih Orientation of text inside extension lines. (default imperial=1, default metric=0) dxf.dimtoh Orientation of text outside extension lines. (default imperial=1, default metric=0) dxf.dimse1 Toggles suppression of first extension line. (default=0) dxf.dimse2 Toggles suppression of second extension line. (default=0) dxf.dimtad Sets vertical text placement relative to dimension line. (default imperial=0, default metric=1) ┌──┬──────────────────────────────────┐ │0 │ center │ ├──┼──────────────────────────────────┤ │1 │ above │ ├──┼──────────────────────────────────┤ │2 │ outside, handled like above by │ │ │ ezdxf │ ├──┼──────────────────────────────────┤ │3 │ JIS, handled like above by ezdxf │ ├──┼──────────────────────────────────┤ │4 │ below │ └──┴──────────────────────────────────┘ dxf.dimzin Zero suppression for primary units dimensions. (default imperial=0, default metric=8) Values 0-3 affect feet-and-inch dimensions only. ┌───┬──────────────────────────────────┐ │0 │ Suppresses zero feet and │ │ │ precisely zero inches │ ├───┼──────────────────────────────────┤ │1 │ Includes zero feet and precisely │ │ │ zero inches │ ├───┼──────────────────────────────────┤ │2 │ Includes zero feet and │ │ │ suppresses zero inches │ ├───┼──────────────────────────────────┤ │3 │ Includes zero inches and │ │ │ suppresses zero feet │ ├───┼──────────────────────────────────┤ │4 │ Suppresses leading zeros in │ │ │ decimal dimensions (for example, │ │ │ 0.5000 becomes .5000) │ ├───┼──────────────────────────────────┤ │8 │ Suppresses trailing zeros in │ │ │ decimal dimensions (for example, │ │ │ 12.5000 becomes 12.5) │ ├───┼──────────────────────────────────┤ │12 │ Suppresses both leading and │ │ │ trailing zeros (for example, │ │ │ 0.5000 becomes .5) │ └───┴──────────────────────────────────┘ dxf.dimazin Controls zero suppression for angular dimensions. (default=0) ┌──┬──────────────────────────────────┐ │0 │ Displays all leading and │ │ │ trailing zeros │ ├──┼──────────────────────────────────┤ │1 │ Suppresses leading zeros in │ │ │ decimal dimensions (for example, │ │ │ 0.5000 becomes .5000) │ ├──┼──────────────────────────────────┤ │2 │ Suppresses trailing zeros in │ │ │ decimal dimensions (for example, │ │ │ 12.5000 becomes 12.5) │ ├──┼──────────────────────────────────┤ │3 │ Suppresses leading and trailing │ │ │ zeros (for example, 0.5000 │ │ │ becomes .5) │ └──┴──────────────────────────────────┘ dxf.dimalt Enables or disables alternate units dimensioning. (default=0) dxf.dimaltd Controls decimal places for alternate units dimensions. (default imperial=2, default metric=3) dxf.dimtofl Toggles forced dimension line creation. (default imperial=0, default metric=1) dxf.dimsah Toggles appearance of arrowhead blocks. (default=0) dxf.dimtix Toggles forced placement of text between extension lines. (default=0) dxf.dimsoxd Suppresses dimension lines outside extension lines. (default=0) dxf.dimclrd Dimension line, arrowhead, and leader line color. (default=0) dxf.dimclre Dimension extension line color. (default=0) dxf.dimclrt Dimension text color. (default=0) dxf.dimadec Controls the number of decimal places for angular dimensions. dxf.dimunit Obsolete, now use DIMLUNIT AND DIMFRAC dxf.dimdec Decimal places for dimension values. (default imperial=4, default metric=2) dxf.dimtdec Decimal places for primary units tolerance values. (default imperial=4, default metric=2) dxf.dimaltu Units format for alternate units dimensions. (default=2) dxf.dimalttd Decimal places for alternate units tolerance values. (default imperial=4, default metric=2) dxf.dimaunit Unit format for angular dimension values. (default=0) dxf.dimfrac Controls the fraction format used for architectural and fractional dimensions. (default=0) dxf.dimlunit Specifies units for all nonangular dimensions. (default=2) dxf.dimdsep Specifies a single character to use as a decimal separator. (default imperial = “.”, default metric = “,”) This is an integer value, use ord(".") to write value. dxf.dimtmove Controls the format of dimension text when it is moved. (default=0) ┌──┬──────────────────────────────────┐ │0 │ Moves the dimension line with │ │ │ dimension text │ ├──┼──────────────────────────────────┤ │1 │ Adds a leader when dimension │ │ │ text is moved │ ├──┼──────────────────────────────────┤ │2 │ Allows text to be moved freely │ │ │ without a leader │ └──┴──────────────────────────────────┘ dxf.dimjust Horizontal justification of dimension text. (default=0) ┌──┬──────────────────────────────────┐ │0 │ Center of dimension line │ ├──┼──────────────────────────────────┤ │1 │ Left side of the dimension line, │ │ │ near first extension line │ ├──┼──────────────────────────────────┤ │2 │ Right side of the dimension │ │ │ line, near second extension line │ ├──┼──────────────────────────────────┤ │3 │ Over first extension line │ ├──┼──────────────────────────────────┤ │4 │ Over second extension line │ └──┴──────────────────────────────────┘ dxf.dimsd1 Toggles suppression of first dimension line. (default=0) dxf.dimsd2 Toggles suppression of second dimension line. (default=0) dxf.dimtolj Vertical justification for dimension tolerance text. (default=1) ┌──┬──────────────────────────────────┐ │0 │ Align with bottom line of │ │ │ dimension text │ ├──┼──────────────────────────────────┤ │1 │ Align vertical centered to │ │ │ dimension text │ ├──┼──────────────────────────────────┤ │2 │ Align with top line of dimension │ │ │ text │ └──┴──────────────────────────────────┘ dxf.dimtzin Zero suppression for tolerances values, see DimStyle.dxf.dimzin dxf.dimaltz Zero suppression for alternate units dimension values. (default=0) dxf.dimalttz Zero suppression for alternate units tolerance values. (default=0) dxf.dimfit Obsolete, now use DIMATFIT and DIMTMOVE dxf.dimupt Controls user placement of dimension line and text. (default=0) dxf.dimatfit Controls placement of text and arrowheads when there is insufficient space between the extension lines. (default=3) dxf.dimtxsty Text style used for dimension text by name. dxf.dimtxsty_handle Text style used for dimension text by handle of STYLE entry. (use DimStyle.dxf.dimtxsty to get/set text style by name) dxf.dimldrblk Specify arrowhead used for leaders by name. dxf.dimldrblk_handle Specify arrowhead used for leaders by handle of referenced block. (use DimStyle.dxf.dimldrblk to get/set arrowhead by name) dxf.dimblk_handle Block type to use for both arrowheads, handle of referenced block. (use DimStyle.dxf.dimblk to get/set arrowheads by name) dxf.dimblk1_handle Block type to use for first arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk1 to get/set arrowhead by name) dxf.dimblk2_handle Block type to use for second arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk2 to get/set arrowhead by name) dxf.dimlwd Lineweight value for dimension lines. (default=-2, BYBLOCK) dxf.dimlwe Lineweight value for extension lines. (default=-2, BYBLOCK) dxf.dimltype Specifies the linetype used for the dimension line as linetype name, requires DXF R2007+ dxf.dimltype_handle Specifies the linetype used for the dimension line as handle to LTYPE entry, requires DXF R2007+ (use DimStyle.dxf.dimltype to get/set linetype by name) dxf.dimltex1 Specifies the linetype used for the extension line 1 as linetype name, requires DXF R2007+ dxf.dimlex1_handle Specifies the linetype used for the extension line 1 as handle to LTYPE entry, requires DXF R2007+ (use DimStyle.dxf.dimltex1 to get/set linetype by name) dxf.dimltex2 Specifies the linetype used for the extension line 2 as linetype name, requires DXF R2007+ dxf.dimlex2_handle Specifies the linetype used for the extension line 2 as handle to LTYPE entry, requires DXF R2007+ (use DimStyle.dxf.dimltex2 to get/set linetype by name) dxf.dimfxlon Extension line has fixed length if set to 1, requires DXF R2007+ dxf.dimfxl Length of extension line below dimension line if fixed (DimStyle.dxf.dimtfxlon == 1), DimStyle.dxf.dimexen defines the length above the dimension line, requires DXF R2007+ dxf.dimtfill Text fill 0=off; 1=background color; 2=custom color (see DimStyle.dxf.dimtfillclr), requires DXF R2007+ dxf.dimtfillclr Text fill custom color as color index (1-255), requires DXF R2007+ dxf.dimarcsym Display arc symbol, supported only by ArcDimension: ┌──┬──────────────────────────────────┐ │0 │ arc symbol preceding the │ │ │ measurement text │ ├──┼──────────────────────────────────┤ │1 │ arc symbol above the measurement │ │ │ text │ ├──┼──────────────────────────────────┤ │2 │ disable arc symbol │ └──┴──────────────────────────────────┘ copy_to_header(doc: Drawing) Copy all dimension style variables to HEADER section of doc. set_arrows(blk: str = '', blk1: str = '', blk2: str = '', ldrblk: str = '') -> None Set arrows by block names or AutoCAD standard arrow names, set DIMTSZ to 0 which disables tick. Parameters • blk – block/arrow name for both arrows, if DIMSAH is 0 • blk1 – block/arrow name for first arrow, if DIMSAH is 1 • blk2 – block/arrow name for second arrow, if DIMSAH is 1 • ldrblk – block/arrow name for leader set_tick(size: float = 1) -> None Set tick size, which also disables arrows, a tick is just an oblique stroke as marker. Parameters size – arrow size in drawing units set_text_align(halign: Optional[str] = None, valign: Optional[str] = None, vshift: Optional[float] = None) -> None Set measurement text alignment, halign defines the horizontal alignment (requires DXF R2000+), valign defines the vertical alignment, above1 and above2 means above extension line 1 or 2 and aligned with extension line. Parameters • halign – “left”, “right”, “center”, “above1”, “above2”, requires DXF R2000+ • valign – “above”, “center”, “below” • vshift – vertical text shift, if valign is “center”; >0 shift upward, <0 shift downwards set_text_format(prefix: str = '', postfix: str = '', rnd: Optional[float] = None, dec: Optional[int] = None, sep: Optional[str] = None, leading_zeros: bool = True, trailing_zeros: bool = True) Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places. Parameters • prefix – Dimension text prefix text as string • postfix – Dimension text postfix text as string • rnd – Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer. • dec – Sets the number of decimal places displayed for the primary units of a dimension, requires DXF R2000+ • sep – “.” or “,” as decimal separator, requires DXF R2000+ • leading_zeros – Suppress leading zeros for decimal dimensions if False • trailing_zeros – Suppress trailing zeros for decimal dimensions if False set_dimline_format(color: Optional[int] = None, linetype: Optional[str] = None, lineweight: Optional[int] = None, extension: Optional[float] = None, disable1: Optional[bool] = None, disable2: Optional[bool] = None) Set dimension line properties Parameters • color – color index • linetype – linetype as string, requires DXF R2007+ • lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm, requires DXF R2000+ • extension – extension length • disable1 – True to suppress first part of dimension line, requires DXF R2000+ • disable2 – True to suppress second part of dimension line, requires DXF R2000+ set_extline_format(color: Optional[int] = None, lineweight: Optional[int] = None, extension: Optional[float] = None, offset: Optional[float] = None, fixed_length: Optional[float] = None) Set common extension line attributes. Parameters • color – color index • lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm • extension – extension length above dimension line • offset – offset from measurement point • fixed_length – set fixed length extension line, length below the dimension line set_extline1(linetype: Optional[str] = None, disable=False) Set extension line 1 attributes. Parameters • linetype – linetype for extension line 1, requires DXF R2007+ • disable – disable extension line 1 if True set_extline2(linetype: Optional[str] = None, disable=False) Set extension line 2 attributes. Parameters • linetype – linetype for extension line 2, requires DXF R2007+ • disable – disable extension line 2 if True set_tolerance(upper: float, lower: Optional[float] = None, hfactor: float = 1.0, align: Optional[MTextLineAlignment] = None, dec: Optional[int] = None, leading_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) -> None Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and trailing zero suppression. Parameters • upper – upper tolerance value • lower – lower tolerance value, if None same as upper • hfactor – tolerance text height factor in relation to the dimension text height • align – tolerance text alignment enum ezdxf.enums.MTextLineAlignment requires DXF R2000+ • dec – Sets the number of decimal places displayed, requires DXF R2000+ • leading_zeros – suppress leading zeros for decimal dimensions if False, requires DXF R2000+ • trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires DXF R2000+ Changed in version 0.17.2: argument align as enum ezdxf.enums.MTextLineAlignment set_limits(upper: float, lower: float, hfactor: float = 1.0, dec: Optional[int] = None, leading_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) -> None Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading and trailing zero suppression. Parameters • upper – upper limit value added to measurement value • lower – lower lower value subtracted from measurement value • hfactor – limit text height factor in relation to the dimension text height • dec – Sets the number of decimal places displayed, requires DXF R2000+ • leading_zeros – suppress leading zeros for decimal dimensions if False, requires DXF R2000+ • trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires DXF R2000+ VPort The viewport table (DXF Reference) stores the modelspace viewport configurations. So this entries just modelspace viewports, not paperspace viewports, for paperspace viewports see the Viewport entity. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'VPORT' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.viewports.new() │ └─────────────────┴──────────────────────────┘ SEE ALSO: DXF Internals: VPORT Configuration Table class ezdxf.entities.VPort Subclass of DXFEntity Defines a viewport configurations for the modelspace. dxf.owner Handle to owner (ViewportTable). dxf.name Viewport name dxf.flags Standard flag values (bit-coded values): ┌───┬──────────────────────────────────┐ │16 │ If set, table entry is │ │ │ externally dependent on an xref │ ├───┼──────────────────────────────────┤ │32 │ If both this bit and bit 16 are │ │ │ set, the externally dependent │ │ │ xref has been successfully │ │ │ resolved │ ├───┼──────────────────────────────────┤ │64 │ If set, the table entry was │ │ │ referenced by at least one │ │ │ entity in the drawing the last │ │ │ time the drawing was edited. │ │ │ (This flag is only for the │ │ │ benefit of AutoCAD) │ └───┴──────────────────────────────────┘ dxf.lower_left Lower-left corner of viewport dxf.upper_right Upper-right corner of viewport dxf.center View center point (in DCS) dxf.snap_base Snap base point (in DCS) dxf.snap_spacing Snap spacing X and Y dxf.grid_spacing Grid spacing X and Y dxf.direction_point View direction from target point (in WCS) dxf.target_point View target point (in WCS) dxf.height View height dxf.aspect_ratio dxf.lens_length Lens focal length in mm dxf.front_clipping Front clipping plane (offset from target point) dxf.back_clipping Back clipping plane (offset from target point) dxf.snap_rotation Snap rotation angle in degrees dxf.view_twist View twist angle in degrees dxf.status dxf.view_mode dxf.circle_zoom dxf.fast_zoom dxf.ucs_icon • bit 0: 0=hide, 1=show • bit 1: 0=display in lower left corner, 1=display at origin dxf.snap_on dxf.grid_on dxf.snap_style dxf.snap_isopair reset_wcs() -> None Reset coordinate system to the WCS. View The View table (DXF Reference) stores named views of the model or paperspace layouts. This stored views makes parts of the drawing or some view points of the model in a CAD applications more accessible. This views have no influence to the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the convenience of CAD application users. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'VIEW' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.views.new() │ └─────────────────┴──────────────────────────┘ SEE ALSO: DXF Internals: VIEW Table class ezdxf.entities.View dxf.owner Handle to owner (Table). dxf.name Name of view. dxf.flags Standard flag values (bit-coded values): ┌───┬──────────────────────────────────┐ │1 │ If set, this is a paper space │ │ │ view │ ├───┼──────────────────────────────────┤ │16 │ If set, table entry is │ │ │ externally dependent on an xref │ ├───┼──────────────────────────────────┤ │32 │ If both this bit and bit 16 are │ │ │ set, the externally dependent │ │ │ xref has been successfully │ │ │ resolved │ ├───┼──────────────────────────────────┤ │64 │ If set, the table entry was │ │ │ referenced by at least one │ │ │ entity in the drawing the last │ │ │ time the drawing was edited. │ │ │ (This flag is only for the │ │ │ benefit of AutoCAD) │ └───┴──────────────────────────────────┘ dxf.height View height (in DCS) dxf.width View width (in DCS) dxf.center_point View center point (in DCS) dxf.direction_point View direction from target (in WCS) dxf.target_point Target point (in WCS) dxf.lens_length Lens length dxf.front_clipping Front clipping plane (offset from target point) dxf.back_clipping Back clipping plane (offset from target point) dxf.view_twist Twist angle in degrees. dxf.view_mode View mode (see VIEWMODE system variable) dxf.render_mode ┌──┬───────────────────────────────┐ │0 │ 2D Optimized (classic 2D) │ ├──┼───────────────────────────────┤ │1 │ Wireframe │ ├──┼───────────────────────────────┤ │2 │ Hidden line │ ├──┼───────────────────────────────┤ │3 │ Flat shaded │ ├──┼───────────────────────────────┤ │4 │ Gouraud shaded │ ├──┼───────────────────────────────┤ │5 │ Flat shaded with wireframe │ ├──┼───────────────────────────────┤ │6 │ Gouraud shaded with wireframe │ └──┴───────────────────────────────┘ dxf.ucs 1 if there is a UCS associated to this view; 0 otherwise dxf.ucs_origin UCS origin as (x, y, z) tuple (appears only if ucs is set to 1) dxf.ucs_xaxis UCS x-axis as (x, y, z) tuple (appears only if ucs is set to 1) dxf.ucs_yaxis UCS y-axis as (x, y, z) tuple (appears only if ucs is set to 1) dxf.ucs_ortho_type Orthographic type of UCS (appears only if ucs is set to 1) ┌──┬─────────────────────────┐ │0 │ UCS is not orthographic │ ├──┼─────────────────────────┤ │1 │ Top │ ├──┼─────────────────────────┤ │2 │ Bottom │ ├──┼─────────────────────────┤ │3 │ Front │ ├──┼─────────────────────────┤ │4 │ Back │ ├──┼─────────────────────────┤ │5 │ Left │ ├──┼─────────────────────────┤ │6 │ Right │ └──┴─────────────────────────┘ dxf.elevation UCS elevation dxf.ucs_handle Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed (appears only if ucs is set to 1) dxf.base_ucs_handle Handle of UCSTable of base UCS if UCS is orthographic. If not present and ucs_ortho_type is non-zero, then base UCS is taken to be WORLD (appears only if ucs is set to 1) dxf.camera_plottable 1 if the camera is plottable dxf.background_handle Handle to background object (optional) dxf.live_selection_handle Handle to live section object (optional) dxf.visual_style_handle Handle to visual style object (optional) dxf.sun_handle Sun hard ownership handle. AppID Defines an APPID (DXF Reference). These table entries maintain a set of names for all registered applications. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'APPID' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.appids.new() │ └─────────────────┴──────────────────────────┘ class ezdxf.entities.AppID dxf.owner Handle to owner (Table). dxf.name User-supplied (or application-supplied) application name (for extended data). dxf.flags Standard flag values (bit-coded values): ┌───┬──────────────────────────────────┐ │16 │ If set, table entry is │ │ │ externally dependent on an xref │ ├───┼──────────────────────────────────┤ │32 │ If both this bit and bit 16 are │ │ │ set, the externally dependent │ │ │ xref has been successfully │ │ │ resolved │ ├───┼──────────────────────────────────┤ │64 │ If set, the table entry was │ │ │ referenced by at least one │ │ │ entity in the drawing the last │ │ │ time the drawing was edited. │ │ │ (This flag is only for the │ │ │ benefit of AutoCAD) │ └───┴──────────────────────────────────┘ UCS Defines an named or unnamed user coordinate system (DXF Reference) for usage in CAD applications. This UCS table entry does not interact with ezdxf in any way, to do coordinate transformations by ezdxf use the ezdxf.math.UCS class. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'UCS' │ ├─────────────────┼──────────────────────────┤ │Factory function │ Drawing.ucs.new() │ └─────────────────┴──────────────────────────┘ SEE ALSO: UCS and OCS class ezdxf.entities.UCSTableEntry dxf.owner Handle to owner (Table). dxf.name UCS name (str). dxf.flags Standard flags (bit-coded values): ┌───┬──────────────────────────────────┐ │16 │ If set, table entry is │ │ │ externally dependent on an xref │ ├───┼──────────────────────────────────┤ │32 │ If both this bit and bit 16 are │ │ │ set, the externally dependent │ │ │ xref has been successfully │ │ │ resolved │ ├───┼──────────────────────────────────┤ │64 │ If set, the table entry was │ │ │ referenced by at least one │ │ │ entity in the drawing the last │ │ │ time the drawing was edited. │ │ │ (This flag is only for the │ │ │ benefit of AutoCAD) │ └───┴──────────────────────────────────┘ dxf.origin Origin as (x, y, z) tuple dxf.xaxis X-axis direction as (x, y, z) tuple dxf.yaxis Y-axis direction as (x, y, z) tuple ucs() -> UCS Returns an ezdxf.math.UCS object for this UCS table entry. BlockRecord BLOCK_RECORD (DXF Reference) is the core management structure for BlockLayout and Layout. This is an internal DXF structure managed by ezdxf, package users don’t have to care about it. ┌─────────────────┬─────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼─────────────────────────────┤ │DXF type │ 'BLOCK_RECORD' │ ├─────────────────┼─────────────────────────────┤ │Factory function │ Drawing.block_records.new() │ └─────────────────┴─────────────────────────────┘ class ezdxf.entities.BlockRecord dxf.owner Handle to owner (Table). dxf.name Name of associated BLOCK. dxf.layout Handle to associated DXFLayout, if paperspace layout or modelspace else “0” dxf.explode 1 for BLOCK references can be exploded else 0 dxf.scale 1 for BLOCK references can be scaled else 0 dxf.units BLOCK insert units ┌───┬────────────────────┐ │0 │ Unitless │ └───┴────────────────────┘ │1 │ Inches │ ├───┼────────────────────┤ │2 │ Feet │ ├───┼────────────────────┤ │3 │ Miles │ ├───┼────────────────────┤ │4 │ Millimeters │ ├───┼────────────────────┤ │5 │ Centimeters │ ├───┼────────────────────┤ │6 │ Meters │ ├───┼────────────────────┤ │7 │ Kilometers │ ├───┼────────────────────┤ │8 │ Microinches │ ├───┼────────────────────┤ │9 │ Mils │ ├───┼────────────────────┤ │10 │ Yards │ ├───┼────────────────────┤ │11 │ Angstroms │ ├───┼────────────────────┤ │12 │ Nanometers │ ├───┼────────────────────┤ │13 │ Microns │ ├───┼────────────────────┤ │14 │ Decimeters │ ├───┼────────────────────┤ │15 │ Decameters │ ├───┼────────────────────┤ │16 │ Hectometers │ ├───┼────────────────────┤ │17 │ Gigameters │ ├───┼────────────────────┤ │18 │ Astronomical units │ ├───┼────────────────────┤ │19 │ Light years │ ├───┼────────────────────┤ │20 │ Parsecs │ ├───┼────────────────────┤ │21 │ US Survey Feet │ ├───┼────────────────────┤ │22 │ US Survey Inch │ ├───┼────────────────────┤ │23 │ US Survey Yard │ ├───┼────────────────────┤ │24 │ US Survey Mile │ └───┴────────────────────┘ property is_active_paperspace: bool True if is “active” paperspace layout. property is_any_paperspace: bool True if is any kind of paperspace layout. property is_any_layout: bool True if is any kind of modelspace or paperspace layout. property is_block_layout: bool True if not any kind of modelspace or paperspace layout, just a regular block definition. property is_modelspace: bool True if is the modelspace layout. property is_xref: bool True if represents an XREF (external reference) or XREF_OVERLAY. Internal Structure Do not change this structures, this is just an information for experienced developers! The BLOCK_RECORD is the owner of all the entities in a layout and stores them in an EntitySpace object (BlockRecord.entity_space). For each layout exist a BLOCK definition in the BLOCKS section, a reference to the Block entity is stored in BlockRecord.block. Modelspace and Paperspace layouts require an additional DXFLayout object in the OBJECTS section. SEE ALSO: More information about Block Management Structures and Layout Management Structures. Blocks A block definition (BlockLayout) is a collection of DXF entities, which can be placed multiply times at different layouts or other blocks as references to the block definition. SEE ALSO: Tutorial for Blocks and DXF Internals: Block Management Structures Block BLOCK (DXF Reference) entity is embedded into the BlockLayout object. The BLOCK entity is accessible by the BlockLayout.block attribute. ┌─────────────────┬──────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ ├─────────────────┼──────────────────────────────────┤ │DXF type │ 'BLOCK' │ ├─────────────────┼──────────────────────────────────┤ │Factory function │ Drawing.blocks.new() (returns a │ │ │ BlockLayout) │ └─────────────────┴──────────────────────────────────┘ SEE ALSO: Tutorial for Blocks and DXF Internals: Block Management Structures class ezdxf.entities.Block dxf.handle BLOCK handle as plain hex string. (feature for experts) dxf.owner Handle to owner as plain hex string. (feature for experts) dxf.layer Layer name as string; default value is '0' dxf.name BLOCK name as string. (case insensitive) dxf.base_point BLOCK base point as (x, y, z) tuple, default value is (0, 0, 0) Insertion location referenced by the Insert entity to place the block reference and also the center of rotation and scaling. dxf.flags BLOCK flags (bit-coded) ┌───┬──────────────────────────────────┐ │1 │ Anonymous block generated by │ │ │ hatching, associative │ │ │ dimensioning, other internal │ │ │ operations, or an application │ ├───┼──────────────────────────────────┤ │2 │ Block has non-constant attribute │ │ │ definitions (this bit is not set │ │ │ if the block has any attribute │ │ │ definitions that are constant, │ │ │ or has no attribute definitions │ │ │ at all) │ ├───┼──────────────────────────────────┤ │4 │ Block is an external reference │ │ │ (xref) │ ├───┼──────────────────────────────────┤ │8 │ Block is an xref overlay │ ├───┼──────────────────────────────────┤ │16 │ Block is externally dependent │ ├───┼──────────────────────────────────┤ │32 │ This is a resolved external │ │ │ reference, or dependent of an │ │ │ external reference (ignored on │ │ │ input) │ ├───┼──────────────────────────────────┤ │64 │ This definition is a referenced │ │ │ external reference (ignored on │ │ │ input) │ └───┴──────────────────────────────────┘ dxf.xref_path File system path as string, if this block defines an external reference (XREF). is_layout_block Returns True if this is a Modelspace or Paperspace block definition. is_anonymous Returns True if this is an anonymous block generated by hatching, associative dimensioning, other internal operations, or an application. is_xref Returns True if bock is an external referenced file. is_xref_overlay Returns True if bock is an external referenced overlay file. EndBlk ENDBLK entity is embedded into the BlockLayout object. The ENDBLK entity is accessible by the BlockLayout.endblk attribute. ┌────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ └────────────┴──────────────────────────┘ │DXF type │ 'ENDBLK' │ └────────────┴──────────────────────────┘ class ezdxf.entities.EndBlk dxf.handle BLOCK handle as plain hex string. (feature for experts) dxf.owner Handle to owner as plain hex string. (feature for experts) dxf.layer Layer name as string; should always be the same as Block.dxf.layer Insert Block reference (DXF Reference) with maybe attached attributes (Attrib). ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'INSERT' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_blockref() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────────────┘ SEE ALSO: Tutorial for Blocks WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! TODO: influence of layer, linetype, color DXF attributes to block entities class ezdxf.entities.Insert dxf.name BLOCK name (str) dxf.insert Insertion location of the BLOCK base point as (2D/3D Point in OCS) dxf.xscale Scale factor for x direction (float) dxf.yscale Scale factor for y direction (float) Not all CAD applications support non-uniform scaling (e.g. LibreCAD). dxf.zscale Scale factor for z direction (float) Not all CAD applications support non-uniform scaling (e.g. LibreCAD). dxf.rotation Rotation angle in degrees (float) dxf.row_count Count of repeated insertions in row direction, MINSERT entity if > 1 (int) dxf.row_spacing Distance between two insert points (MINSERT) in row direction (float) dxf.column_count Count of repeated insertions in column direction, MINSERT entity if > 1 (int) dxf.column_spacing Distance between two insert points (MINSERT) in column direction (float) attribs A list of all attached Attrib entities. has_scaling Returns True if any axis scaling is applied. has_uniform_scaling Returns True if scaling is uniform in x-, y- and z-axis ignoring reflections e.g. (1, 1, -1) is uniform scaling. mcount Returns the multi-insert count, MINSERT (multi-insert) processing is required if mcount > 1. set_scale(factor: float) Set uniform scaling. block() -> Optional[BlockLayout] Returns associated BlockLayout. place(insert: Optional[Union[Sequence[float], Vec2, Vec3]] = None, scale: Optional[Tuple[float, float, float]] = None, rotation: Optional[float] = None) -> Insert Set block reference placing location insert, scaling and rotation attributes. Parameters which are None will not be altered. Parameters • insert – insert location as (x, y [,z]) tuple • scale – (x-scale, y-scale, z-scale) tuple • rotation – rotation angle in degrees grid(size: Tuple[int, int] = (1, 1), spacing: Tuple[float, float] = (1, 1)) -> Insert Place block reference in a grid layout, grid size defines the row- and column count, spacing defines the distance between two block references. Parameters • size – grid size as (row_count, column_count) tuple • spacing – distance between placing as (row_spacing, column_spacing) tuple has_attrib(tag: str, search_const: bool = False) -> bool Returns True if ATTRIB tag exist, for search_const doc see get_attrib(). Parameters • tag – tag name as string • search_const – search also const ATTDEF entities get_attrib(tag: str, search_const: bool = False) -> Optional[Union[Attrib, AttDef]] Get attached Attrib entity with dxf.tag == tag, returns None if not found. Some applications may not attach constant ATTRIB entities, set search_const to True, to get at least the associated AttDef entity. Parameters • tag – tag name • search_const – search also const ATTDEF entities get_attrib_text(tag: str, default: str = '', search_const: bool = False) -> str Get content text of attached Attrib entity with dxf.tag == tag, returns default if not found. Some applications may not attach constant ATTRIB entities, set search_const to True, to get content text of the associated AttDef entity. Parameters • tag – tag name • default – default value if ATTRIB tag is absent • search_const – search also const ATTDEF entities add_attrib(tag: str, text: str, insert: Union[Sequence[float], Vec2, Vec3] = (0, 0), dxfattribs=None) -> Attrib Attach an Attrib entity to the block reference. Example for appending an attribute to an INSERT entity with none standard alignment: e.add_attrib('EXAMPLETAG', 'example text').set_placement( (3, 7), align=TextEntityAlignment.MIDDLE_CENTER ) Parameters • tag – tag name as string • text – content text as string • insert – insert location as tuple (x, y[, z]) in WCS • dxfattribs – additional DXF attributes for the ATTRIB entity add_auto_attribs(values: Dict[str, str]) -> Insert Attach for each Attdef entity, defined in the block definition, automatically an Attrib entity to the block reference and set tag/value DXF attributes of the ATTRIB entities by the key/value pairs (both as strings) of the values dict. The ATTRIB entities are placed relative to the insert location of the block reference, which is identical to the block base point. This method avoids the wrapper block of the add_auto_blockref() method, but the visual results may not match the results of CAD applications, especially for non uniform scaling. If the visual result is very important to you, use the add_auto_blockref() method. Parameters values – Attrib tag values as tag/value pairs delete_attrib(tag: str, ignore=False) -> None Delete an attached Attrib entity from INSERT. If ignore is False, an DXFKeyError exception is raised, if ATTRIB tag does not exist. Parameters • tag – ATTRIB name • ignore – False for raising DXFKeyError if ATTRIB tag does not exist. Raises DXFKeyError – if ATTRIB tag does not exist. delete_all_attribs() -> None Delete all Attrib entities attached to the INSERT entity. reset_transformation() -> None Reset block reference parameters location, rotation and extrusion vector. transform(m: Matrix44) -> Insert Transform INSERT entity by transformation matrix m inplace. Unlike the transformation matrix m, the INSERT entity can not represent a non-orthogonal target coordinate system, for this case an InsertTransformationError will be raised. translate(dx: float, dy: float, dz: float) -> Insert Optimized INSERT translation about dx in x-axis, dy in y-axis and dz in z-axis. virtual_entities(*, skipped_entity_callback: Optional[Callable[[DXFGraphic, str], None]] = None, redraw_order=False) -> Iterable[DXFGraphic] Yields “virtual” entities of a block reference. This method is meant to examine the block reference entities at the “exploded” location without really “exploding” the block reference. The`skipped_entity_callback()` will be called for all entities which are not processed, signature: skipped_entity_callback(entity: DXFEntity, reason: str), entity is the original (untransformed) DXF entity of the block definition, the reason string is an explanation why the entity was skipped. This entities are not stored in the entity database, have no handle and are not assigned to any layout. It is possible to convert this entities into regular drawing entities by adding the entities to the entities database and a layout of the same DXF document as the block reference: doc.entitydb.add(entity) msp = doc.modelspace() msp.add_entity(entity) This method does not resolve the MINSERT attributes, only the sub-entities of the base INSERT will be returned. To resolve MINSERT entities check if multi insert processing is required, that’s the case if property Insert.mcount > 1, use the Insert.multi_insert() method to resolve the MINSERT entity into single INSERT entities. WARNING: Non uniform scaling may return incorrect results for text entities (TEXT, MTEXT, ATTRIB) and maybe some other entities. Parameters • skipped_entity_callback – called whenever the transformation of an entity is not supported and so was skipped • redraw_order – yield entities in ascending redraw order if True multi_insert() -> Iterable[Insert] Yields a virtual INSERT entity for each grid element of a MINSERT entity (multi-insert). explode(target_layout: BaseLayout = None, *, redraw_order=False) -> EntityQuery Explode block reference entities into target layout, if target layout is None, the target layout is the layout of the block reference. This method destroys the source block reference entity. Transforms the block entities into the required WCS location by applying the block reference attributes insert, extrusion, rotation and the scaling values xscale, yscale and zscale. Attached ATTRIB entities are converted to TEXT entities, this is the behavior of the BURST command of the AutoCAD Express Tools. Returns an EntityQuery container with all “exploded” DXF entities. WARNING: Non uniform scaling may lead to incorrect results for text entities (TEXT, MTEXT, ATTRIB) and maybe some other entities. Parameters • target_layout – target layout for exploded entities, None for same layout as source entity. • redraw_order – create entities in ascending redraw order if True ucs() Returns the block reference coordinate system as ezdxf.math.UCS object. Attrib The ATTRIB (DXF Reference) entity represents a text value associated with a tag. In most cases an ATTRIB is appended to an Insert entity, but it can also appear as standalone entity. ┌─────────────────────────┬───────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Text │ ├─────────────────────────┼───────────────────────────────────────┤ │DXF type │ 'ATTRIB' │ ├─────────────────────────┼───────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_attrib() │ │ │ (stand alone entity) │ ├─────────────────────────┼───────────────────────────────────────┤ │Factory function │ Insert.add_attrib() (attached to │ │ │ Insert) │ ├─────────────────────────┼───────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴───────────────────────────────────────┘ SEE ALSO: Tutorial for Blocks WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Attrib ATTRIB supports all DXF attributes and methods of parent class Text. dxf.tag Tag to identify the attribute (str) dxf.text Attribute content as text (str) property is_invisible: bool Attribute is invisible (does not appear). property is_const: bool This is a constant attribute. property is_verify: bool Verification is required on input of this attribute. (CAD application feature) property is_preset: bool No prompt during insertion. (CAD application feature) property has_embedded_mtext_entity: bool Returns True if the entity has an embedded MTEXT entity for multi line support. virtual_mtext_entity() -> MText Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties as the host entity. plain_mtext(fast=True) -> str Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded MTEXT entity exist. The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older CAD applications or unreliable DXF libraries and CAD applications. The “accurate” mode is much slower than the “fast” mode. Parameters fast – uses the “fast” mode to extract the plain MTEXT content if True or the “accurate” mode if set to False set_mtext(mtext: MText, graphic_properties=True) -> None Set multi-line properties from a MText entity. The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line ATTRIB/ATTDEF entity will be exported. Parameters • mtext – source MText entity • graphic_properties – copy graphic properties (color, layer, …) from source MTEXT if True embed_mtext(mtext: MText, graphic_properties=True) -> None Set multi-line properties from a MText entity and destroy the source entity afterwards. The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line ATTRIB/ATTDEF entity will be exported. Parameters • mtext – source MText entity • graphic_properties – copy graphic properties (color, layer, …) from source MTEXT if True AttDef The ATTDEF (DXF Reference) entity is a template in a BlockLayout, which will be used to create an attached Attrib entity for an Insert entity. ┌─────────────────────────┬───────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Text │ ├─────────────────────────┼───────────────────────────────────────┤ │DXF type │ 'ATTDEF' │ ├─────────────────────────┼───────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_attdef() │ ├─────────────────────────┼───────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴───────────────────────────────────────┘ SEE ALSO: Tutorial for Blocks WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.AttDef ATTDEF supports all DXF attributes and methods of parent class Text. dxf.tag Tag to identify the attribute (str) dxf.text Attribute content as text (str) dxf.prompt Attribute prompt string. (CAD application feature) dxf.field_length Just relevant to CAD programs for validating user input property is_invisible: bool Attribute is invisible (does not appear). property is_const: bool This is a constant attribute. property is_verify: bool Verification is required on input of this attribute. (CAD application feature) property is_preset: bool No prompt during insertion. (CAD application feature) property has_embedded_mtext_entity: bool Returns True if the entity has an embedded MTEXT entity for multi line support. virtual_mtext_entity() -> MText Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties as the host entity. plain_mtext(fast=True) -> str Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded MTEXT entity exist. The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older CAD applications or unreliable DXF libraries and CAD applications. The “accurate” mode is much slower than the “fast” mode. Parameters fast – uses the “fast” mode to extract the plain MTEXT content if True or the “accurate” mode if set to False set_mtext(mtext: MText, graphic_properties=True) -> None Set multi-line properties from a MText entity. The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line ATTRIB/ATTDEF entity will be exported. Parameters • mtext – source MText entity • graphic_properties – copy graphic properties (color, layer, …) from source MTEXT if True embed_mtext(mtext: MText, graphic_properties=True) -> None Set multi-line properties from a MText entity and destroy the source entity afterwards. The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line ATTRIB/ATTDEF entity will be exported. Parameters • mtext – source MText entity • graphic_properties – copy graphic properties (color, layer, …) from source MTEXT if True Layouts Layout Manager The layout manager is unique to each DXF drawing, access the layout manager as layouts attribute of the Drawing object (e.g. doc.layouts.rename("Layout1", "PlanView")). class ezdxf.layouts.Layouts The Layouts class manages Paperspace layouts and the Modelspace. __len__() -> int Returns count of existing layouts, including the modelspace layout. __contains__(name: str) -> bool Returns True if layout name exist. __iter__() -> Iterator[Layout] Returns iterable of all layouts as Layout objects, including the modelspace layout. names() -> List[str] Returns a list of all layout names, all names in original case sensitive form. names_in_taborder() -> List[str] Returns all layout names in tab order as shown in CAD applications. modelspace() -> Modelspace Returns the Modelspace layout. get(name: Optional[str]) -> Layout Returns Layout by name, case insensitive “Model” == “MODEL”. Parameters name – layout name as shown in tab, e.g. 'Model' for modelspace new(name: str, dxfattribs: Optional[dict] = None) -> Paperspace Returns a new Paperspace layout. Parameters • name – layout name as shown in tabs in CAD applications • dxfattribs – additional DXF attributes for the DXFLayout entity Raises • DXFValueError – Invalid characters in layout name. • DXFValueError – Layout name already exist. rename(old_name: str, new_name: str) -> None Rename a layout from old_name to new_name. Can not rename layout 'Model' and the new name of a layout must not exist. Parameters • old_name – actual layout name, case insensitive • new_name – new layout name, case insensitive Raises • DXFValueError – try to rename 'Model' • DXFValueError – Layout new_name already exist. delete(name: str) -> None Delete layout name and destroy all entities in that layout. Parameters name (str) – layout name as shown in tabs Raises • DXFKeyError – if layout name do not exists • DXFValueError – deleting modelspace layout is not possible • DXFValueError – deleting last paperspace layout is not possible active_layout() -> Paperspace Returns the active paperspace layout. set_active_layout(name: str) -> None Set layout name as active paperspace layout. get_layout_for_entity(entity: DXFEntity) -> Layout Returns the owner layout for a DXF entity. Layout Types A Layout represents and manages DXF entities, there are three different layout objects: • Modelspace is the common working space, containing basic drawing entities. • Paperspace is arrangement of objects for printing and plotting, this layout contains basic drawing entities and viewports to the Modelspace. • BlockLayout works on an associated Block, Blocks are collections of drawing entities for reusing by block references. WARNING: Do not instantiate layout classes by yourself - always use the provided factory functions! Entity Ownership A layout owns all entities residing in their entity space, this means the dxf.owner attribute of any DXFGraphic in this layout is the dxf.handle of the layout, and deleting an entity from a layout is the end of life of this entity, because it is also deleted from the EntityDB. But it is possible to just unlink an entity from a layout, so it can be assigned to another layout, use the move_to_layout() method to move entities between layouts. BaseLayout class ezdxf.layouts.BaseLayout BaseLayout is the common base class for Layout and BlockLayout. is_alive False if layout is deleted. is_active_paperspace True if is active layout. is_any_paperspace True if is any kind of paperspace layout. is_modelspace True if is modelspace layout. is_any_layout True if is any kind of modelspace or paperspace layout. is_block_layout True if not any kind of modelspace or paperspace layout, just a regular block definition. units set drawing units. Type Get/Set layout/block drawing units as enum, see also Type ref __len__() -> int Returns count of entities owned by the layout. __iter__() -> Iterator['DXFGraphic'] Returns iterable of all drawing entities in this layout. __getitem__(index) Get entity at index. The underlying data structure for storing entities is organized like a standard Python list, therefore index can be any valid list indexing or slicing term, like a single index layout[-1] to get the last entity, or an index slice layout[:10] to get the first 10 or less entities as List[DXFGraphic]. get_extension_dict() -> ExtensionDict Returns the associated extension dictionary, creates a new one if necessary. delete_entity(entity: DXFGraphic) -> None Delete entity from layout entity space and the entity database, this destroys the entity. delete_all_entities() -> None Delete all entities from this layout and from entity database, this destroys all entities in this layout. unlink_entity(entity: DXFGraphic) -> None Unlink entity from layout but does not delete entity from the entity database, this removes entity just from the layout entity space. purge() Remove all destroyed entities from the layout entity space. query(query: str = '*') -> EntityQuery Get all DXF entities matching the Entity Query String. groupby(dxfattrib: str = '', key: KeyFunc = None) -> dict Returns a dict of entity lists, where entities are grouped by a dxfattrib or a key function. Parameters • dxfattrib – grouping by DXF attribute like 'layer' • key – key function, which accepts a DXFGraphic entity as argument and returns the grouping key of an entity or None to ignore the entity. Reason for ignoring: a queried DXF attribute is not supported by entity. move_to_layout(entity: DXFGraphic, layout: BaseLayout) -> None Move entity to another layout. Parameters • entity – DXF entity to move • layout – any layout (modelspace, paperspace, block) from same drawing set_redraw_order(handles: Union[Dict, Iterable[Tuple[str, str]]]) -> None If the header variable $SORTENTS Regen flag (bit-code value 16) is set, AutoCAD regenerates entities in ascending handles order. To change redraw order associate a different sort-handle to entities, this redefines the order in which the entities are regenerated. handles can be a dict of entity_handle and sort_handle as (k, v) pairs, or an iterable of (entity_handle, sort_handle) tuples. The sort-handle doesn’t have to be unique, some or all entities can share the same sort-handle and a sort-handle can be an existing handle. The “0” handle can be used, but this sort-handle will be drawn as latest (on top of all other entities) and not as first as expected. Parameters handles – iterable or dict of handle associations; an iterable of 2-tuples (entity_handle, sort_handle) or a dict (k, v) association as (entity_handle, sort_handle) get_redraw_order() -> Iterable[Tuple[str, str]] Returns iterable for all existing table entries as (entity_handle, sort_handle) pairs, see also set_redraw_order(). entities_in_redraw_order(reverse=False) -> Iterable[DXFGraphic] Yields all entities from layout in ascending redraw order or descending redraw order if reverse is True. New in version 0.18.1. add_entity(entity: DXFGraphic) -> None Add an existing DXFGraphic entity to a layout, but be sure to unlink (‐ unlink_entity()) entity from the previous owner layout. Adding entities from a different DXF drawing is not supported. add_foreign_entity(entity: DXFGraphic, copy=True) -> None Add a foreign DXF entity to a layout, this foreign entity could be from another DXF document or an entity without an assigned DXF document. The intention of this method is to add simple entities from another DXF document or from a DXF iterator, for more complex operations use the importer add-on. Especially objects with BLOCK section (INSERT, DIMENSION, MLEADER) or OBJECTS section dependencies (IMAGE, UNDERLAY) can not be supported by this simple method. Not all DXF types are supported and every dependency or resource reference from another DXF document will be removed except attribute layer will be preserved but only with default attributes like color 7 and linetype CONTINUOUS because the layer attribute doesn’t need a layer table entry. If the entity is part of another DXF document, it will be unlinked from this document and its entity database if argument copy is False, else the entity will be copied. Unassigned entities like from DXF iterators will just be added. Supported DXF types: • POINT • LINE • CIRCLE • ARC • ELLIPSE • LWPOLYLINE • SPLINE • POLYLINE • 3DFACE • SOLID • TRACE • SHAPE • MESH • ATTRIB • ATTDEF • TEXT • MTEXT • HATCH Parameters • entity – DXF entity to copy or move • copy – if True copy entity from other document else unlink from other document add_point(location: Union[Sequence[float], Vec2, Vec3], dxfattribs=None) -> Point Add a Point entity at location. Parameters • location – 2D/3D point in WCS • dxfattribs – additional DXF attributes add_line(start: UVec, end: UVec, dxfattribs=None) -> Line Add a Line entity from start to end. Parameters • start – 2D/3D point in WCS • end – 2D/3D point in WCS • dxfattribs – additional DXF attributes add_circle(center: UVec, radius: float, dxfattribs=None) -> Circle Add a Circle entity. This is an 2D element, which can be placed in space by using OCS. Parameters • center – 2D/3D point in WCS • radius – circle radius • dxfattribs – additional DXF attributes add_ellipse(center: UVec, major_axis: UVec = (1, 0, 0), ratio: float = 1, start_param: float = 0, end_param: float = 6.283185307179586, dxfattribs=None) -> Ellipse Add an Ellipse entity, ratio is the ratio of minor axis to major axis, start_param and end_param defines start and end point of the ellipse, a full ellipse goes from 0 to 2π. The ellipse goes from start to end param in counter clockwise direction. Parameters • center – center of ellipse as 2D/3D point in WCS • major_axis – major axis as vector (x, y, z) • ratio – ratio of minor axis to major axis in range +/-[1e-6, 1.0] • start_param – start of ellipse curve • end_param – end param of ellipse curve • dxfattribs – additional DXF attributes add_arc(center: UVec, radius: float, start_angle: float, end_angle: float, is_counter_clockwise: bool = True, dxfattribs=None) -> Arc Add an Arc entity. The arc goes from start_angle to end_angle in counter clockwise direction by default, set parameter is_counter_clockwise to False for clockwise orientation. Parameters • center – center of arc as 2D/3D point in WCS • radius – arc radius • start_angle – start angle in degrees • end_angle – end angle in degrees • is_counter_clockwise – False for clockwise orientation • dxfattribs – additional DXF attributes add_solid(points: Iterable[Union[Sequence[float], Vec2, Vec3]], dxfattribs=None) -> Spline Add a Solid entity, points is an iterable of 3 or 4 points. HINT: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2 Parameters • points – iterable of 3 or 4 2D/3D points in WCS • dxfattribs – additional DXF attributes add_trace(points: Iterable[UVec], dxfattribs=None) -> Trace Add a Trace entity, points is an iterable of 3 or 4 points. HINT: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2 Parameters • points – iterable of 3 or 4 2D/3D points in WCS • dxfattribs – additional DXF attributes add_3dface(points: Iterable[UVec], dxfattribs=None) -> Face3d Add a 3DFace entity, points is an iterable 3 or 4 2D/3D points. HINT: In contrast to SOLID and TRACE, the last two vertices are in regular order: a square has the vertex order 0-1-2-3 Parameters • points – iterable of 3 or 4 2D/3D points in WCS • dxfattribs – additional DXF attributes add_text(text: str, *, height: float = None, rotation: float = None, dxfattribs=None) -> Text Add a Text entity, see also Textstyle. Parameters • text – content string • height – text height in drawing units • rotation – text rotation in degrees • dxfattribs – additional DXF attributes add_blockref(name: str, insert: UVec, dxfattribs=None) -> Insert Add an Insert entity. When inserting a block reference into the modelspace or another block layout with different units, the scaling factor between these units should be applied as scaling attributes (xscale, …) e.g. modelspace in meters and block in centimeters, xscale has to be 0.01. Parameters • name – block name as str • insert – insert location as 2D/3D point in WCS • dxfattribs – additional DXF attributes add_auto_blockref(name: str, insert: UVec, values: Dict[str, str], dxfattribs=None) -> Insert Add an Insert entity. This method adds for each Attdef entity, defined in the block definition, automatically an Attrib entity to the block reference and set (tag, value) DXF attributes of the ATTRIB entities by the (key, value) pairs (both as strings) of the values dict. The Attrib entities are placed relative to the insert point, which is equal to the block base point. This method wraps the INSERT and all the ATTRIB entities into an anonymous block, which produces the best visual results, especially for non uniform scaled block references, because the transformation and scaling is done by the CAD application. But this makes evaluation of block references with attributes more complicated, if you prefer INSERT and ATTRIB entities without a wrapper block use the add_blockref_with_attribs() method. Parameters • name – block name • insert – insert location as 2D/3D point in WCS • values – Attrib tag values as (tag, value) pairs • dxfattribs – additional DXF attributes add_attdef(tag: str, insert: UVec = (0, 0), text: str = '', *, height: float = None, rotation: float = None, dxfattribs=None) -> AttDef Add an AttDef as stand alone DXF entity. Set position and alignment by the idiom: layout.add_attdef("NAME").set_placement( (2, 3), align=TextEntityAlignment.MIDDLE_CENTER ) Parameters • tag – tag name as string • insert – insert location as 2D/3D point in WCS • text – tag value as string • height – text height in drawing units • rotation – text rotation in degrees • dxfattribs – additional DXF attributes add_polyline2d(points: Iterable[UVec], format: str = None, *, close: bool = False, dxfattribs=None) -> Polyline Add a 2D Polyline entity. Parameters • points – iterable of 2D points in WCS • close – True for a closed polyline • format – user defined point format like add_lwpolyline(), default is None • dxfattribs – additional DXF attributes add_polyline3d(points: Iterable[UVec], *, close: bool = False, dxfattribs=None) -> Polyline Add a 3D Polyline entity. Parameters • points – iterable of 3D points in WCS • close – True for a closed polyline • dxfattribs – additional DXF attributes add_polymesh(size: Tuple[int, int] = (3, 3), dxfattribs=None) -> Polymesh Add a Polymesh entity, which is a wrapper class for the POLYLINE entity. A polymesh is a grid of mcount x ncount vertices and every vertex has its own (x, y, z)-coordinates. Parameters • size – 2-tuple (mcount, ncount) • dxfattribs – additional DXF attributes add_polyface(dxfattribs=None) -> Polyface Add a Polyface entity, which is a wrapper class for the POLYLINE entity. Parameters dxfattribs – additional DXF attributes for Polyline entity add_shape(name: str, insert: UVec = (0, 0), size: float = 1.0, dxfattribs=None) -> Shape Add a Shape reference to a external stored shape. Parameters • name – shape name as string • insert – insert location as 2D/3D point in WCS • size – size factor • dxfattribs – additional DXF attributes add_lwpolyline(points: Iterable[UVec], format: str = 'xyseb', *, close: bool = False, dxfattribs=None) -> LWPolyline Add a 2D polyline as LWPolyline entity. A points are defined as (x, y, [start_width, [end_width, [bulge]]]) tuples, but order can be redefined by the format argument. Set start_width, end_width to 0 to be ignored like (x, y, 0, 0, bulge). The LWPolyline is defined as a single DXF entity and needs less disk space than a Polyline entity. (requires DXF R2000) Format codes: • x = x-coordinate • y = y-coordinate • s = start width • e = end width • b = bulge value • v = (x, y [,z]) tuple (z-axis is ignored) Parameters • points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuples • format – user defined point format, default is “xyseb” • close – True for a closed polyline • dxfattribs – additional DXF attributes add_mtext(text: str, dxfattribs=None) -> MText Add a multiline text entity with automatic text wrapping at boundaries as MText entity. (requires DXF R2000) Parameters • text – content string • dxfattribs – additional DXF attributes add_mtext_static_columns(content: Iterable[str], width: float, gutter_width: float, height: float, dxfattribs=None) -> MText Add a multiline text entity with static columns as MText entity. The content is spread across the columns, the count of content strings determine the count of columns. This factory method adds automatically a column break "\N" at the end of each column text to force a new column. The height attribute should be big enough to reserve enough space for the tallest column. Too small values produce valid DXF files, but the visual result will not be as expected. The height attribute also defines the total height of the MTEXT entity. (requires DXF R2000) Parameters • content – iterable of column content • width – column width • gutter_width – distance between columns • height – max. column height • dxfattribs – additional DXF attributes New in version 0.17. add_mtext_dynamic_manual_height_columns(content: str, width: float, gutter_width: float, heights: Sequence[float], dxfattribs=None) -> MText Add a multiline text entity with dynamic columns as MText entity. The content is spread across the columns automatically by the CAD application. The heights sequence determine the height of the columns, except for the last column, which always takes the remaining content. The height value for the last column is required but can be 0, because the value is ignored. The count of heights also determines the count of columns, and max(heights) defines the total height of the MTEXT entity, which may be wrong if the last column requires more space. This current implementation works best for DXF R2018, because the content is stored as a continuous text in a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced DXF viewers and CAD application, which do the MTEXT content distribution completely by itself. (requires DXF R2000) Parameters • content – column content as a single string • width – column width • gutter_width – distance between columns • heights – column height for each column • dxfattribs – additional DXF attributes New in version 0.17. add_mtext_dynamic_auto_height_columns(content: str, width: float, gutter_width: float, height: float, count: int, dxfattribs=None) -> MText Add a multiline text entity with as much columns as needed for the given common fixed height. The content is spread across the columns automatically by the CAD application. The height argument also defines the total height of the MTEXT entity. To get the correct column count requires an exact MTEXT rendering like AutoCAD, which is not done by ezdxf, therefore passing the expected column count is required to calculate the correct total width. This current implementation works best for DXF R2018, because the content is stored as a continuous text in a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced DXF viewers and CAD application, which do the MTEXT content distribution completely by itself. Because of the current limitations the use of this method is not recommend. This situation may improve in future releases, but the exact rendering of the content will also slow down the processing speed dramatically. (requires DXF R2000) Parameters • content – column content as a single string • width – column width • gutter_width – distance between columns • height – max. column height • count – expected column count • dxfattribs – additional DXF attributes New in version 0.17. add_ray(start: UVec, unit_vector: UVec, dxfattribs=None) -> Ray Add a Ray that begins at start point and continues to infinity (construction line). (requires DXF R2000) Parameters • start – location 3D point in WCS • unit_vector – 3D vector (x, y, z) • dxfattribs – additional DXF attributes add_xline(start: UVec, unit_vector: UVec, dxfattribs=None) -> XLine Add an infinity XLine (construction line). (requires DXF R2000) Parameters • start – location 3D point in WCS • unit_vector – 3D vector (x, y, z) • dxfattribs – additional DXF attributes add_mline(vertices: Iterable[UVec] = None, *, close: bool = False, dxfattribs=None) -> MLine Add a MLine entity Parameters • vertices – MLINE vertices (in WCS) • close – True to add a closed MLINE • dxfattribs – additional DXF attributes add_spline(fit_points: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, degree: int = 3, dxfattribs=None) -> Spline Add a B-spline (Spline entity) defined by the given fit_points - the control points and knot values are created by the CAD application, therefore it is not predictable how the rendered spline will look like, because for every set of fit points exists an infinite set of B-splines. If fit_points is None, an “empty” spline will be created, all data has to be set by the user. The SPLINE entity requires DXF R2000. AutoCAD creates a spline through fit points by a global curve interpolation and an unknown method to estimate the direction of the start- and end tangent. SEE ALSO: • Tutorial for Spline • ezdxf.math.fit_points_to_cad_cv() Parameters • fit_points – iterable of fit points as (x, y[, z]) in WCS, creates an empty Spline if None • degree – degree of B-spline, max. degree supported by AutoCAD is 11 • dxfattribs – additional DXF attributes add_cad_spline_control_frame(fit_points: Iterable[Union[Sequence[float], Vec2, Vec3]], tangents: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, estimate: str = '5-p', dxfattribs=None) -> Spline Add a Spline entity passing through the given fit points. This method tries to create the same curve as CAD applications do. To understand the limitations and for more information see function ezdxf.math.fit_points_to_cad_cv(). Parameters • fit_points – iterable of fit points as (x, y[, z]) in WCS • tangents – start- and end tangent, default is autodetect • estimate – tangent direction estimation method • dxfattribs – additional DXF attributes add_spline_control_frame(fit_points: Iterable[Union[Sequence[float], Vec2, Vec3]], degree: int = 3, method: str = 'chord', dxfattribs=None) -> Spline Add a Spline entity passing through the given fit_points, the control points are calculated by a global curve interpolation without start- and end tangent constrains. The new SPLINE entity is defined by control points and not by the fit points, therefore the SPLINE looks always the same, no matter which CAD application renders the SPLINE. • “uniform”: creates a uniform t vector, from 0 to 1 evenly spaced, see uniform method • “distance”, “chord”: creates a t vector with values proportional to the fit point distances, see chord length method • “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see centripetal method • “arc”: creates a t vector with values proportional to the arc length between fit points. Use function add_cad_spline_control_frame() to create SPLINE entities from fit points similar to CAD application including start- and end tangent constraints. Parameters • fit_points – iterable of fit points as (x, y[, z]) in WCS • degree – degree of B-spline, max. degree supported by AutoCAD is 11 • method – calculation method for parameter vector t • dxfattribs – additional DXF attributes add_open_spline(control_points: Iterable[Union[Sequence[float], Vec2, Vec3]], degree: int = 3, knots: Optional[Iterable[float]] = None, dxfattribs=None) -> Spline Add an open uniform Spline defined by control_points. (requires DXF R2000) Open uniform B-splines start and end at your first and last control point. Parameters • control_points – iterable of 3D points in WCS • degree – degree of B-spline, max. degree supported by AutoCAD is 11 • knots – knot values as iterable of floats • dxfattribs – additional DXF attributes add_rational_spline(control_points: Iterable[Union[Sequence[float], Vec2, Vec3]], weights: Sequence[float], degree: int = 3, knots: Optional[Iterable[float]] = None, dxfattribs=None) -> Spline Add an open rational uniform Spline defined by control_points. (requires DXF R2000) weights has to be an iterable of floats, which defines the influence of the associated control point to the shape of the B-spline, therefore for each control point is one weight value required. Open rational uniform B-splines start and end at the first and last control point. Parameters • control_points – iterable of 3D points in WCS • weights – weight values as iterable of floats • degree – degree of B-spline, max. degree supported by AutoCAD is 11 • knots – knot values as iterable of floats • dxfattribs – additional DXF attributes add_hatch(color: int = 7, dxfattribs=None) -> Hatch Add a Hatch entity. (requires DXF R2000) Parameters • color – fill color as :ref`ACI`, default is 7 (black/white). • dxfattribs – additional DXF attributes add_helix(radius: float, pitch: float, turns: float, ccw=True, dxfattribs=None) -> Helix Add a Helix entity. The center of the helix is always (0, 0, 0) and the helix axis direction is the +z-axis. Transform the new HELIX by the transform() method to your needs. Parameters • radius – helix radius • pitch – the height of one complete helix turn • turns – count of turns • ccw – creates a counter-clockwise turning (right-handed) helix if True • dxfattribs – additional DXF attributes New in version 0.18. add_mpolygon(color: int = 256, fill_color: int = None, dxfattribs=None) -> MPolygon Add a MPolygon entity. (requires DXF R2000) The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application or DXF library. DXF version R2004+ is required to use a fill color different from BYLAYER. For R2000 the fill color is always BYLAYER, set any ACI value to create a filled MPOLYGON entity. Parameters • color – boundary color as AutoCAD Color Index (ACI), default is BYLAYER. • fill_color – fill color as AutoCAD Color Index (ACI), default is None • dxfattribs – additional DXF attributes add_mesh(dxfattribs=None) -> Mesh Add a Mesh entity. (requires DXF R2007) Parameters dxfattribs – additional DXF attributes add_image(image_def: ImageDef, insert: UVec, size_in_units: Tuple[float, float], rotation: float = 0.0, dxfattribs=None) -> Image Add an Image entity, requires a ImageDef entity, see Tutorial for Image and ImageDef. (requires DXF R2000) Parameters • image_def – required image definition as ImageDef • insert – insertion point as 3D point in WCS • size_in_units – size as (x, y) tuple in drawing units • rotation – rotation angle around the extrusion axis, default is the z-axis, in degrees • dxfattribs – additional DXF attributes add_wipeout(vertices: Iterable[UVec], dxfattribs=None) -> Wipeout Add a ezdxf.entities.Wipeout entity, the masking area is defined by WCS vertices. This method creates only a 2D entity in the xy-plane of the layout, the z-axis of the input vertices are ignored. add_underlay(underlay_def: UnderlayDefinition, insert: UVec = (0, 0, 0), scale=(1, 1, 1), rotation: float = 0.0, dxfattribs=None) -> Underlay Add an Underlay entity, requires a UnderlayDefinition entity, see Tutorial for Underlay and UnderlayDefinition. (requires DXF R2000) Parameters • underlay_def – required underlay definition as UnderlayDefinition • insert – insertion point as 3D point in WCS • scale – underlay scaling factor as (x, y, z) tuple or as single value for uniform scaling for x, y and z • rotation – rotation angle around the extrusion axis, default is the z-axis, in degrees • dxfattribs – additional DXF attributes add_linear_dim(base: Union[Sequence[float], Vec2, Vec3], p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', angle: float = 0, text_rotation: Optional[float] = None, dimstyle: str = 'EZDXF', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add horizontal, vertical and rotated Dimension line. If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have to call render() manually, this two step process allows additional processing steps on the Dimension entity between creation and rendering. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • base – location of dimension line, any point on the dimension line or its extension will do (in UCS) • p1 – measurement point 1 and start point of extension line 1 (in UCS) • p2 – measurement point 2 and start point of extension line 2 (in UCS) • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZDXF” • angle – angle from ucs/wcs x-axis to dimension line in degrees • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride add_multi_point_linear_dim(base: UVec, points: Iterable[UVec], angle: float = 0, ucs: UCS = None, avoid_double_rendering: bool = True, dimstyle: str = 'EZDXF', override: Dict = None, dxfattribs=None, discard=False) -> None Add multiple linear dimensions for iterable points. If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions This method sets many design decisions by itself, the necessary geometry will be generated automatically, no required nor possible render() call. This method is easy to use but you get what you get. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • base – location of dimension line, any point on the dimension line or its extension will do (in UCS) • points – iterable of measurement points (in UCS) • angle – angle from ucs/wcs x-axis to dimension line in degrees (0 = horizontal, 90 = vertical) • ucs – user defined coordinate system • avoid_double_rendering – suppresses the first extension line and the first arrow if possible for continued dimension entities • dimstyle – dimension style name (DimStyle table entry), default is “EZDXF” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity • discard – discard rendering result for friendly CAD applications like BricsCAD to get a native and likely better rendering result. (does not work with AutoCAD) add_aligned_dim(p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], distance: float, text: str = '<>', dimstyle: str = 'EZDXF', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add linear dimension aligned with measurement points p1 and p2. If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions This method returns a DimStyleOverride object, to create the necessary dimension geometry, you have to call DimStyleOverride.render() manually, this two step process allows additional processing steps on the Dimension entity between creation and rendering. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • p1 – measurement point 1 and start point of extension line 1 (in UCS) • p2 – measurement point 2 and start point of extension line 2 (in UCS) • distance – distance of dimension line from measurement points • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZDXF” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride add_radius_dim(center: Union[Sequence[float], Vec2, Vec3], mpoint: Optional[Union[Sequence[float], Vec2, Vec3]] = None, radius: Optional[float] = None, angle: Optional[float] = None, *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add a radius Dimension line. The radius dimension line requires a center point and a point mpoint on the circle or as an alternative a radius and a dimension line angle in degrees. See also: Tutorial for Radius Dimensions If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have to call render() manually, this two step process allows additional processing steps on the Dimension entity between creation and rendering. Following render types are supported: • Default text location outside: text aligned with dimension line; dimension style: “EZ_RADIUS” • Default text location outside horizontal: “EZ_RADIUS” + dimtoh=1 • Default text location inside: text aligned with dimension line; dimension style: “EZ_RADIUS_INSIDE” • Default text location inside horizontal: “EZ_RADIUS_INSIDE” + dimtih=1 • User defined text location: argument location != None, text aligned with dimension line; dimension style: “EZ_RADIUS” • User defined text location horizontal: argument location != None, “EZ_RADIUS” + dimtoh=1 for text outside horizontal, “EZ_RADIUS” + dimtih=1 for text inside horizontal Placing the dimension text at a user defined location, overrides the mpoint and the angle argument, but requires a given radius argument. The location argument does not define the exact text location, instead it defines the dimension line starting at center and the measurement text midpoint projected on this dimension line going through location, if text is aligned to the dimension line. If text is horizontal, location is the kink point of the dimension line from radial to horizontal direction. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • center – center point of the circle (in UCS) • mpoint – measurement point on the circle, overrides angle and radius (in UCS) • radius – radius in drawing units, requires argument angle • angle – specify angle of dimension line in degrees, requires argument radius • location – user defined dimension text location, overrides mpoint and angle, but requires radius (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride add_radius_dim_2p(center: Union[Sequence[float], Vec2, Vec3], mpoint: Union[Sequence[float], Vec2, Vec3], *, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut method to create a radius dimension by center point, measurement point on the circle and the measurement text at the default location defined by the associated dimstyle, for further information see general method add_radius_dim(). • dimstyle “EZ_RADIUS”: places the dimension text outside • dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside Parameters • center – center point of the circle (in UCS) • mpoint – measurement point on the circle (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride add_radius_dim_cra(center: Union[Sequence[float], Vec2, Vec3], radius: float, angle: float, *, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut method to create a radius dimension by (c)enter point, (r)adius and (a)ngle, the measurement text is placed at the default location defined by the associated dimstyle, for further information see general method add_radius_dim(). • dimstyle “EZ_RADIUS”: places the dimension text outside • dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside Parameters • center – center point of the circle (in UCS) • radius – radius in drawing units • angle – angle of dimension line in degrees • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride add_diameter_dim(center: Union[Sequence[float], Vec2, Vec3], mpoint: Optional[Union[Sequence[float], Vec2, Vec3]] = None, radius: Optional[float] = None, angle: Optional[float] = None, *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add a diameter Dimension line. The diameter dimension line requires a center point and a point mpoint on the circle or as an alternative a radius and a dimension line angle in degrees. If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have to call render() manually, this two step process allows additional processing steps on the Dimension entity between creation and rendering. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • center – specifies the center of the circle (in UCS) • mpoint – specifies the measurement point on the circle (in UCS) • radius – specify radius, requires argument angle, overrides p1 argument • angle – specify angle of dimension line in degrees, requires argument radius, overrides p1 argument • location – user defined location for text mid point (in UCS) • text – None or "<>" the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride add_diameter_dim_2p(p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut method to create a diameter dimension by two points on the circle and the measurement text at the default location defined by the associated dimstyle, for further information see general method add_diameter_dim(). Center point of the virtual circle is the mid point between p1 and p2. • dimstyle “EZ_RADIUS”: places the dimension text outside • dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside Parameters • p1 – first point of the circle (in UCS) • p2 – second point on the opposite side of the center point of the circle (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride add_angular_dim_2l(base: Union[Sequence[float], Vec2, Vec3], line1: Tuple[Union[Sequence[float], Vec2, Vec3], Union[Sequence[float], Vec2, Vec3]], line2: Tuple[Union[Sequence[float], Vec2, Vec3], Union[Sequence[float], Vec2, Vec3]], *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', text_rotation: Optional[float] = None, dimstyle: str = 'EZ_CURVED', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add angular Dimension from 2 lines. The measurement is always done from line1 to line2 in counter clockwise orientation. This does not always match the result in CAD applications! If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have to call render() manually, this two step process allows additional processing steps on the Dimension entity between creation and rendering. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • base – location of dimension line, any point on the dimension line or its extension is valid (in UCS) • line1 – specifies start leg of the angle (start point, end point) and determines extension line 1 (in UCS) • line2 – specifies end leg of the angle (start point, end point) and determines extension line 2 (in UCS) • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_angular_dim_3p(base: Union[Sequence[float], Vec2, Vec3], center: Union[Sequence[float], Vec2, Vec3], p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', text_rotation: Optional[float] = None, dimstyle: str = 'EZ_CURVED', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add angular Dimension from 3 points (center, p1, p2). The measurement is always done from p1 to p2 in counter clockwise orientation. This does not always match the result in CAD applications! If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have to call render() manually, this two step process allows additional processing steps on the Dimension entity between creation and rendering. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • base – location of dimension line, any point on the dimension line or its extension is valid (in UCS) • center – specifies the vertex of the angle • p1 – specifies start leg of the angle (center -> p1) and end point of extension line 1 (in UCS) • p2 – specifies end leg of the angle (center -> p2) and end point of extension line 2 (in UCS) • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_angular_dim_cra(center: Union[Sequence[float], Vec2, Vec3], radius: float, start_angle: float, end_angle: float, distance: float, *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', text_rotation: Optional[float] = None, dimstyle: str = 'EZ_CURVED', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut method to create an angular dimension by (c)enter point, (r)adius and start- and end (a)ngles, the measurement text is placed at the default location defined by the associated dimstyle. The measurement is always done from start_angle to end_angle in counter clockwise orientation. This does not always match the result in CAD applications! For further information see the more generic factory method add_angular_dim_3p(). Parameters • center – center point of the angle (in UCS) • radius – the distance from center to the start of the extension lines in drawing units • start_angle – start angle in degrees (in UCS) • end_angle – end angle in degrees (in UCS) • distance – distance from start of the extension lines to the dimension line in drawing units • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_angular_dim_arc(arc: ConstructionArc, distance: float, *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', text_rotation: Optional[float] = None, dimstyle: str = 'EZ_CURVED', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut method to create an angular dimension from a ConstructionArc. This construction tool can be created from ARC entities and the tool itself provides various construction class methods. The measurement text is placed at the default location defined by the associated dimstyle. The measurement is always done from start_angle to end_angle of the arc in counter clockwise orientation. This does not always match the result in CAD applications! For further information see the more generic factory method add_angular_dim_3p(). Parameters • arc – ConstructionArc • distance – distance from start of the extension lines to the dimension line in drawing units • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_arc_dim_3p(base: Union[Sequence[float], Vec2, Vec3], center: Union[Sequence[float], Vec2, Vec3], p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', text_rotation: Optional[float] = None, dimstyle: str = 'EZ_CURVED', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add ArcDimension from 3 points (center, p1, p2). Point p1 defines the radius and the start angle of the arc, point p2 only defines the end angle of the arc. If an UCS is used for arc dimension rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have to call render() manually, this two step process allows additional processing steps on the ArcDimension entity between creation and rendering. NOTE: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE variables, so the rendering results are very different from CAD applications. Parameters • base – location of dimension line, any point on the dimension line or its extension is valid (in UCS) • center – specifies the vertex of the angle • p1 – specifies the radius (center -> p1) and the star angle of the arc, this is also the start point for the 1st extension line (in UCS) • p2 – specifies the end angle of the arc. The start 2nd extension line is defined by this angle and the radius defined by p1 (in UCS) • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_arc_dim_cra(center: Union[Sequence[float], Vec2, Vec3], radius: float, start_angle: float, end_angle: float, distance: float, *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', text_rotation: Optional[float] = None, dimstyle: str = 'EZ_CURVED', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut method to create an arc dimension by (c)enter point, (r)adius and start- and end (a)ngles, the measurement text is placed at the default location defined by the associated dimstyle. NOTE: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE variables, so the rendering results are very different from CAD applications. Parameters • center – center point of the angle (in UCS) • radius – the distance from center to the start of the extension lines in drawing units • start_angle – start angle in degrees (in UCS) • end_angle – end angle in degrees (in UCS) • distance – distance from start of the extension lines to the dimension line in drawing units • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_arc_dim_arc(arc: ConstructionArc, distance: float, *, location: Optional[Union[Sequence[float], Vec2, Vec3]] = None, text: str = '<>', text_rotation: Optional[float] = None, dimstyle: str = 'EZ_CURVED', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut method to create an arc dimension from a ConstructionArc. This construction tool can be created from ARC entities and the tool itself provides various construction class methods. The measurement text is placed at the default location defined by the associated dimstyle. NOTE: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE variables, so the rendering results are very different from CAD applications. Parameters • arc – ConstructionArc • distance – distance from start of the extension lines to the dimension line in drawing units • location – user defined location for text mid point (in UCS) • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-axis=90) in degrees • dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_ordinate_dim(feature_location: Union[Sequence[float], Vec2, Vec3], offset: Union[Sequence[float], Vec2, Vec3], dtype: int, *, origin: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Add an ordinate type Dimension line. The feature location is defined in the global coordinate system, which is set as render UCS, which is the WCS by default. If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have to call render() manually, this two step process allows additional processing steps on the Dimension entity between creation and rendering. NOTE: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications. Parameters • feature_location – feature location in the global coordinate system (UCS) • offset – offset vector of leader end point from the feature location in the local coordinate system • dtype – 1 = x-type, 0 = y-type • origin – specifies the origin (0, 0) of the local coordinate system in UCS • rotation – rotation angle of the local coordinate system in degrees • text – None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the dimension text, everything else text is drawn as dimension text • dimstyle – dimension style name (DimStyle table entry), default is “EZDXF” • override – DimStyleOverride attributes • dxfattribs – additional DXF attributes for the DIMENSION entity Returns: DimStyleOverride New in version v0.18. add_ordinate_x_dim(feature_location: Union[Sequence[float], Vec2, Vec3], offset: Union[Sequence[float], Vec2, Vec3], *, origin: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut to add a x-type feature ordinate DIMENSION, for more information see add_ordinate_dim(). New in version v0.18. add_ordinate_y_dim(feature_location: Union[Sequence[float], Vec2, Vec3], offset: Union[Sequence[float], Vec2, Vec3], *, origin: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: Optional[Dict] = None, dxfattribs=None) -> DimStyleOverride Shortcut to add a y-type feature ordinate DIMENSION, for more information see add_ordinate_dim(). New in version v0.18. add_leader(vertices: Iterable[UVec], dimstyle: str = 'EZDXF', override: Dict = None, dxfattribs=None) -> Leader The Leader entity represents an arrow, made up of one or more vertices (or spline fit points) and an arrowhead. The label or other content to which the Leader is attached is stored as a separate entity, and is not part of the Leader itself. (requires DXF R2000) Leader shares its styling infrastructure with Dimension. By default a Leader without any annotation is created. For creating more fancy leaders and annotations see documentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementation notes . Parameters • vertices – leader vertices (in WCS) • dimstyle – dimension style name (DimStyle table entry), default is “EZDXF” • override – override DimStyleOverride attributes • dxfattribs – additional DXF attributes add_multileader_mtext(style: str = 'Standard', dxfattribs=None) -> MultiLeaderMTextBuilder Add a MultiLeader entity but returns a MultiLeaderMTextBuilder. New in version 0.18. add_multileader_block(style: str = 'Standard', dxfattribs=None) -> MultiLeaderBlockBuilder Add a MultiLeader entity but returns a MultiLeaderBlockBuilder. New in version 0.18. add_body(dxfattribs=None) -> Body Add a Body entity. (requires DXF R2000 or later) The ACIS data has to be set as SAT or SAB. add_region(dxfattribs=None) -> Region Add a Region entity. (requires DXF R2000 or later) The ACIS data has to be set as SAT or SAB. add_3dsolid(dxfattribs=None) -> Solid3d Add a 3DSOLID entity (Solid3d). (requires DXF R2000 or later) The ACIS data has to be set as SAT or SAB. add_surface(dxfattribs=None) -> Surface Add a Surface entity. (requires DXF R2007 or later) The ACIS data has to be set as SAT or SAB. add_extruded_surface(dxfattribs=None) -> ExtrudedSurface Add a ExtrudedSurface entity. (requires DXF R2007 or later) The ACIS data has to be set as SAT or SAB. add_lofted_surface(dxfattribs=None) -> LoftedSurface Add a LoftedSurface entity. (requires DXF R2007 or later) The ACIS data has to be set as SAT or SAB. add_revolved_surface(dxfattribs=None) -> RevolvedSurface Add a RevolvedSurface entity. (requires DXF R2007 or later) The ACIS data has to be set as SAT or SAB. add_swept_surface(dxfattribs=None) -> SweptSurface Add a SweptSurface entity. (requires DXF R2007 or later) The ACIS data has to be set as SAT or SAB. Layout class ezdxf.layouts.Layout Layout is a subclass of BaseLayout and common base class of Modelspace and Paperspace. name Layout name as shown in tabs of CAD applications. dxf Returns the DXF name space attribute of the associated DXFLayout object. This enables direct access to the underlying LAYOUT entity, e.g. Layout.dxf.layout_flags __contains__(entity: Union['DXFGraphic', str]) -> bool Returns True if entity is stored in this layout. Parameters entity – DXFGraphic object or handle as hex string reset_extents(extmin=(1e+20, 1e+20, 1e+20), extmax=(- 1e+20, - 1e+20, - 1e+20)) -> None Reset extents to given values or the AutoCAD default values. “Drawing extents are the bounds of the area occupied by objects.” (Quote Autodesk Knowledge Network) Parameters • extmin – minimum extents or (+1e20, +1e20, +1e20) as default value • extmax – maximum extents or (-1e20, -1e20, -1e20) as default value reset_limits(limmin=None, limmax=None) -> None Reset limits to given values or the AutoCAD default values. “Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking or entering point locations.” (Quote Autodesk Knowledge Network) The Paperspace class has an additional method reset_paper_limits() to deduce the default limits from the paper size settings. Parameters • extmin – minimum extents or (0, 0) as default • extmax – maximum extents or (paper width, paper height) as default value set_plot_type(value: int = 5) -> None ┌──┬──────────────────────────────────┐ │0 │ last screen display │ ├──┼──────────────────────────────────┤ │1 │ drawing extents │ ├──┼──────────────────────────────────┤ │2 │ drawing limits │ ├──┼──────────────────────────────────┤ │3 │ view specific (defined by │ │ │ Layout.dxf.plot_view_name) │ ├──┼──────────────────────────────────┤ │4 │ window specific (defined by │ │ │ Layout.set_plot_window_limits()) │ ├──┼──────────────────────────────────┤ │5 │ layout information (default) │ └──┴──────────────────────────────────┘ Parameters value – plot type Raises DXFValueError – for value out of range set_plot_style(name: str = 'ezdxf.ctb', show: bool = False) -> None Set plot style file of type .ctb. Parameters • name – plot style filename • show – show plot style effect in preview? (AutoCAD specific attribute) set_plot_window(lower_left: Tuple[float, float] = (0, 0), upper_right: Tuple[float, float] = (0, 0)) -> None Set plot window size in (scaled) paper space units. Parameters • lower_left – lower left corner as 2D point • upper_right – upper right corner as 2D point plot_viewport_borders(state: bool = True) -> None show_plot_styles(state: bool = True) -> None plot_centered(state: bool = True) -> None plot_hidden(state: bool = True) -> None use_standard_scale(state: bool = True) -> None use_plot_styles(state: bool = True) -> None scale_lineweights(state: bool = True) -> None print_lineweights(state: bool = True) -> None draw_viewports_first(state: bool = True) -> None model_type(state: bool = True) -> None update_paper(state: bool = True) -> None zoom_to_paper_on_update(state: bool = True) -> None plot_flags_initializing(state: bool = True) -> None prev_plot_init(state: bool = True) -> None set_plot_flags(flag, state: bool = True) -> None Modelspace class ezdxf.layouts.Modelspace Modelspace is a subclass of Layout. The modelspace contains the “real” world representation of the drawing subjects in real world units. name Name of modelspace is fixed as “Model”. new_geodata(dxfattribs: dict = None) -> GeoData Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OBJECTS section and not in the modelspace, it is linked to the modelspace by an ExtensionDict located in BLOCK_RECORD of the modelspace. The GEODATA entity requires DXF R2010. The DXF reference does not document if other layouts than the modelspace supports geo referencing, so I assume getting/setting geo data may only make sense for the modelspace. Parameters dxfattribs – DXF attributes for GeoData entity get_geodata() -> Optional['GeoData'] Returns the GeoData entity associated to the modelspace or None. Paperspace class ezdxf.layouts.Paperspace Paperspace is a subclass of Layout. Paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF export. name Layout name as shown in tabs of CAD applications. page_setup(size=(297, 210), margins=(10, 15, 10, 15), units='mm', offset=(0, 0), rotation=0, scale=16, name='ezdxf', device='DWG to PDF.pc3') Setup plot settings and paper size and reset viewports. All parameters in given units (mm or inch). Reset paper limits, extents and viewports. Parameters • size – paper size as (width, height) tuple • margins – (top, right, bottom, left) hint: clockwise • units – “mm” or “inch” • offset – plot origin offset is 2D point • rotation – see table Rotation • scale – integer in range [0, 32] defines a standard scale type or as tuple(numerator, denominator) e.g. (1, 50) for scale 1:50 • name – paper name prefix “{name}_({width}_x_{height}_{unit})” • device – device .pc3 configuration file or system printer name ┌────┬──────────────────────────────┐ │int │ Rotation │ ├────┼──────────────────────────────┤ │0 │ no rotation │ ├────┼──────────────────────────────┤ │1 │ 90 degrees counter-clockwise │ ├────┼──────────────────────────────┤ │2 │ upside-down │ ├────┼──────────────────────────────┤ │3 │ 90 degrees clockwise │ └────┴──────────────────────────────┘ viewports() -> List['Viewport'] Get all VIEWPORT entities defined in this paperspace layout. Returns a list of Viewport objects, sorted by id, the first entity is always the main viewport with an id of 1. main_viewport() -> Optional['Viewport'] Returns the main viewport of this paper space layout, or None if no main viewport exist. add_viewport(center: UVec, size: Tuple[float, float], view_center_point: UVec, view_height: float, dxfattribs: dict = None) -> Viewport Add a new Viewport entity. reset_viewports() -> None Delete all existing viewports, and create a new main viewport. reset_main_viewport(center: UVec = None, size: UVec = None) -> Viewport Reset the main viewport of this paper space layout to the given values, or reset them to the default values, deduced from the paper settings. Creates a new main viewport if none exist. Ezdxf does not create a main viewport by default, because CAD applications don’t require one. Parameters • center – center of the viewport in paper space units • size – viewport size as (width, height) tuple in paper space units reset_paper_limits() -> None Set paper limits to default values, all values in paperspace units but without plot scale (?). get_paper_limits() -> Tuple[Vec2, Vec2] Returns paper limits in plot paper units, relative to the plot origin. plot origin = lower left corner of printable area + plot origin offset Returns tuple (Vec2(x1, y1), Vec2(x2, y2)), lower left corner is (x1, y1), upper right corner is (x2, y2). BlockLayout class ezdxf.layouts.BlockLayout BlockLayout is a subclass of BaseLayout. Block layouts are reusable sets of graphical entities, which can be referenced by multiple Insert entities. Each reference can be placed, scaled and rotated individually and can have it’s own set of DXF Attrib entities attached. property name: str Get/set the BLOCK name property block: Optional[ezdxf.entities.block.Block] the associated Block entity. property endblk: Optional[ezdxf.entities.block.EndBlk] the associated EndBlk entity. property dxf DXF name space of associated BlockRecord table entry. property can_explode: bool Set property to True to allow exploding block references of this block. property scale_uniformly: bool Set property to True to allow block references of this block only scale uniformly. property base_point: ezdxf.math._vector.Vec3 Returns the base point of the block. __contains__(entity) -> bool Returns True if block contains entity. Parameters entity – DXFGraphic object or handle as hex string attdefs() -> Iterable[AttDef] Returns iterable of all Attdef entities. has_attdef(tag: str) -> bool Returns True if an Attdef for tag exist. get_attdef(tag: str) -> Optional[DXFGraphic] Returns attached Attdef entity by tag name. get_attdef_text(tag: str, default: str = '') -> str Returns text content for Attdef tag as string or returns default if no Attdef for tag exist. Parameters • tag – name of tag • default – default value if tag not exist Groups A group is just a bunch of DXF entities tied together. All entities of a group has to be on the same layout (modelspace or any paper layout but not block). Groups can be named or unnamed, but in reality an unnamed groups has just a special name like “*Annnn”. The name of a group has to be unique in the drawing. Groups are organized in the main group table, which is stored as attribute groups in the Drawing object. Group entities have to be in modelspace or any paperspace layout but not in a block definition! DXFGroup class ezdxf.entities.dxfgroups.DXFGroup The group name is not stored in the GROUP entity, it is stored in the GroupCollection object. dxf.description group description (string) dxf.unnamed 1 for unnamed, 0 for named group (int) dxf.selectable 1 for selectable, 0 for not selectable group (int) __iter__() -> Iterator[DXFEntity] Iterate over all DXF entities in DXFGroup as instances of DXFGraphic or inherited (LINE, CIRCLE, …). __len__() -> int Returns the count of DXF entities in DXFGroup. __getitem__(item) Returns entities by standard Python indexing and slicing. __contains__(item: Union[str, DXFEntity]) -> bool Returns True if item is in DXFGroup. item has to be a handle string or an object of type DXFEntity or inherited. handles() -> Iterable[str] Iterable of handles of all DXF entities in DXFGroup. edit_data() -> List[DXFEntity] Context manager which yields all the group entities as standard Python list: with group.edit_data() as data: # add new entities to a group data.append(modelspace.add_line((0, 0), (3, 0))) # remove last entity from a group data.pop() set_data(entities: Iterable[DXFEntity]) -> None Set entities as new group content, entities should be an iterable DXFGraphic or inherited (LINE, CIRCLE, …). Raises DXFValueError if not all entities be on the same layout (modelspace or any paperspace layout but not block) extend(entities: Iterable[DXFEntity]) -> None Add entities to DXFGroup without immediate verification! Validation at DXF export may raise a DXFStructureError! clear() -> None Remove all entities from DXFGroup, does not delete any drawing entities referenced by this group. audit(auditor: Auditor) -> None Remove invalid entities from DXFGroup. Invalid entities are: • deleted entities • all entities which do not reside in model- or paper space • all entities if they do not reside in the same layout GroupCollection Each Drawing has one group table, which is accessible by the attribute groups. class ezdxf.entities.dxfgroups.GroupCollection Manages all DXFGroup objects of a Drawing. __len__() Returns the count of DXF groups. __iter__() Iterate over all existing groups as (name, group) tuples. name is the name of the group as string and group is an DXFGroup object. __contains__() Returns True if a group name exist. get(name: str) -> DXFGroup Returns the group name. Raises DXFKeyError if group name does not exist. groups() -> Iterable[DXFGroup] Iterable of all existing groups. new(name: Optional[str] = None, description: str = '', selectable: bool = True) -> DXFGroup Creates a new group. If name is None an unnamed group is created, which has an automatically generated name like “*Annnn”. Group names are case insensitive. Parameters • name – group name as string • description – group description as string • selectable – group is selectable if True delete(group: Union[DXFGroup, str]) -> None Delete group, group can be an object of type DXFGroup or a group name as string. clear() Delete all groups. audit(auditor: Auditor) -> None Removes empty groups and invalid handles from all groups. DXF Entities All DXF entities can only reside in the BaseLayout and inherited classes like Modelspace, Paperspace and BlockLayout. WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! DXF Entity Base Class Common base class for all DXF entities and objects. WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.DXFEntity dxf The DXF attributes namespace: # set attribute value entity.dxf.layer = 'MyLayer' # get attribute value linetype = entity.dxf.linetype # delete attribute del entity.dxf.linetype dxf.handle DXF handle is a unique identifier as plain hex string like F000. (feature for experts) dxf.owner Handle to owner as plain hex string like F000. (feature for experts) doc Get the associated Drawing instance. property is_alive: bool Is False if entity has been deleted. property is_virtual: bool Is True if entity is a virtual entity. property is_bound: bool Is True if entity is bound to DXF document. property is_copy: bool Is True if the entity is a copy. property uuid: uuid.UUID Returns an UUID, which allows to distinguish even virtual entities without a handle. Dynamic attribute: this UUID will be created at the first request. property source_of_copy: Optional[ezdxf.entities.dxfentity.DXFEntity] The immediate source entity if this entity is a copy else None. Never references a destroyed entity. property origin_of_copy: Optional[ezdxf.entities.dxfentity.DXFEntity] The origin source entity if this entity is a copy else None. References the first non virtual source entity and never references a destroyed entity. property has_source_block_reference: bool Is True if this virtual entity was created by a block reference. property source_block_reference: Optional[Insert] The source block reference (INSERT) which created this virtual entity. The property is None if this entity was not created by a block reference. dxftype() -> str Get DXF type as string, like LINE for the line entity. __str__() -> str Returns a simple string representation. __repr__() -> str Returns a simple string representation including the class. has_dxf_attrib(key: str) -> bool Returns True if DXF attribute key really exist. Raises DXFAttributeError if key is not an supported DXF attribute. is_supported_dxf_attrib(key: str) -> bool Returns True if DXF attrib key is supported by this entity. Does not grant that attribute key really exist. get_dxf_attrib(key: str, default: Optional[Any] = None) -> Any Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if default is DXFValueError and no DXF default value is defined: layer = entity.get_dxf_attrib("layer") # same as layer = entity.dxf.layer Raises DXFAttributeError if key is not an supported DXF attribute. set_dxf_attrib(key: str, value: Any) -> None Set new value for DXF attribute key: entity.set_dxf_attrib("layer", "MyLayer") # same as entity.dxf.layer = "MyLayer" Raises DXFAttributeError if key is not an supported DXF attribute. del_dxf_attrib(key: str) -> None Delete DXF attribute key, does not raise an error if attribute is supported but not present. Raises DXFAttributeError if key is not an supported DXF attribute. dxfattribs(drop: Optional[Set[str]] = None) -> Dict Returns a dict with all existing DXF attributes and their values and exclude all DXF attributes listed in set drop. update_dxf_attribs(dxfattribs: Dict) -> None Set DXF attributes by a dict like {'layer': 'test', 'color': 4}. set_flag_state(flag: int, state: bool = True, name: str = 'flags') -> None Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to 0 (off) if state is False. get_flag_state(flag: int, name: str = 'flags') -> bool Returns True if any flag of DXF attribute is 1 (on), else False. Always check only one flag state at the time. has_extension_dict Returns True if entity has an attached ExtensionDict instance. get_extension_dict() -> ExtensionDict Returns the existing ExtensionDict instance. Raises AttributeError – extension dict does not exist new_extension_dict() -> ExtensionDict Create a new ExtensionDict instance . discard_extension_dict() -> None Delete ExtensionDict instance . has_app_data(appid: str) -> bool Returns True if application defined data for appid exist. get_app_data(appid: str) -> Tags Returns application defined data for appid. Parameters appid – application name as defined in the APPID table. Raises DXFValueError – no data for appid found set_app_data(appid: str, tags: Iterable) -> None Set application defined data for appid as iterable of tags. Parameters • appid – application name as defined in the APPID table. • tags – iterable of (code, value) tuples or DXFTag discard_app_data(appid: str) Discard application defined data for appid. Does not raise an exception if no data for appid exist. has_xdata(appid: str) -> bool Returns True if extended data for appid exist. get_xdata(appid: str) -> Tags Returns extended data for appid. Parameters appid – application name as defined in the APPID table. Raises DXFValueError – no extended data for appid found set_xdata(appid: str, tags: Iterable) -> None Set extended data for appid as iterable of tags. Parameters • appid – application name as defined in the APPID table. • tags – iterable of (code, value) tuples or DXFTag discard_xdata(appid: str) -> None Discard extended data for appid. Does not raise an exception if no extended data for appid exist. has_xdata_list(appid: str, name: str) -> bool Returns True if a tag list name for extended data appid exist. get_xdata_list(appid: str, name: str) -> Tags Returns tag list name for extended data appid. Parameters • appid – application name as defined in the APPID table. • name – extended data list name Raises DXFValueError – no extended data for appid found or no data list name not found set_xdata_list(appid: str, name: str, tags: Iterable) -> None Set tag list name for extended data appid as iterable of tags. Parameters • appid – application name as defined in the APPID table. • name – extended data list name • tags – iterable of (code, value) tuples or DXFTag discard_xdata_list(appid: str, name: str) -> None Discard tag list name for extended data appid. Does not raise an exception if no extended data for appid or no tag list name exist. replace_xdata_list(appid: str, name: str, tags: Iterable) -> None Replaces tag list name for existing extended data appid by tags. Appends new list if tag list name do not exist, but raises DXFValueError if extended data appid do not exist. Parameters • appid – application name as defined in the APPID table. • name – extended data list name • tags – iterable of (code, value) tuples or DXFTag Raises DXFValueError – no extended data for appid found has_reactors() -> bool Returns True if entity has reactors. get_reactors() -> List[str] Returns associated reactors as list of handles. set_reactors(handles: Iterable[str]) -> None Set reactors as list of handles. append_reactor_handle(handle: str) -> None Append handle to reactors. discard_reactor_handle(handle: str) -> None Discard handle from reactors. Does not raise an exception if handle does not exist. DXF Graphic Entity Base Class Common base class for all graphical DXF entities. This entities resides in entity spaces like Modelspace, any Paperspace or BlockLayout. ┌────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFEntity │ └────────────┴──────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.DXFGraphic rgb Get/set DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute dxf.true_color is not set. entity.rgb = (30, 40, 50) r, g, b = entity.rgb This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level attribute dxf.true_color. transparency Get/set transparency value as float. Value range 0 to 1, where 0 means entity is opaque and 1 means entity is 100% transparent (invisible). This is the recommend method to get/set transparency values, when ever possible do not use the DXF low level attribute DXFGraphic.dxf.transparency This attribute requires DXF R2004 or later, returns 0 for prior DXF versions and raises DXFAttributeError for setting transparency in older DXF versions. property is_transparency_by_layer: bool Returns True if entity inherits transparency from layer. property is_transparency_by_block: bool Returns True if entity inherits transparency from block. ocs() -> OCS Returns object coordinate system (OCS) for 2D entities like Text or Circle, returns a pass-through OCS for entities without OCS support. get_layout() -> Optional[BaseLayout] Returns the owner layout or returns None if entity is not assigned to any layout. unlink_from_layout() -> None Unlink entity from associated layout. Does nothing if entity is already unlinked. It is more efficient to call the unlink_entity() method of the associated layout, especially if you have to unlink more than one entity. copy_to_layout(layout: BaseLayout) -> DXFEntity Copy entity to another layout, returns new created entity as DXFEntity object. Copying between different DXF drawings is not supported. Parameters layout – any layout (model space, paper space, block) Raises DXFStructureError – for copying between different DXF drawings move_to_layout(layout: BaseLayout, source: BaseLayout = None) -> None Move entity from model space or a paper space layout to another layout. For block layout as source, the block layout has to be specified. Moving between different DXF drawings is not supported. Parameters • layout – any layout (model space, paper space, block) • source – provide source layout, faster for DXF R12, if entity is in a block layout Raises DXFStructureError – for moving between different DXF drawings graphic_properties() -> Dict Returns the important common properties layer, color, linetype, lineweight, ltscale, true_color and color_name as dxfattribs dict. has_hyperlink() -> bool Returns True if entity has an attached hyperlink. get_hyperlink() -> Tuple[str, str, str] Returns hyperlink, description and location. set_hyperlink(link: str, description: Optional[str] = None, location: Optional[str] = None) Set hyperlink of an entity. transform(m: Matrix44) -> DXFGraphic Inplace transformation interface, returns self (floating interface). Parameters m – 4x4 transformation matrix (ezdxf.math.Matrix44) translate(dx: float, dy: float, dz: float) -> DXFGraphic Translate entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface). Basic implementation uses the transform() interface, subclasses may have faster implementations. scale(sx: float, sy: float, sz: float) -> DXFGraphic Scale entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface). scale_uniform(s: float) -> DXFGraphic Scale entity inplace uniform about s in x-axis, y-axis and z-axis, returns self (floating interface). rotate_x(angle: float) -> DXFGraphic Rotate entity inplace about x-axis, returns self (floating interface). Parameters angle – rotation angle in radians rotate_y(angle: float) -> DXFGraphic Rotate entity inplace about y-axis, returns self (floating interface). Parameters angle – rotation angle in radians rotate_z(angle: float) -> DXFGraphic Rotate entity inplace about z-axis, returns self (floating interface). Parameters angle – rotation angle in radians rotate_axis(axis: Union[Sequence[float], Vec2, Vec3], angle: float) -> DXFGraphic Rotate entity inplace about vector axis, returns self (floating interface). Parameters • axis – rotation axis as tuple or Vec3 • angle – rotation angle in radians Common graphical DXF attributes DXFGraphic.dxf.layer Layer name as string; default = '0' DXFGraphic.dxf.linetype Linetype as string, special names 'BYLAYER', 'BYBLOCK'; default value is 'BYLAYER' DXFGraphic.dxf.color AutoCAD Color Index (ACI), default = 256 Constants defined in ezdxf.lldxf.const ┌────┬──────────┐ │0 │ BYBLOCK │ ├────┼──────────┤ │256 │ BYLAYER │ ├────┼──────────┤ │257 │ BYOBJECT │ └────┴──────────┘ DXFGraphic.dxf.lineweight Line weight in mm times 100 (e.g. 0.13mm = 13). There are fixed valid lineweights which are accepted by AutoCAD, other values prevents AutoCAD from loading the DXF document, BricsCAD isn’t that picky. (requires DXF R2000) Constants defined in ezdxf.lldxf.const ┌───┬────────────────────┐ │-1 │ LINEWEIGHT_BYLAYER │ ├───┼────────────────────┤ │-2 │ LINEWEIGHT_BYBLOCK │ ├───┼────────────────────┤ │-3 │ LINEWEIGHT_DEFAULT │ └───┴────────────────────┘ Valid DXF lineweights stored in VALID_DXF_LINEWEIGHTS: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211 DXFGraphic.dxf.ltscale Line type scale as float; default = 1.0 (requires DXF R2000) DXFGraphic.dxf.invisible 1 for invisible, 0 for visible; default = 0 (requires DXF R2000) DXFGraphic.dxf.paperspace 0 for entity resides in modelspace or a block, 1 for paperspace, this attribute is set automatically by adding an entity to a layout (feature for experts); default = 0 DXFGraphic.dxf.extrusion Extrusion direction as 3D vector; default = (0, 0, 1) DXFGraphic.dxf.thickness Entity thickness as float; default = 0.0 (requires DXF R2000) DXFGraphic.dxf.true_color True color value as int 0x00RRGGBB, use DXFGraphic.rgb to get/set true color values as (r, g, b) tuples. (requires DXF R2004) DXFGraphic.dxf.color_name Color name as string. (requires DXF R2004) DXFGraphic.dxf.transparency Transparency value as int, 0x020000TT 0x00 = 100% transparent / 0xFF = opaque, special value 0x01000000 means transparency by block. An unset transparency value means transparency by layer. Use DXFGraphic.transparency to get/set transparency as float value, and the properties DXFGraphic.is_transparency_by_block and DXFGraphic.is_transparency_by_layer to check special cases. (requires DXF R2004) DXFGraphic.dxf.shadow_mode ┌──┬────────────────────────────┐ │0 │ casts and receives shadows │ ├──┼────────────────────────────┤ │1 │ casts shadows │ ├──┼────────────────────────────┤ │2 │ receives shadows │ ├──┼────────────────────────────┤ │3 │ ignores shadows │ └──┴────────────────────────────┘ (requires DXF R2007) Face3d A 3DFACE (DXF Reference) is real 3D solid filled triangle or quadrilateral. Access vertices by name (entity.dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). ┌─────────────────────────┬───────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼───────────────────────────────────────┤ │DXF type │ '3DFACE' │ ├─────────────────────────┼───────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_3dface() │ ├─────────────────────────┼───────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴───────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Face3d Face3d because 3dface is not a valid Python class name. dxf.vtx0 Location of 1. vertex (3D Point in WCS) dxf.vtx1 Location of 2. vertex (3D Point in WCS) dxf.vtx2 Location of 3. vertex (3D Point in WCS) dxf.vtx3 Location of 4. vertex (3D Point in WCS) dxf.invisible_edge invisible edge flag (int, default=0) ┌──┬──────────────────────────┐ │1 │ first edge is invisible │ ├──┼──────────────────────────┤ │2 │ second edge is invisible │ ├──┼──────────────────────────┤ │4 │ third edge is invisible │ ├──┼──────────────────────────┤ │8 │ fourth edge is invisible │ └──┴──────────────────────────┘ Combine values by adding them, e.g. 1+4 = first and third edge is invisible. transform(m: Matrix44) -> Face3d Transform the 3DFACE entity by transformation matrix m inplace. wcs_vertices(close: bool = False) -> List[Vec3] Returns WCS vertices, if argument close is True, last vertex == first vertex. returns 4 vertices when close=False and 5 vertices when close=True. Some edges may have 0 length. Compatibility interface to SOLID and TRACE. The 3DFACE entity returns already WCS vertices. Solid3d 3DSOLID (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp. SEE ALSO: Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE? ┌─────────────────────────┬────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Body │ ├─────────────────────────┼────────────────────────────────────────┤ │DXF type │ '3DSOLID' │ ├─────────────────────────┼────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_3dsolid() │ ├─────────────────────────┼────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴────────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Solid3d Same attributes and methods as parent class Body. dxf.history_handle Handle to history object. Arc ARC (DXF Reference) center at location dxf.center and radius of dxf.radius from dxf.start_angle to dxf.end_angle. ARC goes always from dxf.start_angle to dxf.end_angle in counter clockwise orientation around the dxf.extrusion vector, which is (0, 0, 1) by default and the usual case for 2D arcs. ┌─────────────────────────┬────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Circle │ ├─────────────────────────┼────────────────────────────────────┤ │DXF type │ 'ARC' │ ├─────────────────────────┼────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_arc() │ ├─────────────────────────┼────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Arc dxf.center Center point of arc (2D/3D Point in OCS) dxf.radius Radius of arc (float) dxf.start_angle Start angle in degrees (float) dxf.end_angle End angle in degrees (float) start_point Returns the start point of the arc in WCS, takes OCS into account. end_point Returns the end point of the arc in WCS, takes OCS into account. angles(num: int) -> Iterable[float] Returns num angles from start- to end angle in degrees in counter clockwise order. All angles are normalized in the range from [0, 360). flattening(sagitta: float) -> Iterator[Vec3] Approximate the arc by vertices in WCS, argument segment is the max. distance from the center of an arc segment to the center of its chord. transform(m: Matrix44) -> Arc Transform ARC entity by transformation matrix m inplace. Raises NonUniformScalingError() for non uniform scaling. to_ellipse(replace=True) -> Ellipse Convert CIRCLE/ARC to an Ellipse entity. Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity. Parameters replace – replace (delete) source entity by ELLIPSE entity if True to_spline(replace=True) -> Spline Convert CIRCLE/ARC to a Spline entity. Adds the new SPLINE entity to the entity database and to the same layout as the source entity. Parameters replace – replace (delete) source entity by SPLINE entity if True construction_tool() -> ConstructionArc Returns 2D construction tool ezdxf.math.ConstructionArc, ignoring the extrusion vector. apply_construction_tool(arc: ConstructionArc) -> Arc Set ARC data from construction tool ezdxf.math.ConstructionArc, will not change the extrusion vector. Body BODY (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp. SEE ALSO: Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE? ┌─────────────────────────┬─────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────┤ │DXF type │ 'BODY' │ ├─────────────────────────┼─────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_body() │ ├─────────────────────────┼─────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Body dxf.version Modeler format version number, default value is 1 dxf.flags Require DXF R2013. dxf.uid Require DXF R2013. property acis_data: Union[bytes, List[str]] Returns SAT data for DXF R2000 up to R2010 and SAB data for DXF R2013 and later property sat: List[str] Get/Set SAT data as list of strings. property sab: bytes Get/Set SAB data as bytes. property has_binary_data Returns True if the entity contains SAB data and False if the entity contains SAT data. tostring() -> str Returns ACIS SAT data as a single string if the entity has SAT data. Circle CIRCLE (DXF Reference) center at location dxf.center and radius of dxf.radius. ┌─────────────────────────┬───────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼───────────────────────────────────────┤ │DXF type │ 'CIRCLE' │ ├─────────────────────────┼───────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_circle() │ ├─────────────────────────┼───────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴───────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Circle dxf.center Center point of circle (2D/3D Point in OCS) dxf.radius Radius of circle (float) vertices(angles: Iterable[float]) -> Iterable[Vec3] Yields vertices of the circle for iterable angles in WCS. Parameters angles – iterable of angles in OCS as degrees, angle goes counter clockwise around the extrusion vector, OCS x-axis = 0 deg. flattening(sagitta: float) -> Iterable[Vec3] Approximate the circle by vertices in WCS, argument sagitta is the max. distance from the center of an arc segment to the center of its chord. Returns a closed polygon: start vertex == end vertex! Yields always Vec3 objects. New in version 0.15. transform(m: Matrix44) -> Circle Transform the CIRCLE entity by transformation matrix m inplace. Raises NonUniformScalingError() for non uniform scaling. translate(dx: float, dy: float, dz: float) -> Circle Optimized CIRCLE/ARC translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface). to_ellipse(replace=True) -> Ellipse Convert CIRCLE/ARC to an Ellipse entity. Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity. Parameters replace – replace (delete) source entity by ELLIPSE entity if True to_spline(replace=True) -> Spline Convert CIRCLE/ARC to a Spline entity. Adds the new SPLINE entity to the entity database and to the same layout as the source entity. Parameters replace – replace (delete) source entity by SPLINE entity if True Dimension The DIMENSION entity (DXF Reference) represents several types of dimensions in many orientations and alignments. The basic types of dimensioning are linear, radial, angular, ordinate, and arc length. For more information about dimensions see the online help from AutoDesk: About the Types of Dimensions IMPORTANT: The DIMENSION entity is reused to create dimensional constraints, such entities do not have an associated geometrical block nor a dimension type group code (2) and reside on layer *ADSK_CONSTRAINTS. Use property Dimension.is_dimensional_constraint to check for this objects. Dimensional constraints are not documented in the DXF reference and not supported by ezdxf. SEE ALSO: • Tutorial for Linear Dimensions • Tutorial for Radius Dimensions • Tutorial for Diameter Dimensions • Tutorial for Angular Dimensions • Tutorial for Ordinate Dimensions ┌─────────────────────────┬─────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────┤ │DXF type │ 'DIMENSION' │ ├─────────────────────────┼─────────────────────────────────┤ │factory function │ see table below │ ├─────────────────────────┼─────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────┘ Factory Functions ┌─────────────────────────────────┬──────────────────────────────────┐ │Linear and Rotated Dimension │ add_linear_dim() │ │(DXF) │ │ ├─────────────────────────────────┼──────────────────────────────────┤ │Aligned Dimension (DXF) │ add_aligned_dim() │ ├─────────────────────────────────┼──────────────────────────────────┤ │Angular Dimension (DXF) │ add_angular_dim_2l() │ ├─────────────────────────────────┼──────────────────────────────────┤ │Angular 3P Dimension (DXF) │ add_angular_dim_3p() │ ├─────────────────────────────────┼──────────────────────────────────┤ │Angular Dimension by center, │ add_angular_dim_cra() │ │radius, angles │ │ ├─────────────────────────────────┼──────────────────────────────────┤ │Angular Dimension by │ add_angular_dim_arc() │ │ConstructionArc │ │ ├─────────────────────────────────┼──────────────────────────────────┤ │Diameter Dimension (DXF) │ add_diameter_dim() │ ├─────────────────────────────────┼──────────────────────────────────┤ │Radius Dimension (DXF) │ add_radius_dim() │ ├─────────────────────────────────┼──────────────────────────────────┤ │Ordinate Dimension (DXF) │ add_ordinate_dim() (not │ │ │ implemented) │ └─────────────────────────────────┴──────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Dimension There is only one Dimension class to represent all different dimension types. dxf.version Version number: 0 = R2010. (int, DXF R2010) dxf.geometry Name of the BLOCK that contains the entities that make up the dimension picture. For AutoCAD this graphical representation is mandatory, else AutoCAD will not open the DXF drawing. BricsCAD will render the DIMENSION entity by itself, if the graphical representation is not present, but uses the BLOCK instead of rendering, if it is present. dxf.dimstyle Dimension style (DimStyle) name as string. dxf.dimtype Values 0-6 are integer values that represent the dimension type. Values 32, 64, and 128 are bit values, which are added to the integer values. ┌────┬──────────────────────────────────┐ │0 │ Linear and Rotated Dimension │ │ │ (DXF) │ ├────┼──────────────────────────────────┤ │1 │ Aligned Dimension (DXF) │ ├────┼──────────────────────────────────┤ │2 │ Angular Dimension (DXF) │ ├────┼──────────────────────────────────┤ │3 │ Diameter Dimension (DXF) │ ├────┼──────────────────────────────────┤ │4 │ Radius Dimension (DXF) │ ├────┼──────────────────────────────────┤ │5 │ Angular 3P Dimension (DXF) │ ├────┼──────────────────────────────────┤ │6 │ Ordinate Dimension (DXF) │ ├────┼──────────────────────────────────┤ │8 │ subclass │ │ │ ezdxf.entities.ArcDimension │ │ │ introduced in DXF R2004 │ ├────┼──────────────────────────────────┤ │32 │ Indicates that graphical │ │ │ representation geometry is │ │ │ referenced by this dimension │ │ │ only. (always set in DXF R13 │ │ │ and later) │ ├────┼──────────────────────────────────┤ │64 │ Ordinate type. This is a bit │ │ │ value (bit 7) used only with │ │ │ integer value 6. If set, │ │ │ ordinate is X-type; if not set, │ │ │ ordinate is Y-type │ ├────┼──────────────────────────────────┤ │128 │ This is a bit value (bit 8) │ │ │ added to the other dimtype │ │ │ values if the dimension text has │ │ │ been positioned at a │ │ │ user-defined location rather │ │ │ than at the default location │ └────┴──────────────────────────────────┘ dxf.defpoint Definition point for all dimension types. (3D Point in WCS) Linear and rotated dimension: dxf.defpoint specifies the dimension line location. Arc and angular dimension: dxf.defpoint and dxfdefpoint4 specify the endpoints of the line used to determine the second extension line. dxf.defpoint2 Definition point for linear and angular dimensions. (3D Point in WCS) Linear and rotated dimension: The dxf.defpoint2 specifies the start point of the first extension line. Arc and angular dimension: The dxf.defpoint2 and dxf.defpoint3 specify the endpoints of the line used to determine the first extension line. dxf.defpoint3 Definition point for linear and angular dimensions. (3D Point in WCS) Linear and rotated dimension: The dxf.defpoint3 specifies the start point of the second extension line. Arc and angular dimension: The dxf.defpoint2 and dxf.defpoint3 specify the endpoints of the line used to determine the first extension line. dxf.defpoint4 Definition point for diameter, radius, and angular dimensions. (3D Point in WCS) Arc and angular dimension: dxf.defpoint and dxf.defpoint4 specify the endpoints of the line used to determine the second extension line. dxf.defpoint5 Point defining dimension arc for angular dimensions, specifies the location of the dimension line arc. (3D Point in OCS) dxf.angle Angle of linear and rotated dimensions in degrees. (float) dxf.leader_length Leader length for radius and diameter dimensions. (float) dxf.text_midpoint Middle point of dimension text. (3D Point in OCS) dxf.insert Insertion point for clones of a linear dimensions. (3D Point in OCS) This value translates the content of the associated anonymous block for cloned linear dimensions, similar to the insert attribute of the Insert entity. dxf.attachment_point Text attachment point (int, DXF R2000), default value is 5. ┌──┬───────────────┐ │1 │ Top left │ ├──┼───────────────┤ │2 │ Top center │ ├──┼───────────────┤ │3 │ Top right │ ├──┼───────────────┤ │4 │ Middle left │ ├──┼───────────────┤ │5 │ Middle center │ ├──┼───────────────┤ │6 │ Middle right │ ├──┼───────────────┤ │7 │ Bottom left │ ├──┼───────────────┤ │8 │ Bottom center │ ├──┼───────────────┤ │9 │ Bottom right │ └──┴───────────────┘ dxf.line_spacing_style Dimension text line-spacing style (int, DXF R2000), default value is 1. ┌──┬──────────────────────────────────┐ │1 │ At least (taller characters will │ │ │ override) │ ├──┼──────────────────────────────────┤ │2 │ Exact (taller characters will │ │ │ not override) │ └──┴──────────────────────────────────┘ dxf.line_spacing_factor Dimension text-line spacing factor. (float, DXF R2000) Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00. dxf.actual_measurement Actual measurement (float, DXF R2000), this is an optional attribute and often not present. (read-only value) dxf.text Dimension text explicitly entered by the user (str), default value is an empty string. If empty string or '<>', the dimension measurement is drawn as the text, if ' ' (one blank space), the text is suppressed. Anything else is drawn as the text. dxf.oblique_angle Linear dimension types with an oblique angle have an optional dxf.oblique_angle. When added to the rotation dxf.angle of the linear dimension, it gives the angle of the extension lines. dxf.text_rotation Defines is the rotation angle of the dimension text away from its default orientation (the direction of the dimension line). (float) dxf.horizontal_direction Indicates the horizontal direction for the dimension entity (float). This attribute determines the orientation of dimension text and lines for horizontal, vertical, and rotated linear dimensions. This value is the negative of the angle in the OCS xy-plane between the dimension line and the OCS x-axis. property dimtype: int dxf.dimtype without binary flags (32, 62, 128). property is_dimensional_constraint: bool Returns True if the DIMENSION entity is a dimensional constrains object. get_dim_style() -> DimStyle Returns the associated DimStyle entity. get_geometry_block() -> Optional[BlockLayout] Returns BlockLayout of associated anonymous dimension block, which contains the entities that make up the dimension picture. Returns None if block name is not set or the BLOCK itself does not exist get_measurement() -> Union[float, Vec3] Returns the actual dimension measurement in WCS units, no scaling applied for linear dimensions. Returns angle in degrees for angular dimension from 2 lines and angular dimension from 3 points. Returns vector from origin to feature location for ordinate dimensions. override() -> DimStyleOverride Returns the DimStyleOverride object. render() -> None Render graphical representation as anonymous block. transform(m: Matrix44) -> Dimension Transform the DIMENSION entity by transformation matrix m inplace. Raises NonUniformScalingError() for non uniform scaling. virtual_entities() -> Iterable[DXFGraphic] Yields ‘virtual’ parts of DIMENSION as basic DXF entities like LINE, ARC or TEXT. This entities are located at the original positions, but are not stored in the entity database, have no handle and are not assigned to any layout. explode(target_layout: BaseLayout = None) -> EntityQuery Explode parts of DIMENSION as basic DXF entities like LINE, ARC or TEXT into target layout, if target layout is None, the target layout is the layout of the DIMENSION. Returns an EntityQuery container with all DXF primitives. Parameters target_layout – target layout for DXF parts, None for same layout as source entity. DimStyleOverride All of the DimStyle attributes can be overridden for each Dimension entity individually. The DimStyleOverride class manages all the complex dependencies between DimStyle and Dimension, the different features of all DXF versions and the rendering process to create the Dimension picture as BLOCK, which is required for AutoCAD. class ezdxf.entities.DimStyleOverride dimension Base Dimension entity. dimstyle By dimension referenced DimStyle entity. dimstyle_attribs Contains all overridden attributes of dimension, as a dict with DimStyle attribute names as keys. __getitem__(key: str) -> Any Returns DIMSTYLE attribute key, see also get(). __setitem__(key: str, value: Any) -> None Set DIMSTYLE attribute key in dimstyle_attribs. __delitem__(key: str) -> None Deletes DIMSTYLE attribute key from dimstyle_attribs, ignores KeyErrors silently. get(attribute: str, default: Optional[Any] = None) -> Any Returns DIMSTYLE attribute from override dict dimstyle_attribs or base DimStyle. Returns default value for attributes not supported by DXF R12. This is a hack to use the same algorithm to render DXF R2000 and DXF R12 DIMENSION entities. But the DXF R2000 attributes are not stored in the DXF R12 file! Does not catch invalid attributes names! Look into debug log for ignored DIMSTYLE attributes. pop(attribute: str, default: Optional[Any] = None) -> Any Returns DIMSTYLE attribute from override dict dimstyle_attribs and removes this attribute from override dict. update(attribs: dict) -> None Update override dict dimstyle_attribs. Parameters attribs – dict of DIMSTYLE attributes commit() -> None Writes overridden DIMSTYLE attributes into ACAD:DSTYLE section of XDATA of the DIMENSION entity. get_arrow_names() -> Tuple[str, str] Get arrow names as strings like ‘ARCHTICK’. Returns tuple of [dimblk1, dimblk2] Return type Tuple[str, str] set_arrows(blk: Optional[str] = None, blk1: Optional[str] = None, blk2: Optional[str] = None, ldrblk: Optional[str] = None, size: Optional[float] = None) -> None Set arrows or user defined blocks and disable oblique stroke as tick. Parameters • blk – defines both arrows at once as name str or user defined block • blk1 – defines left arrow as name str or as user defined block • blk2 – defines right arrow as name str or as user defined block • ldrblk – defines leader arrow as name str or as user defined block • size – arrow size in drawing units set_tick(size: float = 1) -> None Use oblique stroke as tick, disables arrows. Parameters size – arrow size in daring units set_text_align(halign: Optional[str] = None, valign: Optional[str] = None, vshift: Optional[float] = None) -> None Set measurement text alignment, halign defines the horizontal alignment, valign defines the vertical alignment, above1 and above2 means above extension line 1 or 2 and aligned with extension line. Parameters • halign – left, right, center, above1, above2, requires DXF R2000+ • valign – above, center, below • vshift – vertical text shift, if valign is center; >0 shift upward, <0 shift downwards set_tolerance(upper: float, lower: Optional[float] = None, hfactor: Optional[float] = None, align: Optional[MTextLineAlignment] = None, dec: Optional[int] = None, leading_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) -> None Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and trailing zero suppression. Parameters • upper – upper tolerance value • lower – lower tolerance value, if None same as upper • hfactor – tolerance text height factor in relation to the dimension text height • align – tolerance text alignment enum ezdxf.enums.MTextLineAlignment • dec – Sets the number of decimal places displayed • leading_zeros – suppress leading zeros for decimal dimensions if False • trailing_zeros – suppress trailing zeros for decimal dimensions if False Changed in version 0.17.2: argument align as enum ezdxf.enums.MTextLineAlignment set_limits(upper: float, lower: float, hfactor: Optional[float] = None, dec: Optional[int] = None, leading_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) -> None Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading and trailing zero suppression. Parameters • upper – upper limit value added to measurement value • lower – lower lower value subtracted from measurement value • hfactor – limit text height factor in relation to the dimension text height • dec – Sets the number of decimal places displayed, required DXF R2000+ • leading_zeros – suppress leading zeros for decimal dimensions if False, required DXF R2000+ • trailing_zeros – suppress trailing zeros for decimal dimensions if False, required DXF R2000+ set_text_format(prefix: str = '', postfix: str = '', rnd: Optional[float] = None, dec: Optional[int] = None, sep: Optional[str] = None, leading_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) -> None Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places. Parameters • prefix – dimension text prefix text as string • postfix – dimension text postfix text as string • rnd – Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer. • dec – Sets the number of decimal places displayed for the primary units of a dimension. requires DXF R2000+ • sep – “.” or “,” as decimal separator • leading_zeros – suppress leading zeros for decimal dimensions if False • trailing_zeros – suppress trailing zeros for decimal dimensions if False set_dimline_format(color: Optional[int] = None, linetype: Optional[str] = None, lineweight: Optional[int] = None, extension: Optional[float] = None, disable1: Optional[bool] = None, disable2: Optional[bool] = None) Set dimension line properties Parameters • color – color index • linetype – linetype as string • lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm • extension – extension length • disable1 – True to suppress first part of dimension line • disable2 – True to suppress second part of dimension line set_extline_format(color: Optional[int] = None, lineweight: Optional[int] = None, extension: Optional[float] = None, offset: Optional[float] = None, fixed_length: Optional[float] = None) Set common extension line attributes. Parameters • color – color index • lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm • extension – extension length above dimension line • offset – offset from measurement point • fixed_length – set fixed length extension line, length below the dimension line set_extline1(linetype: Optional[str] = None, disable=False) Set extension line 1 attributes. Parameters • linetype – linetype for extension line 1 • disable – disable extension line 1 if True set_extline2(linetype: Optional[str] = None, disable=False) Set extension line 2 attributes. Parameters • linetype – linetype for extension line 2 • disable – disable extension line 2 if True set_text(text: str = '<>') -> None Set dimension text. • text = ” ” to suppress dimension text • text = “” or “<>” to use measured distance as dimension text • else use “text” literally shift_text(dh: float, dv: float) -> None Set relative text movement, implemented as user location override without leader. Parameters • dh – shift text in text direction • dv – shift text perpendicular to text direction set_location(location: Union[Sequence[float], Vec2, Vec3], leader=False, relative=False) -> None Set text location by user, special version for linear dimensions, behaves for other dimension types like user_location_override(). Parameters • location – user defined text location • leader – create leader from text to dimension line • relative – location is relative to default location. user_location_override(location: Union[Sequence[float], Vec2, Vec3]) -> None Set text location by user, location is relative to the origin of the UCS defined in the render() method or WCS if the ucs argument is None. render(ucs: UCS = None, discard=False) -> BaseDimensionRenderer Initiate dimension line rendering process and also writes overridden dimension style attributes into the DSTYLE XDATA section. For a friendly CAD applications like BricsCAD you can discard the dimension line rendering, because it is done automatically by BricsCAD, if no dimension rendering BLOCK is available and it is likely to get better results as by ezdxf. AutoCAD does not render DIMENSION entities automatically, so I rate AutoCAD as an unfriendly CAD application. Parameters • ucs – user coordinate system • discard – discard rendering done by ezdxf (works with BricsCAD, but not tolerated by AutoCAD) Returns Rendering object used to render the DIMENSION entity for analytics Return type BaseDimensionRenderer ArcDimension The ARC_DIMENSION entity was introduced in DXF R2004 and is not documented in the DXF reference. SEE ALSO: Tutorial for Arc Dimensions ┌─────────────────────────┬─────────────────────────────────┐ │Subclass of │ ezdxf.entities.Dimension │ ├─────────────────────────┼─────────────────────────────────┤ │DXF type │ 'ARC_DIMENSION' │ ├─────────────────────────┼─────────────────────────────────┤ │factory function │ │ │ │ • add_arc_dim_3p() │ │ │ │ │ │ • add_arc_dim_cra() │ │ │ │ │ │ • add_arc_dim_arc() │ ├─────────────────────────┼─────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────┤ │Required DXF version │ R2004 / AC1018 │ └─────────────────────────┴─────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.ArcDimension dxf.defpoint2 start point of first extension line in OCS dxf.defpoint3 start point of second extension line in OCS dxf.defpoint4 center point of arc in OCS dxf.start_angle dxf.end_angle dxf.is_partial dxf.has_leader dxf.leader_point1 dxf.leader_point2 dimtype Returns always 8. Ellipse ELLIPSE (DXF Reference) with center point at location dxf.center and a major axis dxf.major_axis as vector. dxf.ratio is the ratio of minor axis to major axis. dxf.start_param and dxf.end_param defines the starting- and the end point of the ellipse, a full ellipse goes from 0 to 2*pi. The ellipse goes from starting- to end param in counter clockwise direction. dxf.extrusion is supported, but does not establish an OCS, but creates an 3D entity by extruding the base ellipse in direction of the dxf.extrusion vector. ┌─────────────────────────┬─────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────┤ │DXF type │ 'ELLIPSE' │ ├─────────────────────────┼─────────────────────────────────┤ │factory function │ add_ellipse() │ ├─────────────────────────┼─────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────┘ class ezdxf.entities.Ellipse dxf.center Center point of circle (2D/3D Point in WCS) dxf.major_axis Endpoint of major axis, relative to the dxf.center (Vec3), default value is (1, 0, 0). dxf.ratio Ratio of minor axis to major axis (float), has to be in range from 0.000001 to 1, default value is 1. dxf.start_param Start parameter (float), default value is 0. dxf.end_param End parameter (float), default value is 2*pi. start_point Returns the start point of the ellipse in WCS. end_point Returns the end point of the ellipse in WCS. minor_axis Returns the minor axis of the ellipse as Vec3 in WCS. construction_tool() -> ConstructionEllipse Returns construction tool ezdxf.math.ConstructionEllipse. apply_construction_tool(e: ConstructionEllipse) -> Ellipse Set ELLIPSE data from construction tool ezdxf.math.ConstructionEllipse. vertices(params: Iterable[float]) -> Iterable[Vec3] Yields vertices on ellipse for iterable params in WCS. Parameters params – param values in the range from 0 to 2*pi in radians, param goes counter clockwise around the extrusion vector, major_axis = local x-axis = 0 rad. flattening(distance: float, segments: int = 8) -> Iterable[Vec3] Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Returns a closed polygon for a full ellipse: start vertex == end vertex. Parameters • distance – maximum distance from the projected curve point onto the segment chord. • segments – minimum segment count New in version 0.15. params(num: int) -> Iterable[float] Returns num params from start- to end param in counter clockwise order. All params are normalized in the range from [0, 2pi). transform(m: Matrix44) -> Ellipse Transform the ELLIPSE entity by transformation matrix m inplace. translate(dx: float, dy: float, dz: float) -> Ellipse Optimized ELLIPSE translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface). to_spline(replace=True) -> Spline Convert ELLIPSE to a Spline entity. Adds the new SPLINE entity to the entity database and to the same layout as the source entity. Parameters replace – replace (delete) source entity by SPLINE entity if True classmethod from_arc(entity: DXFGraphic) -> Ellipse Create a new ELLIPSE entity from ARC or CIRCLE entity. The new SPLINE entity has no owner, no handle, is not stored in the entity database nor assigned to any layout! Hatch The HATCH entity (DXF Reference) fills an enclosed area defined by one or more boundary paths with a hatch pattern, solid fill, or gradient fill. All points in OCS as (x, y) tuples (Hatch.dxf.elevation is the z-axis value). There are two different hatch pattern default scaling, depending on the HEADER variable $MEASUREMENT, one for ISO measurement (m, cm, mm, …) and one for imperial measurement (in, ft, yd, …). Starting with ezdxf v0.15 the default scaling for predefined hatch pattern will be chosen according this measurement setting in the HEADER section, this replicates the behavior of BricsCAD and other CAD applications. ezdxf uses the ISO pattern definitions as a base line and scales this pattern down by factor 1/25.6 for imperial measurement usage. The pattern scaling is independent from the drawing units of the document defined by the HEADER variable $INSUNITS. Prior to ezdxf v0.15 the default scaling was always the ISO measurement scaling, no matter which value $MEASUREMENT had. SEE ALSO: Tutorial for Hatch and DXF Units ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'HATCH' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_hatch() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼──────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴──────────────────────────────────────┘ Boundary paths helper classes Path manager: BoundaryPaths • PolylinePath • EdgePath • LineEdge • ArcEdge • EllipseEdge • SplineEdge Pattern and gradient helper classes • Pattern • PatternLine • Gradien class ezdxf.entities.Hatch dxf.pattern_name Pattern name as string dxf.solid_fill ┌──┬──────────────────────────────────┐ │1 │ solid fill, better use: │ │ │ Hatch.set_solid_fill() │ ├──┼──────────────────────────────────┤ │0 │ pattern fill, better use: │ │ │ Hatch.set_pattern_fill() │ └──┴──────────────────────────────────┘ dxf.associative ┌──┬───────────────────────┐ │1 │ associative hatch │ ├──┼───────────────────────┤ │0 │ not associative hatch │ └──┴───────────────────────┘ Associations not handled by ezdxf, you have to set the handles to the associated DXF entities by yourself. dxf.hatch_style ┌──┬────────┐ │0 │ normal │ ├──┼────────┤ │1 │ outer │ ├──┼────────┤ │2 │ ignore │ └──┴────────┘ (search AutoCAD help for more information) dxf.pattern_type ┌──┬────────────┐ │0 │ user │ ├──┼────────────┤ │1 │ predefined │ ├──┼────────────┤ │2 │ custom │ └──┴────────────┘ dxf.pattern_angle Actual pattern angle in degrees (float). Changing this value does not rotate the pattern, use set_pattern_angle() for this task. dxf.pattern_scale Actual pattern scaling factor (float). Changing this value does not scale the pattern use set_pattern_scale() for this task. dxf.pattern_double 1 = double pattern size else 0. (int) dxf.n_seed_points Count of seed points (better user: get_seed_points()) dxf.elevation Z value represents the elevation height of the OCS. (float) paths BoundaryPaths object. pattern Pattern object. gradient Gradient object. seeds List of (x, y) tuples. property has_solid_fill: bool True if entity has a solid fill. (read only) property has_pattern_fill: bool True if entity has a pattern fill. (read only) property has_gradient_data: bool True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only) property bgcolor: Optional[Tuple[int, int, int]] Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del) usage: r, g, b = entity.bgcolor # get pattern fill background color entity.bgcolor = (10, 20, 30) # set pattern fill background color del entity.bgcolor # delete pattern fill background color set_pattern_definition(lines: Sequence, factor: float = 1, angle: float = 0) -> None Setup pattern definition by a list of definition lines and a definition line is a 4-tuple (angle, base_point, offset, dash_length_items), the pattern definition should be designed for scaling factor 1 and angle 0. • angle: line angle in degrees • base-point: 2-tuple (x, y) • offset: 2-tuple (dx, dy) • dash_length_items: list of dash items (item > 0 is a line, item < 0 is a gap and item == 0.0 is a point) Parameters • lines – list of definition lines • factor – pattern scaling factor • angle – rotation angle in degrees set_pattern_scale(scale: float) -> None Set scaling of pattern definition to scale. Starts always from the original base scaling, set_pattern_scale(1) reset the pattern scaling to the original appearance as defined by the pattern designer, but only if the pattern attribute dxf.pattern_scale represents the actual scaling, it is not possible to recreate the original pattern scaling from the pattern definition itself. Parameters scale – pattern scaling factor set_pattern_angle(angle: float) -> None Set rotation of pattern definition to angle in degrees. Starts always from the original base rotation 0, set_pattern_angle(0) reset the pattern rotation to the original appearance as defined by the pattern designer, but only if the pattern attribute dxf.pattern_angle represents the actual rotation, it is not possible to recreate the original rotation from the pattern definition itself. Parameters angle – rotation angle in degrees set_solid_fill(color: int = 7, style: int = 1, rgb: RGB = None) Set Hatch to solid fill mode and removes all gradient and pattern fill related data. Parameters • color – AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER) • style – hatch style (0 = normal; 1 = outer; 2 = ignore) • rgb – true color value as (r, g, b)-tuple - has higher priority than color. True color support requires DXF R2000. set_pattern_fill(name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int = 1, pattern_type: int = 1, definition=None) -> None Set Hatch and MPolygon to pattern fill mode. Removes all gradient related data. The pattern definition should be designed for scaling factor 1. Predefined hatch pattern like “ANSI33” are scaled according to the HEADER variable $MEASUREMENT for ISO measurement (m, cm, … ), or imperial units (in, ft, …), this replicates the behavior of BricsCAD. Parameters • name – pattern name as string • color – pattern color as AutoCAD Color Index (ACI) • angle – angle of pattern fill in degrees • scale – pattern scaling as float • double – double size flag • style – hatch style (0 = normal; 1 = outer; 2 = ignore) • pattern_type – pattern type (0 = user-defined; 1 = predefined; 2 = custom) • definition – list of definition lines and a definition line is a 4-tuple [angle, base_point, offset, dash_length_items], see set_pattern_definition() set_gradient(color1: Tuple[int, int, int] = (0, 0, 0), color2: Tuple[int, int, int] = (255, 255, 255), rotation: float = 0.0, centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') -> None Set Hatch and MPolygon to gradient fill mode and removes all pattern fill related data. Gradient support requires DXF R2004+. A gradient filled hatch is also a solid filled hatch. Valid gradient type names are: • 'LINEAR' • 'CYLINDER' • 'INVCYLINDER' • 'SPHERICAL' • 'INVSPHERICAL' • 'HEMISPHERICAL' • 'INVHEMISPHERICAL' • 'CURVED' • 'INVCURVED' Parameters • color1 – (r, g, b)-tuple for first color, rgb values as int in the range [0, 255] • color2 – (r, g, b)-tuple for second color, rgb values as int in the range [0, 255] • rotation – rotation angle in degrees • centered – determines whether the gradient is centered or not • one_color – 1 for gradient from color1 to tinted color1 • tint – determines the tinted target color1 for a one color gradient. (valid range 0.0 to 1.0) • name – name of gradient type, default “LINEAR” set_seed_points(points: Iterable[Tuple[float, float]]) -> None Set seed points, points is an iterable of (x, y)-tuples. I don’t know why there can be more than one seed point. All points in OCS (‐ Hatch.dxf.elevation is the Z value) transform(m: Matrix44) -> Hatch Transform entity by transformation matrix m inplace. associate(path: AbstractBoundaryPath, entities: Iterable[DXFEntity]) Set association from hatch boundary path to DXF geometry entities. A HATCH entity can be associative to a base geometry, this association is not maintained nor verified by ezdxf, so if you modify the base geometry the geometry of the boundary path is not updated and no verification is done to check if the associated geometry matches the boundary path, this opens many possibilities to create invalid DXF files: USE WITH CARE! remove_association() Remove associated path elements. Boundary Paths The hatch entity is build by different functional path types, this are filter flags for the Hatch.dxf.hatch_style: • EXTERNAL: defines the outer boundary of the hatch • OUTERMOST: defines the first tier of inner hatch boundaries • DEFAULT: default boundary path As you will learn in the next sections, these are more the recommended usage type for the flags, but the fill algorithm doesn’t care much about that, for instance an OUTERMOST path doesn’t have to be inside the EXTERNAL path. Island Detection In general the island detection algorithm works always from outside to inside and alternates filled and unfilled areas. The area between then 1st and the 2nd boundary is filled, the area between the 2nd and the 3rd boundary is unfilled and so on. The different hatch styles defined by the Hatch.dxf.hatch_style attribute are created by filtering some boundary path types. Hatch Style • HATCH_STYLE_IGNORE: Ignores all paths except the paths marked as EXTERNAL, if there are more than one path marked as EXTERNAL, they are filled in NESTED style. Creates no hatch if no path is marked as EXTERNAL. • HATCH_STYLE_OUTERMOST: Ignores all paths marked as DEFAULT, remaining EXTERNAL and OUTERMOST paths are filled in NESTED style. Creates no hatch if no path is marked as EXTERNAL or OUTERMOST. • HATCH_STYLE_NESTED: Use all existing paths. Hatch Boundary Helper Classes class ezdxf.entities.BoundaryPaths Defines the borders of the hatch, a hatch can consist of more than one path. paths List of all boundary paths. Contains PolylinePath and EdgePath objects. (read/write) external_paths() -> Iterable[AbstractBoundaryPath] Iterable of external paths, could be empty. outermost_paths() -> Iterable[AbstractBoundaryPath] Iterable of outermost paths, could be empty. default_paths() -> Iterable[AbstractBoundaryPath] Iterable of default paths, could be empty. rendering_paths(hatch_style: int = 0) -> Iterable[AbstractBoundaryPath] Iterable of paths to process for rendering, filters unused boundary paths according to the given hatch style: • NESTED: use all boundary paths • OUTERMOST: use EXTERNAL and OUTERMOST boundary paths • IGNORE: ignore all paths except EXTERNAL boundary paths Yields paths in order of EXTERNAL, OUTERMOST and DEFAULT. add_polyline_path(path_vertices: Iterable[Tuple[float, ...]], is_closed: bool = True, flags: int = 1) -> PolylinePath Create and add a new PolylinePath object. Parameters • path_vertices – iterable of polyline vertices as (x, y) or (x, y, bulge)-tuples. • is_closed – 1 for a closed polyline else 0 • flags – external(1) or outermost(16) or default (0) add_edge_path(flags: int = 1) -> EdgePath Create and add a new EdgePath object. Parameters flags – external(1) or outermost(16) or default (0) polyline_to_edge_paths(just_with_bulge=True) -> None Convert polyline paths including bulge values to line- and arc edges. Parameters just_with_bulge – convert only polyline paths including bulge values if True edge_to_polyline_paths(distance: float, segments: int = 16) Convert all edge paths to simple polyline paths without bulges. Parameters • distance – maximum distance from the center of the curve to the center of the line segment between two approximation points to determine if a segment should be subdivided. • segments – minimum segment count per curve arc_edges_to_ellipse_edges() -> None Convert all arc edges to ellipse edges. ellipse_edges_to_spline_edges(num: int = 32) -> None Convert all ellipse edges to spline edges (approximation). Parameters num – count of control points for a full ellipse, partial ellipses have proportional fewer control points but at least 3. spline_edges_to_line_edges(factor: int = 8) -> None Convert all spline edges to line edges (approximation). Parameters factor – count of approximation segments = count of control points x factor all_to_spline_edges(num: int = 64) -> None Convert all bulge, arc and ellipse edges to spline edges (approximation). Parameters num – count of control points for a full circle/ellipse, partial circles/ellipses have proportional fewer control points but at least 3. all_to_line_edges(num: int = 64, spline_factor: int = 8) -> None Convert all bulge, arc and ellipse edges to spline edges and approximate this splines by line edges. Parameters • num – count of control points for a full circle/ellipse, partial circles/ellipses have proportional fewer control points but at least 3. • spline_factor – count of spline approximation segments = count of control points x spline_factor clear() -> None Remove all boundary paths. class ezdxf.entities.BoundaryPathType POLYLINE polyline path type EDGE edge path type class ezdxf.entities.PolylinePath A polyline as hatch boundary path. type Path type as BoundaryPathType.POLYLINE enum path_type_flags (bit coded flags) ┌───┬────────────────────────────────┐ │0 │ default │ ├───┼────────────────────────────────┤ │1 │ external │ ├───┼────────────────────────────────┤ │2 │ polyline, will be set by ezdxf │ ├───┼────────────────────────────────┤ │16 │ outermost │ └───┴────────────────────────────────┘ My interpretation of the path_type_flags, see also Tutorial for Hatch: • external - path is part of the hatch outer border • outermost - path is completely inside of one or more external paths • default - path is completely inside of one or more outermost paths If there are troubles with AutoCAD, maybe the hatch entity has the Hatch.dxf.pixel_size attribute set - delete it del hatch.dxf.pixel_size and maybe the problem is solved. ezdxf does not use the Hatch.dxf.pixel_size attribute, but it can occur in DXF files created by other applications. is_closed True if polyline path is closed. vertices List of path vertices as (x, y, bulge)-tuples. (read/write) source_boundary_objects List of handles of the associated DXF entities for associative hatches. There is no support for associative hatches by ezdxf, you have to do it all by yourself. (read/write) set_vertices(vertices: Iterable[Sequence[float]], is_closed: bool = True) -> None Set new vertices as new polyline path, a vertex has to be a (x, y) or a (x, y, bulge)-tuple. clear() -> None Removes all vertices and all handles to associated DXF objects (‐ source_boundary_objects). class ezdxf.entities.EdgePath Boundary path build by edges. There are four different edge types: LineEdge, ArcEdge, EllipseEdge of SplineEdge. Make sure there are no gaps between edges and the edge path must be closed to be recognized as path. AutoCAD is very picky in this regard. Ezdxf performs no checks on gaps between the edges and does not prevent creating open loops. NOTE: ArcEdge and EllipseEdge are ALWAYS represented in counter-clockwise orientation, even if an clockwise oriented edge is required to build a closed loop. To add a clockwise oriented curve swap start- and end angles and set the ccw flag to False and ezdxf will export a correct clockwise orientated curve. type Path type as BoundaryPathType.EDGE enum path_type_flags (bit coded flags) ┌───┬───────────┐ │0 │ default │ ├───┼───────────┤ │1 │ external │ ├───┼───────────┤ │16 │ outermost │ └───┴───────────┘ see PolylinePath.path_type_flags edges List of boundary edges of type LineEdge, ArcEdge, EllipseEdge of SplineEdge source_boundary_objects Required for associative hatches, list of handles to the associated DXF entities. clear() -> None Delete all edges. add_line(start: Union[Sequence[float], Vec2, Vec3], end: Union[Sequence[float], Vec2, Vec3]) -> LineEdge Add a LineEdge from start to end. Parameters • start – start point of line, (x, y)-tuple • end – end point of line, (x, y)-tuple add_arc(center: Union[Sequence[float], Vec2, Vec3], radius: float = 1.0, start_angle: float = 0.0, end_angle: float = 360.0, ccw: bool = True) -> ArcEdge Add an ArcEdge. Adding Clockwise Oriented Arcs: Clockwise oriented ArcEdge objects are sometimes necessary to build closed loops, but the ArcEdge objects are always represented in counter-clockwise orientation. To add a clockwise oriented ArcEdge you have to swap the start- and end angle and set the ccw flag to False, e.g. to add a clockwise oriented ArcEdge from 180 to 90 degree, add the ArcEdge in counter-clockwise orientation with swapped angles: edge_path.add_arc(center, radius, start_angle=90, end_angle=180, ccw=False) Parameters • center – center point of arc, (x, y)-tuple • radius – radius of circle • start_angle – start angle of arc in degrees (end_angle for a clockwise oriented arc) • end_angle – end angle of arc in degrees (start_angle for a clockwise oriented arc) • ccw – True for counter clockwise False for clockwise orientation add_ellipse(center: Union[Sequence[float], Vec2, Vec3], major_axis: Union[Sequence[float], Vec2, Vec3] = (1.0, 0.0), ratio: float = 1.0, start_angle: float = 0.0, end_angle: float = 360.0, ccw: bool = True) -> EllipseEdge Add an EllipseEdge. Adding Clockwise Oriented Ellipses: Clockwise oriented EllipseEdge objects are sometimes necessary to build closed loops, but the EllipseEdge objects are always represented in counter-clockwise orientation. To add a clockwise oriented EllipseEdge you have to swap the start- and end angle and set the ccw flag to False, e.g. to add a clockwise oriented EllipseEdge from 180 to 90 degree, add the EllipseEdge in counter-clockwise orientation with swapped angles: edge_path.add_ellipse(center, major_axis, ratio, start_angle=90, end_angle=180, ccw=False) Parameters • center – center point of ellipse, (x, y)-tuple • major_axis – vector of major axis as (x, y)-tuple • ratio – ratio of minor axis to major axis as float • start_angle – start angle of ellipse in degrees (end_angle for a clockwise oriented ellipse) • end_angle – end angle of ellipse in degrees (start_angle for a clockwise oriented ellipse) • ccw – True for counter clockwise False for clockwise orientation add_spline(fit_points: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, control_points: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, knot_values: Optional[Iterable[float]] = None, weights: Optional[Iterable[float]] = None, degree: int = 3, periodic: int = 0, start_tangent: Optional[Union[Sequence[float], Vec2, Vec3]] = None, end_tangent: Optional[Union[Sequence[float], Vec2, Vec3]] = None) -> SplineEdge Add a SplineEdge. Parameters • fit_points – points through which the spline must go, at least 3 fit points are required. list of (x, y)-tuples • control_points – affects the shape of the spline, mandatory and AutoCAD crashes on invalid data. list of (x, y)-tuples • knot_values – (knot vector) mandatory and AutoCAD crashes on invalid data. list of floats; ezdxf provides two tool functions to calculate valid knot values: ezdxf.math.uniform_knot_vector(), ezdxf.math.open_uniform_knot_vector() (default if None) • weights – weight of control point, not mandatory, list of floats. • degree – degree of spline (int) • periodic – 1 for periodic spline, 0 for none periodic spline • start_tangent – start_tangent as 2d vector, optional • end_tangent – end_tangent as 2d vector, optional WARNING: Unlike for the spline entity AutoCAD does not calculate the necessary knot_values for the spline edge itself. On the contrary, if the knot_values in the spline edge are missing or invalid AutoCAD crashes. class ezdxf.entities.EdgeType LINE ARC ELLIPSE SPLINE class ezdxf.entities.LineEdge Straight boundary edge. type Edge type as EdgeType.LINE enum start Start point as (x, y)-tuple. (read/write) end End point as (x, y)-tuple. (read/write) class ezdxf.entities.ArcEdge Arc as boundary edge in counter-clockwise orientation, see EdgePath.add_arc(). type Edge type as EdgeType.ARC enum center Center point of arc as (x, y)-tuple. (read/write) radius Arc radius as float. (read/write) start_angle Arc start angle in counter-clockwise orientation in degrees. (read/write) end_angle Arc end angle in counter-clockwise orientation in degrees. (read/write) ccw True for counter clockwise arc else False. (read/write) class ezdxf.entities.EllipseEdge Elliptic arc as boundary edge in counter-clockwise orientation, see EdgePath.add_ellipse(). type Edge type as EdgeType.ELLIPSE enum major_axis_vector Ellipse major axis vector as (x, y)-tuple. (read/write) minor_axis_length Ellipse minor axis length as float. (read/write) radius Ellipse radius as float. (read/write) start_angle Ellipse start angle in counter-clockwise orientation in degrees. (read/write) end_angle Ellipse end angle in counter-clockwise orientation in degrees. (read/write) ccw True for counter clockwise ellipse else False. (read/write) class ezdxf.entities.SplineEdge Spline as boundary edge. type Edge type as EdgeType.SPLINE enum degree Spline degree as int. (read/write) rational 1 for rational spline else 0. (read/write) periodic 1 for periodic spline else 0. (read/write) knot_values List of knot values as floats. (read/write) control_points List of control points as (x, y)-tuples. (read/write) fit_points List of fit points as (x, y)-tuples. (read/write) weights List of weights (of control points) as floats. (read/write) start_tangent Spline start tangent (vector) as (x, y)-tuple. (read/write) end_tangent Spline end tangent (vector) as (x, y)-tuple. (read/write) Hatch Pattern Definition Helper Classes class ezdxf.entities.Pattern lines List of pattern definition lines (read/write). see PatternLine add_line(angle: float = 0, base_point: Union[Sequence[float], Vec2, Vec3] = (0, 0), offset: Union[Sequence[float], Vec2, Vec3] = (0, 0), dash_length_items: Optional[Iterable[float]] = None) -> None Create a new pattern definition line and add the line to the Pattern.lines attribute. clear() -> None Delete all pattern definition lines. scale(factor: float = 1, angle: float = 0) -> None Scale and rotate pattern. Be careful, this changes the base pattern definition, maybe better use Hatch.set_pattern_scale() or Hatch.set_pattern_angle(). Parameters • factor – scaling factor • angle – rotation angle in degrees class ezdxf.entities.PatternLine Represents a pattern definition line, use factory function Pattern.add_line() to create new pattern definition lines. angle Line angle in degrees. (read/write) base_point Base point as (x, y)-tuple. (read/write) offset Offset as (x, y)-tuple. (read/write) dash_length_items List of dash length items (item > 0 is line, < 0 is gap, 0.0 = dot). (read/write) Hatch Gradient Fill Helper Classes class ezdxf.entities.Gradient color1 First rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write) color2 Second rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write) one_color If one_color is 1 - the hatch is filled with a smooth transition between color1 and a specified tint of color1. (read/write) rotation Gradient rotation in degrees. (read/write) centered Specifies a symmetrical gradient configuration. If this option is not selected, the gradient fill is shifted up and to the left, creating the illusion of a light source to the left of the object. (read/write) tint Specifies the tint (color1 mixed with white) of a color to be used for a gradient fill of one color. (read/write) SEE ALSO: Tutorial for Hatch Pattern Definition Helix HELIX curve (DXF Reference). The helix curve is represented by a cubic B-spline curve, therefore the HELIX entity is also derived from the SPLINE entity. New in version 0.18. SEE ALSO: • Wikipedia article about the helix shape ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Spline │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'HELIX' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_helix() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼──────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴──────────────────────────────────────┘ class ezdxf.entities.Helix All points in WCS as (x, y, z) tuples dxf.axis_base_point The base point of the helix axis (Vec3). dxf.start_point The starting point of the helix curve (Vec3). This also defines the base radius as the distance from the start point to the axis base point. dxf.axis_vector Defines the direction of the helix axis (Vec3). dxf.radius Defines the top radius of the helix (float). dxf.turn_height Defines the pitch (height if one helix turn) of the helix (float). dxf.turns The count of helix turns (float). dxf.handedness Helix orientation (int). ┌──┬──────────────────────────────────┐ │0 │ clock wise (left handed) │ ├──┼──────────────────────────────────┤ │1 │ counter clockwise (right handed) │ └──┴──────────────────────────────────┘ dxf.constrain ┌──┬───────────────────────────────┐ │0 │ constrain turn height (pitch) │ ├──┼───────────────────────────────┤ │1 │ constrain count of turns │ ├──┼───────────────────────────────┤ │2 │ constrain total height │ └──┴───────────────────────────────┘ Image Add a raster IMAGE (DXF Reference) to the DXF file, the file itself is not embedded into the DXF file, it is always a separated file. The IMAGE entity is like a block reference, you can use it multiple times to add the image on different locations with different scales and rotations. But therefore you need a also a IMAGEDEF entity, see ImageDef. ezdxf creates only images in the xy-plan, you can place images in the 3D space too, but then you have to set the Image.dxf.u_pixel and the Image.dxf.v_pixel vectors by yourself. ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'IMAGE' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_image() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼──────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴──────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Image dxf.insert Insertion point, lower left corner of the image (3D Point in WCS). dxf.u_pixel U-vector of a single pixel (points along the visual bottom of the image, starting at the insertion point) as (x, y, z) tuple dxf.v_pixel V-vector of a single pixel (points along the visual left side of the image, starting at the insertion point) as (x, y, z) tuple dxf.image_size Image size in pixels as (x, y) tuple dxf.image_def_handle Handle to the image definition entity, see ImageDef dxf.flags ┌────────────────────────────┬───────┬──────────────────────────┐ │Image.dxf.flags │ Value │ Description │ ├────────────────────────────┼───────┼──────────────────────────┤ │Image.SHOW_IMAGE │ 1 │ Show image │ ├────────────────────────────┼───────┼──────────────────────────┤ │Image.SHOW_WHEN_NOT_ALIGNED │ 2 │ Show image when not │ │ │ │ aligned with screen │ ├────────────────────────────┼───────┼──────────────────────────┤ │Image.USE_CLIPPING_BOUNDARY │ 4 │ Use clipping boundary │ ├────────────────────────────┼───────┼──────────────────────────┤ │Image.USE_TRANSPARENCY │ 8 │ Transparency is on │ └────────────────────────────┴───────┴──────────────────────────┘ dxf.clipping Clipping state: ┌──┬──────────────┐ │0 │ clipping off │ ├──┼──────────────┤ │1 │ clipping on │ └──┴──────────────┘ dxf.brightness Brightness value (0-100; default = 50) dxf.contrast Contrast value (0-100; default = 50) dxf.fade Fade value (0-100; default = 0) dxf.clipping_boundary_type Clipping boundary type: ┌──┬─────────────┐ │1 │ Rectangular │ ├──┼─────────────┤ │2 │ Polygonal │ └──┴─────────────┘ dxf.count_boundary_points Number of clip boundary vertices, maintained by ezdxf. dxf.clip_mode Clip mode (DXF R2010): ┌──┬─────────┐ │0 │ Outside │ ├──┼─────────┤ │1 │ Inside │ └──┴─────────┘ boundary_path A list of vertices as pixel coordinates, Two vertices describe a rectangle, lower left corner is (-0.5, -0.5) and upper right corner is (ImageSizeX-0.5, ImageSizeY-0.5), more than two vertices is a polygon as clipping path. All vertices as pixel coordinates. (read/write) image_def Returns the associated IMAGEDEF entity, see ImageDef. reset_boundary_path() -> None Reset boundary path to the default rectangle [(-0.5, -0.5), (ImageSizeX-0.5, ImageSizeY-0.5)]. set_boundary_path(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> None Set boundary path to vertices. Two vertices describe a rectangle (lower left and upper right corner), more than two vertices is a polygon as clipping path. boundary_path_wcs() -> List[Vec3] Returns the boundary/clipping path in WCS coordinates. New in version 0.14. Since version 0.16 it’s recommended to create the clipping path as Path object by the make_path() function: form ezdxf.path import make_path image = ... # get image entity clipping_path = make_path(image) transform(m: Matrix44) -> ImageBase Transform IMAGE entity by transformation matrix m inplace. Leader The LEADER entity (DXF Reference) represents an arrow, made up of one or more vertices (or spline fit points) and an arrowhead. The label or other content to which the Leader is attached is stored as a separate entity, and is not part of the Leader itself. Leader shares its styling infrastructure with Dimension. By default a Leader without any annotation is created. For creating more fancy leaders and annotations see documentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementation notes . ┌─────────────────────────┬───────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼───────────────────────────────────────┤ │DXF type │ 'LEADER' │ ├─────────────────────────┼───────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_leader() │ ├─────────────────────────┼───────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼───────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴───────────────────────────────────────┘ class ezdxf.entities.Leader dxf.dimstyle Name of Dimstyle as string. dxf.has_arrowhead ┌──┬──────────┐ │0 │ Disabled │ ├──┼──────────┤ │1 │ Enabled │ └──┴──────────┘ dxf.path_type Leader path type: ┌──┬────────────────────────┐ │0 │ Straight line segments │ ├──┼────────────────────────┤ │1 │ Spline │ └──┴────────────────────────┘ dxf.annotation_type ┌──┬──────────────────────────────────┐ │0 │ Created with text annotation │ ├──┼──────────────────────────────────┤ │1 │ Created with tolerance │ │ │ annotation │ ├──┼──────────────────────────────────┤ │2 │ Created with block reference │ │ │ annotation │ ├──┼──────────────────────────────────┤ │3 │ Created without any annotation │ │ │ (default) │ └──┴──────────────────────────────────┘ dxf.hookline_direction Hook line direction flag: ┌──┬──────────────────────────────────┐ │0 │ Hookline (or end of tangent for │ │ │ a splined leader) is the │ │ │ opposite direction from the │ │ │ horizontal vector │ ├──┼──────────────────────────────────┤ │1 │ Hookline (or end of tangent for │ │ │ a splined leader) is the same │ │ │ direction as horizontal vector │ │ │ (see has_hook_line) │ └──┴──────────────────────────────────┘ dxf.has_hookline ┌──┬────────────────┐ │0 │ No hookline │ ├──┼────────────────┤ │1 │ Has a hookline │ └──┴────────────────┘ dxf.text_height Text annotation height in drawing units. dxf.text_width Text annotation width. dxf.block_color Color to use if leader’s DIMCLRD = BYBLOCK dxf.annotation_handle Hard reference (handle) to associated annotation (MText, Tolerance, or Insert entity) dxf.normal_vector Extrusion vector? default = (0, 0, 1). .dxf.horizontal_direction Horizontal direction for leader, default = (1, 0, 0). dxf.leader_offset_block_ref Offset of last leader vertex from block reference insertion point, default = (0, 0, 0). dxf.leader_offset_annotation_placement Offset of last leader vertex from annotation placement point, default = (0, 0, 0). vertices List of Vec3 objects, representing the vertices of the leader (3D Point in WCS). set_vertices(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) Set vertices of the leader, vertices is an iterable of (x, y [,z]) tuples or Vec3. transform(m: Matrix44) -> Leader Transform LEADER entity by transformation matrix m inplace. virtual_entities() -> Iterable[DXFGraphic] Yields ‘virtual’ parts of LEADER as DXF primitives. This entities are located at the original positions, but are not stored in the entity database, have no handle and are not assigned to any layout. explode(target_layout: BaseLayout = None) -> EntityQuery Explode parts of LEADER as DXF primitives into target layout, if target layout is None, the target layout is the layout of the LEADER. Returns an EntityQuery container with all DXF parts. Parameters target_layout – target layout for DXF parts, None for same layout as source entity. New in version 0.14. Line LINE (DXF Reference) entity is a 3D line from Line.dxf.start to Line.dxf.end. ┌─────────────────────────┬─────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────┤ │DXF type │ 'LINE' │ ├─────────────────────────┼─────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_line() │ ├─────────────────────────┼─────────────────────────────────────┤ │Inherited DXF Attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Line dxf.start start point of line (2D/3D Point in WCS) dxf.end end point of line (2D/3D Point in WCS) dxf.thickness Line thickness in 3D space in direction extrusion, default value is 0. This value should not be confused with the lineweight value. dxf.extrusion extrusion vector, default value is (0, 0, 1) transform(m: Matrix44) -> Line Transform the LINE entity by transformation matrix m inplace. translate(dx: float, dy: float, dz: float) -> Line Optimized LINE translation about dx in x-axis, dy in y-axis and dz in z-axis. LWPolyline The LWPOLYLINE entity (Lightweight POLYLINE, DXF Reference) is defined as a single graphic entity, which differs from the old-style Polyline entity, which is defined as a group of sub-entities. LWPolyline display faster (in AutoCAD) and consume less disk space, it is a planar element, therefore all points are located in the OCS as (x, y)-tuples (‐ LWPolyline.dxf.elevation is the z-axis value). Changed in version 0.8.9: LWPolyline stores point data as packed data (array.array). ┌─────────────────────────┬─────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────┤ │DXF type │ 'LWPOLYLINE' │ ├─────────────────────────┼─────────────────────────────────┤ │factory function │ add_lwpolyline() │ ├─────────────────────────┼─────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────┘ Bulge value The bulge value is used to create arc shaped line segments for Polyline and LWPolyline entities. The arc starts at the vertex which includes the bulge value and ends at the following vertex. The bulge value defines the ratio of the arc sagitta (versine) to half line segment length, a bulge value of 1 defines a semicircle. The sign of the bulge value defines the side of the bulge: • positive value (> 0): bulge is right of line (counter clockwise) • negative value (< 0): bulge is left of line (clockwise) • 0 = no bulge [image] Start- and end width The start width and end width values defines the width in drawing units for the following line segment. To use the default width value for a line segment set value to 0. Width and bulge values at last point The width and bulge values of the last point has only a meaning if the polyline is closed, and they apply to the last line segment from the last to the first point. SEE ALSO: Tutorial for LWPolyline and Bulge Related Functions User Defined Point Format Codes ┌─────┬───────────────────────┐ │Code │ Point Component │ ├─────┼───────────────────────┤ │x │ x-coordinate │ ├─────┼───────────────────────┤ │y │ y-coordinate │ ├─────┼───────────────────────┤ │s │ start width │ ├─────┼───────────────────────┤ │e │ end width │ ├─────┼───────────────────────┤ │b │ bulge value │ ├─────┼───────────────────────┤ │v │ (x, y [, z]) as tuple │ └─────┴───────────────────────┘ class ezdxf.entities.LWPolyline dxf.elevation OCS z-axis value for all polyline points, default=0 dxf.flags Constants defined in ezdxf.lldxf.const: ┌────────────────────┬───────┬────────────────────┐ │dxf.flags │ Value │ Description │ ├────────────────────┼───────┼────────────────────┤ │LWPOLYLINE_CLOSED │ 1 │ polyline is closed │ ├────────────────────┼───────┼────────────────────┤ │LWPOLYLINE_PLINEGEN │ 128 │ ??? │ └────────────────────┴───────┴────────────────────┘ dxf.const_width Constant line width (float), default value is 0. dxf.count Count of polyline points (read only), same as len(polyline) property closed: bool Get/set closed state of polyline. A closed polyline has a connection from the last vertex to the first vertex. property is_closed: bool Returns True if LWPOLYLINE is closed. Compatibility interface to Polyline close(state: bool = True) -> None Get/set closed state of LWPOLYLINE. Compatibility interface to Polyline property has_arc: bool Returns True if LWPOLYLINE has an arc segment. property has_width: bool Returns True if LWPOLYLINE has any segment with width attributes or DXF attribute const_width != 0. New in version 0.14. __len__() -> int Returns count of polyline points. __getitem__(index: int) -> Tuple[float, float, float, float, float] Returns point at position index as (x, y, start_width, end_width, bulge) tuple. start_width, end_width and bulge is 0 if not present, supports extended slicing. Point format is fixed as 'xyseb'. All coordinates in OCS. __setitem__(index: int, value: Sequence[float]) -> None Set point at position index as (x, y, [start_width, [end_width, [bulge]]]) tuple. If start_width or end_width is 0 or left off the default value is used. If the bulge value is left off, bulge is 0 by default (straight line). Does NOT support extend slicing. Point format is fixed as 'xyseb'. All coordinates in OCS. Parameters • index – point index • value – point value as (x, y, [start_width, [end_width, [bulge]]]) tuple __delitem__(index: int) -> None Delete point at position index, supports extended slicing. __iter__() -> Iterator[Tuple[float, float, float, float, float]] Returns iterable of tuples (x, y, start_width, end_width, bulge). vertices() -> Iterator[Tuple[float, float]] Returns iterable of all polyline points as (x, y) tuples in OCS (‐ dxf.elevation is the z-axis value). vertices_in_wcs() -> Iterable[Vec3] Returns iterable of all polyline points as Vec3(x, y, z) in WCS. append(point: Sequence[float], format: str = 'xyseb') -> None Append point to polyline, format` specifies a user defined point format. All coordinates in OCS. Parameters • point – (x, y, [start_width, [end_width, [bulge]]]) tuple • format – format string, default is 'xyseb', see: format codes append_points(points: Iterable[Sequence[float]], format: str = 'xyseb') -> None Append new points to polyline, format specifies a user defined point format. All coordinates in OCS. Parameters • points – iterable of point, point is (x, y, [start_width, [end_width, [bulge]]]) tuple • format – format string, default is 'xyseb', see: format codes insert(pos: int, point: Sequence[float], format: str = 'xyseb') -> None Insert new point in front of positions pos, format specifies a user defined point format. All coordinates in OCS. Parameters • pos – insert position • point – point data • format – format string, default is ‘xyseb’, see: format codes clear() -> None Remove all points. get_points(format: str = 'xyseb') -> List[Sequence[float]] Returns all points as list of tuples, format specifies a user defined point format. All points in OCS as (x, y) tuples (dxf.elevation is the z-axis value). Parameters format – format string, default is 'xyseb', see format codes set_points(points: Iterable[Sequence[float]], format: str = 'xyseb') -> None Remove all points and append new points. All coordinates in OCS. Parameters • points – iterable of point, point is (x, y, [start_width, [end_width, [bulge]]]) tuple • format – format string, default is 'xyseb', see format codes points(format: str = 'xyseb') -> Iterator[List[Sequence[float]]] Context manager for polyline points. Returns a standard Python list of points, according to the format string. All coordinates in OCS. Parameters format – format string, see format codes transform(m: Matrix44) -> LWPolyline Transform the LWPOLYLINE entity by transformation matrix m inplace. A non-uniform scaling is not supported if the entity contains circular arc segments (bulges). Parameters m – transformation Matrix44 Raises NonUniformScalingError – for non uniform scaling of entity containing circular arc segments (bulges) virtual_entities() -> Iterable[Union[Line, Arc]] Yields the graphical representation of LWPOLYLINE as virtual DXF primitives (LINE or ARC). These virtual entities are located at the original location, but are not stored in the entity database, have no handle and are not assigned to any layout. explode(target_layout: BaseLayout = None) -> EntityQuery Explode the LWPOLYLINE entity as DXF primitives (LINE or ARC) into the target layout, if the target layout is None, the target layout is the layout of the source entity. Returns an EntityQuery container of all DXF primitives. Parameters target_layout – target layout for the DXF primitives, None for same layout as the source entity. MLine The MLINE entity (DXF Reference). ┌─────────────────────────┬─────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────┤ │DXF type │ 'MLINE' │ ├─────────────────────────┼─────────────────────────────────┤ │factory function │ add_mline() │ ├─────────────────────────┼─────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────┘ class ezdxf.entities.MLine dxf.style_name MLineStyle name stored in Drawing.mline_styles dictionary, use set_style() to change the MLINESTYLE and update geometry accordingly. dxf.style_handle Handle of MLineStyle, use set_style() to change the MLINESTYLE and update geometry accordingly. dxf.scale_factor MLINE scaling factor, use method set_scale_factor() to change the scaling factor and update geometry accordingly. dxf.justification Justification defines the location of the MLINE in relation to the reference line, use method set_justification() to change the justification and update geometry accordingly. Constants defined in ezdxf.lldxf.const: ┌─────────────────────┬───────┐ │dxf.justification │ Value │ ├─────────────────────┼───────┤ │MLINE_TOP │ 0 │ ├─────────────────────┼───────┤ │MLINE_ZERO │ 1 │ ├─────────────────────┼───────┤ │MLINE_BOTTOM │ 2 │ ├─────────────────────┼───────┤ │MLINE_RIGHT (alias) │ 0 │ ├─────────────────────┼───────┤ │MLINE_CENTER (alias) │ 1 │ ├─────────────────────┼───────┤ │MLINE_LEFT (alias) │ 2 │ └─────────────────────┴───────┘ dxf.flags Use method close() and the properties start_caps and end_caps to change these flags. Constants defined in ezdxf.lldxf.const: ┌──────────────────────────┬───────┐ │dxf.flags │ Value │ ├──────────────────────────┼───────┤ │MLINE_HAS_VERTEX │ 1 │ ├──────────────────────────┼───────┤ │MLINE_CLOSED │ 2 │ ├──────────────────────────┼───────┤ │MLINE_SUPPRESS_START_CAPS │ 4 │ ├──────────────────────────┼───────┤ │MLINE_SUPPRESS_END_CAPS │ 8 │ └──────────────────────────┴───────┘ dxf.start_location Start location of the reference line. (read only) dxf.count Count of MLINE vertices. (read only) dxf.style_element_count Count of elements in MLineStyle definition. (read only) dxf.extrusion Normal vector of the entity plane, but MLINE is not an OCS entity, all vertices of the reference line are WCS! (read only) vertices MLINE vertices as MLineVertex objects, stored in a regular Python list. property style: Optional[ezdxf.entities.mline.MLineStyle] Get associated MLINESTYLE. set_style(name: str) -> None Set MLINESTYLE by name and update geometry accordingly. The MLINESTYLE definition must exist. set_scale_factor(value: float) -> None Set the scale factor and update geometry accordingly. set_justification(value: int) -> None Set MLINE justification and update geometry accordingly. See dxf.justification for valid settings. property is_closed: bool Returns True if MLINE is closed. Compatibility interface to Polyline close(state: bool = True) -> None Get/set closed state of MLINE and update geometry accordingly. Compatibility interface to Polyline property start_caps: bool Get/Set start caps state. True to enable start caps and False tu suppress start caps. property end_caps: bool Get/Set end caps state. True to enable end caps and False tu suppress start caps. __len__() Count of MLINE vertices. start_location() -> Vec3 Returns the start location of the reference line. Callback function for dxf.start_location. get_locations() -> List[Vec3] Returns the vertices of the reference line. extend(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> None Append multiple vertices to the reference line. It is possible to work with 3D vertices, but all vertices have to be in the same plane and the normal vector of this plan is stored as extrusion vector in the MLINE entity. clear() -> None Remove all MLINE vertices. update_geometry() -> None Regenerate the MLINE geometry based on current settings. generate_geometry(vertices: List[Vec3]) -> None Regenerate the MLINE geometry for new reference line defined by vertices. transform(m: Matrix44) -> DXFGraphic Transform MLINE entity by transformation matrix m inplace. virtual_entities() -> Iterator[DXFGraphic] Yields ‘virtual’ parts of MLINE as LINE, ARC and HATCH entities. This entities are located at the original positions, but are not stored in the entity database, have no handle and are not assigned to any layout. explode(target_layout: BaseLayout = None) -> EntityQuery Explode parts of MLINE as LINE, ARC and HATCH entities into target layout, if target layout is None, the target layout is the layout of the MLINE. Returns an EntityQuery container with all DXF parts. Parameters target_layout – target layout for DXF parts, None for same layout as source entity. class ezdxf.entities.MLineVertex location Reference line vertex location. line_direction Reference line direction. miter_direction line_params The line parameterization is a list of float values. The list may contain zero or more items. The first value (miter-offset) is the distance from the vertex location along the miter_direction vector to the point where the line element’s path intersects the miter vector. The next value (line-start-offset) is the distance along the line_direction from the miter/line path intersection point to the actual start of the line element. The next value (dash-length) is the distance from the start of the line element (dash) to the first break (gap) in the line element. The successive values continue to list the start and stop points of the line element in this segment of the mline. fill_params The fill parameterization is also a list of float values. Similar to the line parameterization, it describes the parameterization of the fill area for this mline segment. The values are interpreted identically to the line parameters and when taken as a whole for all line elements in the mline segment, they define the boundary of the fill area for the mline segment. class ezdxf.entities.MLineStyle The MLineStyle stores the style properties for the MLINE entity. dxf.name dxf.description dxf.flags dxf.fill_color AutoCAD Color Index (ACI) value of the fill color dxf.start_angle dxf.end_angle elements MLineStyleElements object update_all() Update all MLINE entities using this MLINESTYLE. The update is required if elements were added or removed or the offset of any element was changed. class ezdxf.entities.mline.MLineStyleElements elements List of MLineStyleElement objects, one for each line element. MLineStyleElements.__len__() MLineStyleElements.__getitem__(item) MLineStyleElements.append(offset: float, color: int = 0, linetype: str = 'BYLAYER') -> None Append a new line element. Parameters • offset – normal offset from the reference line: if justification is MLINE_ZERO, positive values are above and negative values are below the reference line. • color – AutoCAD Color Index (ACI) value • linetype – linetype name class ezdxf.entities.mline.MLineStyleElement Named tuple to store properties of a line element. offset Normal offset from the reference line: if justification is MLINE_ZERO, positive values are above and negative values are below the reference line. color AutoCAD Color Index (ACI) value linetype Linetype name Mesh The MESH entity (DXF Reference) is a 3D mesh similar to the Polyface entity. All vertices in WCS as (x, y, z) tuples Changed in version 0.8.9: Mesh stores vertices, edges, faces and creases as packed data. ┌─────────────────────────┬─────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────┤ │DXF type │ 'MESH' │ ├─────────────────────────┼─────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_mesh() │ ├─────────────────────────┼─────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────────┘ SEE ALSO: Tutorial for Mesh and helper classes: MeshBuilder, MeshVertexMerger class ezdxf.entities.Mesh dxf.version dxf.blend_crease 0 = off, 1 = on dxf.subdivision_levels 0 for no smoothing else integer greater than 0. vertices Vertices as list like VertexArray. (read/write) edges Edges as list like TagArray. (read/write) faces Faces as list like TagList. (read/write) creases Creases as array.array. (read/write) edit_data() -> Iterator[MeshData] Context manager various mesh data, returns MeshData. Despite that vertices, edge and faces since ezdxf v0.8.9 are accessible as packed data types, the usage of MeshData by context manager edit_data() is still recommended. transform(m: Matrix44) -> Mesh Transform the MESH entity by transformation matrix m inplace. MeshData class ezdxf.entities.MeshData vertices A standard Python list with (x, y, z) tuples (read/write) faces A standard Python list with (v1, v2, v3,…) tuples (read/write) Each face consist of a list of vertex indices (= index in vertices). edges A standard Python list with (v1, v2) tuples (read/write). These list represents the edges to which the edge_crease_values values will be applied. Each edge consist of exact two vertex indices (= index in vertices). edge_crease_values A standard Python list of float values, one value for each edge. (read/write) add_face(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Sequence[int] Add a face by coordinates, vertices is a list of (x, y, z) tuples. add_edge_crease(v1: int, v2: int, crease: float) Add an edge crease value, the edge is defined by the vertex indices v1 and v2. The crease value defines the amount of subdivision that will be applied to this edge. A crease value of the subdivision level prevents the edge from deformation and a value of 0.0 means no protection from subdividing. optimize(precision: int = 6) Try to reduce vertex count by merging near vertices. precision defines the decimal places for coordinate be equal to merge two vertices. MPolygon The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application or DXF library. The MPolygon class is very similar to the Hatch class with small differences in supported DXF attributes and features. The boundary paths of the MPOLYGON are visible and use the graphical DXF attributes of the main entity like dxf.color, dxf.linetype and so on. The solid filling is only visible if the attribute dxf.solid_fill is 1, the color of the solid fill is defined by dxf.fill_color as AutoCAD Color Index (ACI). MPOLYGON supports ezdxf.entities.Gradient settings like HATCH for DXF R2004+. This feature is used by method MPolygon.set_solid_fill() to set a solid RGB fill color as linear gradient, this disables pattern fill automatically. The MPOLYGON does not support associated source path entities, because the MPOLYGON also represents the boundary paths as visible graphical objects. Hatch patterns are supported, but the hatch style tag is not supported, the default hatch style is ezdxf.const.HATCH_STYLE_NESTED and the style flags of the boundary paths are ignored. Background color for pattern fillings is supported, set background color by property MPolygon.bgcolor as RGB tuple. NOTE: Background RGB fill color for solid fill and pattern fill is set differently! Autodesk products do support polyline paths including bulges. An example for edge paths as boundary paths is not available or edge paths are not supported. Ezdxf does not export MPOLYGON entities including edge paths! The BoundaryPaths.edge_to_polyline_paths() method converts all edge paths to simple polyline paths with approximated curves, this conversion has to be done explicit. SEE ALSO: For more information see the ezdxf.entities.Hatch documentation. ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'MPOLYGON' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_mpolygon() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────────────┘ class ezdxf.entities.MPolygon dxf.pattern_name Pattern name as string dxf.solid_fill ┌──┬──────────────────────────────────┐ │1 │ solid fill, better use: │ │ │ MPolygon.set_solid_fill() │ ├──┼──────────────────────────────────┤ │0 │ pattern fill, better use: │ │ │ MPolygon.set_pattern_fill() │ └──┴──────────────────────────────────┘ (search AutoCAD help for more information) dxf.pattern_type ┌──┬────────────┐ │0 │ user │ ├──┼────────────┤ │1 │ predefined │ ├──┼────────────┤ │2 │ custom │ └──┴────────────┘ dxf.pattern_angle Actual pattern angle in degrees (float). Changing this value does not rotate the pattern, use set_pattern_angle() for this task. dxf.pattern_scale Actual pattern scaling factor (float). Changing this value does not scale the pattern use set_pattern_scale() for this task. dxf.pattern_double 1 = double pattern size else 0. (int) dxf.elevation Z value represents the elevation height of the OCS. (float) paths BoundaryPaths object. pattern Pattern object. gradient Gradient object. property has_solid_fill: bool True if entity has a solid fill. (read only) property has_pattern_fill: bool True if entity has a pattern fill. (read only) property has_gradient_data: bool True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only) property bgcolor: Optional[Tuple[int, int, int]] Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del) usage: r, g, b = entity.bgcolor # get pattern fill background color entity.bgcolor = (10, 20, 30) # set pattern fill background color del entity.bgcolor # delete pattern fill background color set_pattern_definition(lines: Sequence, factor: float = 1, angle: float = 0) -> None Setup pattern definition by a list of definition lines and a definition line is a 4-tuple (angle, base_point, offset, dash_length_items), the pattern definition should be designed for scaling factor 1 and angle 0. • angle: line angle in degrees • base-point: 2-tuple (x, y) • offset: 2-tuple (dx, dy) • dash_length_items: list of dash items (item > 0 is a line, item < 0 is a gap and item == 0.0 is a point) Parameters • lines – list of definition lines • factor – pattern scaling factor • angle – rotation angle in degrees set_pattern_scale(scale: float) -> None Set scaling of pattern definition to scale. Starts always from the original base scaling, set_pattern_scale(1) reset the pattern scaling to the original appearance as defined by the pattern designer, but only if the pattern attribute dxf.pattern_scale represents the actual scaling, it is not possible to recreate the original pattern scaling from the pattern definition itself. Parameters scale – pattern scaling factor set_pattern_angle(angle: float) -> None Set rotation of pattern definition to angle in degrees. Starts always from the original base rotation 0, set_pattern_angle(0) reset the pattern rotation to the original appearance as defined by the pattern designer, but only if the pattern attribute dxf.pattern_angle represents the actual rotation, it is not possible to recreate the original rotation from the pattern definition itself. Parameters angle – rotation angle in degrees set_solid_fill(color: int = 7, style: int = 1, rgb: RGB = None) Set MPolygon to solid fill mode and removes all gradient and pattern fill related data. Parameters • color – AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER) • style – hatch style is not supported by MPOLYGON, just for symmetry to HATCH • rgb – true color value as (r, g, b)-tuple - has higher priority than color. True color support requires DXF R2004+ set_pattern_fill(name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int = 1, pattern_type: int = 1, definition=None) -> None Set Hatch and MPolygon to pattern fill mode. Removes all gradient related data. The pattern definition should be designed for scaling factor 1. Predefined hatch pattern like “ANSI33” are scaled according to the HEADER variable $MEASUREMENT for ISO measurement (m, cm, … ), or imperial units (in, ft, …), this replicates the behavior of BricsCAD. Parameters • name – pattern name as string • color – pattern color as AutoCAD Color Index (ACI) • angle – angle of pattern fill in degrees • scale – pattern scaling as float • double – double size flag • style – hatch style (0 = normal; 1 = outer; 2 = ignore) • pattern_type – pattern type (0 = user-defined; 1 = predefined; 2 = custom) • definition – list of definition lines and a definition line is a 4-tuple [angle, base_point, offset, dash_length_items], see set_pattern_definition() set_gradient(color1: Tuple[int, int, int] = (0, 0, 0), color2: Tuple[int, int, int] = (255, 255, 255), rotation: float = 0.0, centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') -> None Set Hatch and MPolygon to gradient fill mode and removes all pattern fill related data. Gradient support requires DXF R2004+. A gradient filled hatch is also a solid filled hatch. Valid gradient type names are: • 'LINEAR' • 'CYLINDER' • 'INVCYLINDER' • 'SPHERICAL' • 'INVSPHERICAL' • 'HEMISPHERICAL' • 'INVHEMISPHERICAL' • 'CURVED' • 'INVCURVED' Parameters • color1 – (r, g, b)-tuple for first color, rgb values as int in the range [0, 255] • color2 – (r, g, b)-tuple for second color, rgb values as int in the range [0, 255] • rotation – rotation angle in degrees • centered – determines whether the gradient is centered or not • one_color – 1 for gradient from color1 to tinted color1 • tint – determines the tinted target color1 for a one color gradient. (valid range 0.0 to 1.0) • name – name of gradient type, default “LINEAR” transform(m: Matrix44) -> DXFPolygon Transform entity by transformation matrix m inplace. MText The MTEXT entity (DXF Reference) fits a multiline text in a specified width but can extend vertically to an indefinite length. You can format individual words or characters within the MText. SEE ALSO: Tutorial for MText and MTextEditor ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'MTEXT' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_mtext() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼──────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴──────────────────────────────────────┘ class ezdxf.entities.MText dxf.insert Insertion point (3D Point in OCS) dxf.char_height Initial text height (float); default=1.0 dxf.width Reference text width (float), forces text wrapping at given width. dxf.attachment_point Constants defined in ezdxf.lldxf.const: ┌───────────────────────────┬───────┐ │MText.dxf.attachment_point │ Value │ ├───────────────────────────┼───────┤ │MTEXT_TOP_LEFT │ 1 │ ├───────────────────────────┼───────┤ │MTEXT_TOP_CENTER │ 2 │ ├───────────────────────────┼───────┤ │MTEXT_TOP_RIGHT │ 3 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_LEFT │ 4 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_CENTER │ 5 │ ├───────────────────────────┼───────┤ │MTEXT_MIDDLE_RIGHT │ 6 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_LEFT │ 7 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_CENTER │ 8 │ ├───────────────────────────┼───────┤ │MTEXT_BOTTOM_RIGHT │ 9 │ └───────────────────────────┴───────┘ dxf.flow_direction Constants defined in ezdxf.const: ┌─────────────────────────┬───────┬──────────────────────────┐ │MText.dxf.flow_direction │ Value │ Description │ ├─────────────────────────┼───────┼──────────────────────────┤ │MTEXT_LEFT_TO_RIGHT │ 1 │ left to right │ ├─────────────────────────┼───────┼──────────────────────────┤ │MTEXT_TOP_TO_BOTTOM │ 3 │ top to bottom │ ├─────────────────────────┼───────┼──────────────────────────┤ │MTEXT_BY_STYLE │ 5 │ by style (the flow │ │ │ │ direction is inherited │ │ │ │ from the associated text │ │ │ │ style) │ └─────────────────────────┴───────┴──────────────────────────┘ dxf.style Text style (string); default = 'STANDARD' dxf.text_direction X-axis direction vector in WCS (3D Point); default value is (1, 0, 0); if dxf.rotation and dxf.text_direction are present, dxf.text_direction wins. dxf.rotation Text rotation in degrees (float); default = 0 dxf.line_spacing_style Line spacing style (int), see table below dxf.line_spacing_factor Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00 (float). Constants defined in ezdxf.lldxf.const: ┌─────────────────────────────┬───────┬──────────────────────────┐ │MText.dxf.line_spacing_style │ Value │ Description │ ├─────────────────────────────┼───────┼──────────────────────────┤ │MTEXT_AT_LEAST │ 1 │ taller characters will │ │ │ │ override │ ├─────────────────────────────┼───────┼──────────────────────────┤ │MTEXT_EXACT │ 2 │ taller characters will │ │ │ │ not override │ └─────────────────────────────┴───────┴──────────────────────────┘ dxf.bg_fill Defines the background fill type. (DXF R2007) ┌──────────────────────┬───────┬──────────────────────────┐ │MText.dxf.bg_fill │ Value │ Description │ ├──────────────────────┼───────┼──────────────────────────┤ │MTEXT_BG_OFF │ 0 │ no background color │ ├──────────────────────┼───────┼──────────────────────────┤ │MTEXT_BG_COLOR │ 1 │ use specified color │ ├──────────────────────┼───────┼──────────────────────────┤ │MTEXT_BG_WINDOW_COLOR │ 2 │ use window color (?) │ ├──────────────────────┼───────┼──────────────────────────┤ │MTEXT_BG_CANVAS_COLOR │ 3 │ use canvas background │ │ │ │ color │ └──────────────────────┴───────┴──────────────────────────┘ dxf.box_fill_scale Determines how much border there is around the text. (DXF R2007) Requires: bg_fill, bg_fill_color else AutoCAD complains Better use set_bg_color() dxf.bg_fill_color Background fill color as AutoCAD Color Index (ACI) (DXF R2007) Better use set_bg_color() dxf.bg_fill_true_color Background fill color as true color value (DXF R2007), also dxf.bg_fill_color must be present, else AutoCAD complains. Better use set_bg_color() dxf.bg_fill_color_name Background fill color as name string (?) (DXF R2007), also dxf.bg_fill_color must be present, else AutoCAD complains. Better use set_bg_color() dxf.transparency Transparency of background fill color (DXF R2007), not supported by AutoCAD or BricsCAD. text MTEXT content as string (read/write). Line endings \n will be replaced by the MTEXT line endings \P at DXF export, but not vice versa \P by \n at DXF file loading. set_location(insert: Union[Sequence[float], Vec2, Vec3], rotation: Optional[float] = None, attachment_point: Optional[int] = None) -> MText Set attributes dxf.insert, dxf.rotation and dxf.attachment_point, None for dxf.rotation or dxf.attachment_point preserves the existing value. get_rotation() -> float Get text rotation in degrees, independent if it is defined by dxf.rotation or dxf.text_direction. set_rotation(angle: float) -> MText Set attribute rotation to angle (in degrees) and deletes dxf.text_direction if present. get_text_direction() -> Vec3 Returns the horizontal text direction as Vec3 object, even if only the text rotation is defined. set_bg_color(color: Optional[Union[int, str, Tuple[int, int, int]]], scale: float = 1.5, text_frame=False) Set background color as AutoCAD Color Index (ACI) value or as name string or as RGB tuple (r, g, b). Use special color name canvas, to set background color to canvas background color. Use color = None to remove the background filling. Setting only a text border is supported (color`=``None`), but in this case the scaling is always 1.5. Parameters • color – color as AutoCAD Color Index (ACI), string, RGB tuple or None • scale – determines how much border there is around the text, the value is based on the text height, and should be in the range of [1, 5], where 1 fits exact the MText entity. • text_frame – draw a text frame in text color if True __iadd__(text: str) -> MText Append text to existing content (text attribute). append(text: str) -> MText Append text to existing content (text attribute). plain_text(split=False, fast=True) -> Union[List[str], str] Returns the text content without inline formatting codes. The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older CAD applications or unreliable DXF libraries and CAD applications. Parameters • split – split content text at line breaks if True and returns a list of strings without line endings • fast – uses the “fast” mode to extract the plain MTEXT content if True or the “accurate” mode if set to False New in version 0.16.6: fast argument all_columns_plain_text(split=False) -> Union[List[str], str] Returns the text content of all columns without inline formatting codes. Parameters split – split content text at line breaks if True and returns a list of strings without line endings New in version 0.17. all_columns_raw_content() -> str Returns the text content of all columns as a single string including the inline formatting codes. New in version 0.17. transform(m: Matrix44) -> MText Transform the MTEXT entity by transformation matrix m inplace. ucs() -> UCS Returns the UCS of the MText entity, defined by the insert location (origin), the text direction or rotation (x-axis) and the extrusion vector (z-axis). MText Inline Codes ┌─────┬──────────────────────────────────┐ │Code │ Description │ ├─────┼──────────────────────────────────┤ │\L │ Start underline │ ├─────┼──────────────────────────────────┤ │\l │ Stop underline │ ├─────┼──────────────────────────────────┤ │\O │ Start overline │ ├─────┼──────────────────────────────────┤ │\o │ Stop overline │ ├─────┼──────────────────────────────────┤ │\K │ Start strike-through │ └─────┴──────────────────────────────────┘ │\k │ Stop strike-through │ ├─────┼──────────────────────────────────┤ │\P │ New paragraph (new line) │ ├─────┼──────────────────────────────────┤ │\p │ Paragraphs properties: │ │ │ indentation, alignment, │ │ │ tabulator stops │ ├─────┼──────────────────────────────────┤ │\X │ Paragraph wrap on the dimension │ │ │ line (only in dimensions) │ ├─────┼──────────────────────────────────┤ │\Q │ Slanting (oblique) text by angle │ │ │ - e.g. \Q30; │ ├─────┼──────────────────────────────────┤ │\H │ Text height - e.g. relative │ │ │ \H3x; absolut \H3; │ ├─────┼──────────────────────────────────┤ │\W │ Text width - e.g. relative │ │ │ \W0.8x; absolut \W0.8; │ ├─────┼──────────────────────────────────┤ │\T │ Tracking, character spacing - │ │ │ e.g. relative \T0.5x; absolut │ │ │ \T2; │ ├─────┼──────────────────────────────────┤ │\F │ Font selection e.g. \Fgdt;o - │ │ │ GDT-tolerance │ ├─────┼──────────────────────────────────┤ │\S │ Stacking, fractions e.g. \SA^ B; │ │ │ space after “^” is required to │ │ │ avoid caret decoding, \SX/Y; │ │ │ \S1#4; │ ├─────┼──────────────────────────────────┤ │\A │ Alignment │ │ │ │ │ │ • \A0; = bottom │ │ │ │ │ │ • \A1; = center │ │ │ │ │ │ • \A2; = top │ ├─────┼──────────────────────────────────┤ │\C │ Color change │ │ │ │ │ │ • \C1; = red │ │ │ │ │ │ • \C2; = yellow │ │ │ │ │ │ • \C3; = green │ │ │ │ │ │ • \C4; = cyan │ │ │ │ │ │ • \C5; = blue │ │ │ │ │ │ • \C6; = magenta │ │ │ │ │ │ • \C7; = white │ ├─────┼──────────────────────────────────┤ │\~ │ Non breaking space │ ├─────┼──────────────────────────────────┤ │{} │ Braces - define the text area │ │ │ influenced by the code, codes │ │ │ and braces can be nested up to 8 │ │ │ levels deep │ ├─────┼──────────────────────────────────┤ │\ │ Escape character - e.g. \{ = “{” │ └─────┴──────────────────────────────────┘ Convenient constants defined in MTextEditor: ┌─────────────────┬──────────────────────┐ │Constant │ Description │ ├─────────────────┼──────────────────────┤ │UNDERLINE_START │ start underline text │ ├─────────────────┼──────────────────────┤ │UNDERLINE_STOP │ stop underline text │ ├─────────────────┼──────────────────────┤ │OVERSTRIKE_START │ start overline │ ├─────────────────┼──────────────────────┤ │OVERSTRIKE_STOP │ stop overline │ ├─────────────────┼──────────────────────┤ │STRIKE_START │ start strike through │ ├─────────────────┼──────────────────────┤ │STRIKE_STOP │ stop strike through │ ├─────────────────┼──────────────────────┤ │GROUP_START │ start of group │ ├─────────────────┼──────────────────────┤ │GROUP_END │ end of group │ ├─────────────────┼──────────────────────┤ │NEW_LINE │ start in new line │ ├─────────────────┼──────────────────────┤ │NBSP │ none breaking space │ └─────────────────┴──────────────────────┘ MultiLeader New in version 0.18. The MULTILEADER entity (DXF Reference) represents one or more leaders, made up of one or more vertices (or spline fit points) and an arrowhead. In contrast to the Leader entity the text- or block content is part of the MULTILEADER entity. AutoCAD, BricsCAD and maybe other CAD applications do accept 'MLEADER' as type string but they always create entities with 'MULTILEADER' as type string. Because of the complexity of the MULTILEADER entity, the factory method add_multileader_mtext() returns a MultiLeaderMTextBuilder instance to build a new entity and the factory method add_multileader_block() returns a MultiLeaderBlockBuilder instance. The visual design is based on an associated MLeaderStyle, but almost all attributes are also stored in the MULTILEADER entity itself. The attribute MultiLeader.dxf.property_override_flags should indicate which MLEADERSTYLE attributes are overridden by MULTILEADER attributes, but these flags do not always reflect the state of overridden attributes. The ezdxf MULTILEADER renderer uses always the attributes from the MULTILEADER entity and ignores the override flags. All vertices are WCS coordinates, even those for BLOCK entities which are OCS coordinates in the usual case. SEE ALSO: • ezdxf.entities.MLeaderStyle • ezdxf.render.MultiLeaderBuilder • Tutorial for MultiLeader • MULTILEADER Internals ┌─────────────────────────┬───────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼───────────────────────────────────────────────────────────┤ │DXF type │ 'MULTILEADER' │ ├─────────────────────────┼───────────────────────────────────────────────────────────┤ │Factory functions │ │ │ │ • ezdxf.layouts.BaseLayout.add_multileader_mtext() │ │ │ │ │ │ • ezdxf.layouts.BaseLayout.add_multileader_block() │ ├─────────────────────────┼───────────────────────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼───────────────────────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴───────────────────────────────────────────────────────────┘ class ezdxf.entities.MultiLeader dxf.arrow_head_handle handle of the arrow head, see also ezdxf.render.arrows module, “closed filled” arrow if not set dxf.arrow_head_size arrow head size in drawing units dxf.block_color block color as raw color value, default is BY_BLOCK_RAW_VALUE dxf.block_connection_type ┌──┬─────────────────┐ │0 │ center extents │ ├──┼─────────────────┤ │1 │ insertion point │ └──┴─────────────────┘ dxf.block_record_handle handle to block record of the BLOCK content dxf.block_rotation BLOCK rotation in radians dxf.block_scale_vector Vec3 object which stores the scaling factors for the x-, y- and z-axis dxf.content_type ┌──┬───────────┐ │0 │ none │ ├──┼───────────┤ │1 │ BLOCK │ ├──┼───────────┤ │2 │ MTEXT │ ├──┼───────────┤ │3 │ TOLERANCE │ └──┴───────────┘ dxf.dogleg_length dogleg length in drawing units dxf.has_dogleg dxf.has_landing dxf.has_text_frame dxf.is_annotative dxf.is_text_direction_negative dxf.leader_extend_to_text dxf.leader_line_color leader line color as raw color value dxf.leader_linetype_handle handle of the leader linetype, “CONTINUOUS” if not set dxf.leader_lineweight dxf.leader_type ┌──┬──────────────────────┐ │0 │ invisible │ ├──┼──────────────────────┤ │1 │ straight line leader │ ├──┼──────────────────────┤ │2 │ spline leader │ └──┴──────────────────────┘ dxf.property_override_flags Each bit shows if the MLEADERSTYLE is overridden by the value in the MULTILEADER entity, but this is not always the case for all values, it seems to be save to always use the value from the MULTILEADER entity. dxf.scale overall scaling factor dxf.style_handle handle to the associated MLEADERSTYLE object dxf.text_IPE_align unknown meaning dxf.text_alignment_type unknown meaning - its not the MTEXT attachment point! dxf.text_angle_type ┌──┬──────────────────────────────────┐ │0 │ text angle is equal to last │ │ │ leader line segment angle │ ├──┼──────────────────────────────────┤ │1 │ text is horizontal │ ├──┼──────────────────────────────────┤ │2 │ text angle is equal to last │ │ │ leader line segment angle, but │ │ │ potentially rotated by 180 │ │ │ degrees so the right side is up │ │ │ for readability. │ └──┴──────────────────────────────────┘ dxf.text_attachment_direction defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top & bottom: ┌──┬──────────────────────────────────┐ │0 │ horizontal - left & right of │ │ │ content │ ├──┼──────────────────────────────────┤ │1 │ vertical - top & bottom of │ │ │ content │ └──┴──────────────────────────────────┘ dxf.text_attachment_point MTEXT attachment point ┌──┬────────────┐ │1 │ top left │ ├──┼────────────┤ │2 │ top center │ ├──┼────────────┤ │3 │ top right │ └──┴────────────┘ dxf.text_bottom_attachment_type ┌───┬─────────────────────┐ │9 │ center │ ├───┼─────────────────────┤ │10 │ overline and center │ └───┴─────────────────────┘ dxf.text_color MTEXT color as raw color value dxf.text_left_attachment_type ┌──┬──────────────────────────────────┐ │0 │ top of top MTEXT line │ ├──┼──────────────────────────────────┤ │1 │ middle of top MTEXT line │ ├──┼──────────────────────────────────┤ │2 │ middle of whole MTEXT │ ├──┼──────────────────────────────────┤ │3 │ middle of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │4 │ bottom of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │5 │ bottom of bottom MTEXT line & │ │ │ underline bottom MTEXT line │ ├──┼──────────────────────────────────┤ │6 │ bottom of top MTEXT line & │ │ │ underline top MTEXT line │ ├──┼──────────────────────────────────┤ │7 │ bottom of top MTEXT line │ ├──┼──────────────────────────────────┤ │8 │ bottom of top MTEXT line & │ │ │ underline all MTEXT lines │ └──┴──────────────────────────────────┘ dxf.text_right_attachment_type ┌──┬──────────────────────────────────┐ │0 │ top of top MTEXT line │ ├──┼──────────────────────────────────┤ │1 │ middle of top MTEXT line │ ├──┼──────────────────────────────────┤ │2 │ middle of whole MTEXT │ ├──┼──────────────────────────────────┤ │3 │ middle of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │4 │ bottom of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │5 │ bottom of bottom MTEXT line & │ │ │ underline bottom MTEXT line │ ├──┼──────────────────────────────────┤ │6 │ bottom of top MTEXT line & │ │ │ underline top MTEXT line │ ├──┼──────────────────────────────────┤ │7 │ bottom of top MTEXT line │ ├──┼──────────────────────────────────┤ │8 │ bottom of top MTEXT line & │ │ │ underline all MTEXT lines │ └──┴──────────────────────────────────┘ dxf.text_style_handle handle of the MTEXT text style, “Standard” if not set dxf.text_top_attachment_type ┌───┬─────────────────────┐ │9 │ center │ ├───┼─────────────────────┤ │10 │ overline and center │ └───┴─────────────────────┘ dxf.version always 2? context MLeaderContext instance arrow_heads list of ArrowHeadData block_attribs list of AttribData virtual_entities() -> Iterable[DXFGraphic] Yields the graphical representation of MULTILEADER as virtual DXF primitives. This entities are located at the original location, but are not stored in the entity database, have no handle and are not assigned to any layout. explode(target_layout: BaseLayout = None) -> EntityQuery Explode MULTILEADER as DXF primitives into target layout, if target layout is None, the target layout is the layout of the source entity. Returns an EntityQuery container with all DXF primitives. Parameters target_layout – target layout for the DXF primitives, None for same layout as the source entity. transform(m: Matrix44) -> MultiLeader Transform the MULTILEADER entity by transformation matrix m inplace. Non uniform scaling is not supported. Parameters m – transformation Matrix44 Raises NonUniformScalingError – for non uniform scaling class ezdxf.entities.MLeaderContext leaders list of LeaderData objects scale redundant data: MultiLeader.dxf.scale base_point insert location as Vec3 of the MTEXT or the BLOCK entity? char_height MTEXT char height, already scaled arrow_head_size redundant data: MultiLeader.dxf.arrow_head_size landing_gap_size left_attachment redundant data: MultiLeader.dxf.text_left_attachment_type right_attachment redundant data: MultiLeader.dxf.text_right_attachment_type text_align_type redundant data: MultiLeader.dxf.text_attachment_point attachment_type BLOCK alignment? ┌──┬─────────────────┐ │0 │ content extents │ ├──┼─────────────────┤ │1 │ insertion point │ └──┴─────────────────┘ mtext instance of MTextData if content is MTEXT otherwise None block instance of BlockData if content is BLOCK otherwise None plane_origin Vec3 plane_x_axis Vec3 plane_y_axis Vec3 plane_normal_reversed the plan normal is x-axis “cross” y-axis (right-hand-rule), this flag indicates to invert this plan normal top_attachment redundant data: MultiLeader.dxf.text_top_attachment_type bottom_attachment redundant data: MultiLeader.dxf.text_bottom_attachment_type class ezdxf.entities.LeaderData lines list of LeaderLine has_last_leader_line unknown meaning has_dogleg_vector last_leader_point WCS point as Vec3 dogleg_vector WCS direction as Vec3 dogleg_length redundant data: MultiLeader.dxf.dogleg_length index leader index? attachment_direction redundant data: MultiLeader.dxf.text_attachment_direction breaks list of break vertices as Vec3 objects class ezdxf.entities.LeaderLine vertices list of WCS coordinates as Vec3 breaks mixed list of mixed integer indices and break coordinates or None leader lines without breaks in it index leader line index? color leader line color override, ignore override value if BY_BLOCK_RAW_VALUE class ezdxf.entities.ArrowHeadData index arrow head index? handle handle to arrow head block class ezdxf.entities.AttribData handle handle to Attdef entity in the BLOCK definition index unknown meaning width text width factor? text Attrib content class ezdxf.entities.MTextData stores the content and attributes of the MTEXT entity default_content content as string extrusion extrusion vector of the MTEXT entity but MTEXT is not an OCS entity! style_handle redundant data: MultiLeader.dxf.text_style_handle insert insert location in WCS coordinates, same as MLeaderContext.base_point? text_direction “horizontal” text direction vector in WCS rotation rotation angle in radians (!) around the extrusion vector, calculated as it were an OCS entity width unscaled column width defined_height unscaled defined column height line_spacing_factor see MText.dxf.line_spacing_factor line_spacing_style see MText.dxf.line_spacing_style color redundant data: MultiLeader.dxf.text_color alignment redundant data: MultiLeader.dxf.text_attachment_point flow_direction ┌──┬───────────────┐ │1 │ horizontal │ ├──┼───────────────┤ │3 │ vertical │ ├──┼───────────────┤ │6 │ by text style │ └──┴───────────────┘ bg_color background color as raw color value bg_scale_factor see MText.dxf.box_fill_scale bg_transparency background transparency value use_window_bg_color has_bg_fill column_type unknown meaning - most likely: ┌──┬─────────┐ │0 │ none │ ├──┼─────────┤ │1 │ static │ ├──┼─────────┤ │2 │ dynamic │ └──┴─────────┘ use_auto_height column_width unscaled column width, redundant data width column_gutter_width unscaled column gutter width column_flow_reversed column_sizes list of unscaled columns heights for dynamic column with manual heights use_word_break class ezdxf.entities.BlockData stores the attributes for the Insert entity block_record_handle redundant data: MultiLeader.dxf.block_record_handle extrusion extrusion vector in WCS insert insertion location in WCS as Vec3, same as MLeaderContext.base_point? scale redundant data: MultiLeader.dxf.block_scale_vector rotation redundant data: MultiLeader.dxf.block_rotation color redundant data: MultiLeader.dxf.block_color Point POINT (DXF Reference) at location dxf.location. The POINT styling is a global setting, stored as header variable $PDMODE, this also means all POINT entities in a DXF document have the same styling: ┌──┬────────────────┐ │0 │ center dot (.) │ ├──┼────────────────┤ │1 │ none ( ) │ ├──┼────────────────┤ │2 │ cross (+) │ ├──┼────────────────┤ │3 │ x-cross (x) │ ├──┼────────────────┤ │4 │ tick (‘) │ └──┴────────────────┘ Combined with these bit values ┌───┬────────┐ │32 │ circle │ ├───┼────────┤ │64 │ Square │ └───┴────────┘ e.g. circle + square + center dot = 32 + 64 + 0 = 96 [image] The size of the points is defined by the header variable $PDSIZE: ┌───┬──────────────────────────────────┐ │0 │ 5% of draw area height │ ├───┼──────────────────────────────────┤ │<0 │ Specifies a percentage of the │ │ │ viewport size │ ├───┼──────────────────────────────────┤ │>0 │ Specifies an absolute size │ └───┴──────────────────────────────────┘ ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'POINT' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_point() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴──────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Point dxf.location Location of the point (2D/3D Point in WCS) dxf.angle Angle in degrees of the x-axis for the UCS in effect when POINT was drawn (float); used when PDMODE is nonzero. transform(m: Matrix44) -> Point Transform the POINT entity by transformation matrix m inplace. translate(dx: float, dy: float, dz: float) -> Point Optimized POINT translation about dx in x-axis, dy in y-axis and dz in z-axis. virtual_entities(pdsize: float = 1, pdmode: int = 0) -> Iterable[DXFGraphic] Yields point graphic as DXF primitives LINE and CIRCLE entities. The dimensionless point is rendered as zero-length line! Check for this condition: e.dxftype() == 'LINE' and e.dxf.start.isclose(e.dxf.end) if the rendering engine can’t handle zero-length lines. Parameters • pdsize – point size in drawing units • pdmode – point styling mode Polyline The POLYLINE entity (POLYLINE DXF Reference) is very complex, it’s used to build 2D/3D polylines, 3D meshes and 3D polyfaces. For every type exists a different wrapper class but they all have the same dxftype of 'POLYLINE'. Detect POLYLINE type by Polyline.get_mode(). POLYLINE types returned by Polyline.get_mode(): • 'AcDb2dPolyline' for 2D Polyline • 'AcDb3dPolyline' for 3D Polyline • 'AcDbPolygonMesh' for Polymesh • 'AcDbPolyFaceMesh' for Polyface For 2D entities all vertices in OCS. For 3D entities all vertices in WCS. ┌─────────────────────────┬───────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼───────────────────────────────────────────┤ │DXF type │ 'POLYLINE' │ ├─────────────────────────┼───────────────────────────────────────────┤ │2D factory function │ ezdxf.layouts.BaseLayout.add_polyline2d() │ ├─────────────────────────┼───────────────────────────────────────────┤ │3D factory function │ ezdxf.layouts.BaseLayout.add_polyline3d() │ ├─────────────────────────┼───────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴───────────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Polyline Vertex entities are stored in a standard Python list Polyline.vertices. Vertices can be retrieved and deleted by direct access to Polyline.vertices attribute: # delete first and second vertex del polyline.vertices[:2] dxf.elevation Elevation point, the X and Y values are always 0, and the Z value is the polyline’s elevation (3D Point in OCS when 2D, WCS when 3D). dxf.flags Constants defined in ezdxf.lldxf.const: ┌───────────────────────────────────┬───────┬──────────────────────────┐ │Polyline.dxf.flags │ Value │ Description │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_CLOSED │ 1 │ This is a closed │ │ │ │ Polyline (or a polygon │ │ │ │ mesh closed in the M │ │ │ │ direction) │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_MESH_CLOSED_M_DIRECTION │ 1 │ equals POLYLINE_CLOSED │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_CURVE_FIT_VERTICES_ADDED │ 2 │ Curve-fit vertices have │ │ │ │ been added │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_SPLINE_FIT_VERTICES_ADDED │ 4 │ Spline-fit vertices have │ │ │ │ been added │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_3D_POLYLINE │ 8 │ This is a 3D Polyline │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_3D_POLYMESH │ 16 │ This is a 3D polygon │ │ │ │ mesh │ └───────────────────────────────────┴───────┴──────────────────────────┘ │POLYLINE_MESH_CLOSED_N_DIRECTION │ 32 │ The polygon mesh is │ │ │ │ closed in the N │ │ │ │ direction │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_POLYFACE_MESH │ 64 │ This Polyline is a │ │ │ │ polyface mesh │ ├───────────────────────────────────┼───────┼──────────────────────────┤ │POLYLINE_GENERATE_LINETYPE_PATTERN │ 128 │ The linetype pattern is │ │ │ │ generated continuously │ │ │ │ around the vertices of │ │ │ │ this Polyline │ └───────────────────────────────────┴───────┴──────────────────────────┘ dxf.default_start_width Default line start width (float); default = 0 dxf.default_end_width Default line end width (float); default = 0 dxf.m_count Polymesh M vertex count (int); default = 1 dxf.n_count Polymesh N vertex count (int); default = 1 dxf.m_smooth_density Smooth surface M density (int); default = 0 dxf.n_smooth_density Smooth surface N density (int); default = 0 dxf.smooth_type Curves and smooth surface type (int); default=0, see table below Constants for smooth_type defined in ezdxf.lldxf.const: ┌───────────────────────────┬───────┬──────────────────────────┐ │Polyline.dxf.smooth_type │ Value │ Description │ ├───────────────────────────┼───────┼──────────────────────────┤ │POLYMESH_NO_SMOOTH │ 0 │ no smooth surface fitted │ ├───────────────────────────┼───────┼──────────────────────────┤ │POLYMESH_QUADRATIC_BSPLINE │ 5 │ quadratic B-spline │ │ │ │ surface │ ├───────────────────────────┼───────┼──────────────────────────┤ │POLYMESH_CUBIC_BSPLINE │ 6 │ cubic B-spline surface │ ├───────────────────────────┼───────┼──────────────────────────┤ │POLYMESH_BEZIER_SURFACE │ 8 │ Bezier surface │ └───────────────────────────┴───────┴──────────────────────────┘ vertices List of Vertex entities. is_2d_polyline True if POLYLINE is a 2D polyline. is_3d_polyline True if POLYLINE is a 3D polyline. is_polygon_mesh True if POLYLINE is a polygon mesh, see Polymesh is_poly_face_mesh True if POLYLINE is a poly face mesh, see Polyface is_closed True if POLYLINE is closed. is_m_closed True if POLYLINE (as Polymesh) is closed in m direction. is_n_closed True if POLYLINE (as Polymesh) is closed in n direction. has_arc Returns True if 2D POLYLINE has an arc segment. has_width Returns True if 2D POLYLINE has default width values or any segment with width attributes. New in version 0.14. get_mode() -> str Returns POLYLINE type as string: • ‘AcDb2dPolyline’ • ‘AcDb3dPolyline’ • ‘AcDbPolygonMesh’ • ‘AcDbPolyFaceMesh’ m_close(status=True) -> None Close POLYMESH in m direction if status is True (also closes POLYLINE), clears closed state if status is False. n_close(status=True) -> None Close POLYMESH in n direction if status is True, clears closed state if status is False. close(m_close=True, n_close=False) -> None Set closed state of POLYMESH and POLYLINE in m direction and n direction. True set closed flag, False clears closed flag. __len__() -> int Returns count of Vertex entities. __getitem__(pos) -> DXFVertex Get Vertex entity at position pos, supports list slicing. points() -> Iterator[Vec3] Returns iterable of all polyline vertices as (x, y, z) tuples, not as Vertex objects. append_vertex(point: Union[Sequence[float], Vec2, Vec3], dxfattribs=None) -> None Append a single Vertex entity at location point. Parameters • point – as (x, y[, z]) tuple • dxfattribs – dict of DXF attributes for Vertex class append_vertices(points: Iterable[Union[Sequence[float], Vec2, Vec3]], dxfattribs=None) -> None Append multiple Vertex entities at location points. Parameters • points – iterable of (x, y[, z]) tuples • dxfattribs – dict of DXF attributes for the VERTEX objects append_formatted_vertices(points: Iterable[Union[Sequence[float], Vec2, Vec3]], format: str = 'xy', dxfattribs=None) -> None Append multiple Vertex entities at location points. Parameters • points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple • format – format string, default is 'xy', see: User Defined Point Format Codes • dxfattribs – dict of DXF attributes for the VERTEX objects insert_vertices(pos: int, points: Iterable[Union[Sequence[float], Vec2, Vec3]], dxfattribs=None) -> None Insert vertices points into Polyline.vertices list at insertion location pos . Parameters • pos – insertion position of list Polyline.vertices • points – list of (x, y[, z]) tuples • dxfattribs – dict of DXF attributes for Vertex class transform(m: Matrix44) -> Polyline Transform the POLYLINE entity by transformation matrix m inplace. A non-uniform scaling is not supported if a 2D POLYLINE contains circular arc segments (bulges). Parameters m – transformation Matrix44 Raises NonUniformScalingError – for non-uniform scaling of 2D POLYLINE containing circular arc segments (bulges) virtual_entities() -> Iterator[Union[Line, Arc, Face3d]] Yields the graphical representation of POLYLINE as virtual DXF primitives (LINE, ARC or 3DFACE). These virtual entities are located at the original location, but are not stored in the entity database, have no handle and are not assigned to any layout. explode(target_layout: BaseLayout = None) -> EntityQuery Explode the POLYLINE entity as DXF primitives (LINE, ARC or 3DFACE) into the target layout, if the target layout is None, the target layout is the layout of the POLYLINE entity. Returns an EntityQuery container of all DXF primitives. Parameters target_layout – target layout for DXF primitives, None for same layout as source entity. Vertex A VERTEX (VERTEX DXF Reference) represents a polyline/mesh vertex. ┌─────────────────────────┬─────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────┤ │DXF type │ 'VERTEX' │ ├─────────────────────────┼─────────────────────────────────┤ │Factory function │ Polyline.append_vertex() │ ├─────────────────────────┼─────────────────────────────────┤ │Factory function │ Polyline.extend() │ ├─────────────────────────┼─────────────────────────────────┤ │Factory function │ Polyline.insert_vertices() │ ├─────────────────────────┼─────────────────────────────────┤ │Inherited DXF Attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────┘ class ezdxf.entities.Vertex dxf.location Vertex location (2D/3D Point OCS when 2D, WCS when 3D) dxf.start_width Line segment start width (float); default = 0 dxf.end_width Line segment end width (float); default = 0 dxf.bulge Bulge value (float); default = 0. The bulge value is used to create arc shaped line segments. dxf.flags Constants defined in ezdxf.lldxf.const: ┌───────────────────────────────┬───────┬──────────────────────────┐ │Vertex.dxf.flags │ Value │ Description │ ├───────────────────────────────┼───────┼──────────────────────────┤ │VTX_EXTRA_VERTEX_CREATED │ 1 │ Extra vertex created by │ │ │ │ curve-fitting │ ├───────────────────────────────┼───────┼──────────────────────────┤ │VTX_CURVE_FIT_TANGENT │ 2 │ curve-fit tangent │ │ │ │ defined for this vertex. │ │ │ │ A curve-fit tangent │ │ │ │ direction of 0 may be │ │ │ │ omitted from the DXF │ │ │ │ output, but is │ │ │ │ significant if this bit │ │ │ │ is set. │ ├───────────────────────────────┼───────┼──────────────────────────┤ │VTX_SPLINE_VERTEX_CREATED │ 8 │ spline vertex created by │ │ │ │ spline-fitting │ ├───────────────────────────────┼───────┼──────────────────────────┤ │VTX_SPLINE_FRAME_CONTROL_POINT │ 16 │ spline frame control │ │ │ │ point │ ├───────────────────────────────┼───────┼──────────────────────────┤ │VTX_3D_POLYLINE_VERTEX │ 32 │ 3D polyline vertex │ ├───────────────────────────────┼───────┼──────────────────────────┤ │VTX_3D_POLYGON_MESH_VERTEX │ 64 │ 3D polygon mesh │ └───────────────────────────────┴───────┴──────────────────────────┘ │VTX_3D_POLYFACE_MESH_VERTEX │ 128 │ polyface mesh vertex │ └───────────────────────────────┴───────┴──────────────────────────┘ dxf.tangent Curve fit tangent direction (float), used for 2D spline in DXF R12. dxf.vtx1 Index of 1st vertex, if used as face (feature for experts) dxf.vtx2 Index of 2nd vertex, if used as face (feature for experts) dxf.vtx3 Index of 3rd vertex, if used as face (feature for experts) dxf.vtx4 Index of 4th vertex, if used as face (feature for experts) is_2d_polyline_vertex is_3d_polyline_vertex is_polygon_mesh_vertex is_poly_face_mesh_vertex is_face_record format(format='xyz') -> Sequence Return formatted vertex components as tuple. Format codes: • “x” = x-coordinate • “y” = y-coordinate • “z” = z-coordinate • “s” = start width • “e” = end width • “b” = bulge value • “v” = (x, y, z) as tuple Args: format: format string, default is “xyz” New in version 0.14. Polymesh ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Polyline │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'POLYLINE' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_polymesh() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF Attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────────────┘ class ezdxf.entities.Polymesh A polymesh is a grid of m_count x n_count vertices, every vertex has its own (x, y, z) location. The Polymesh is an subclass of Polyline, DXF type is also 'POLYLINE' but get_mode() returns 'AcDbPolygonMesh'. get_mesh_vertex(pos: Tuple[int, int]) -> DXFVertex Get location of a single mesh vertex. Parameters pos – 0-based (row, col) tuple, position of mesh vertex set_mesh_vertex(pos: Tuple[int, int], point: Union[Sequence[float], Vec2, Vec3], dxfattribs=None) Set location and DXF attributes of a single mesh vertex. Parameters • pos – 0-based (row, col)-tuple, position of mesh vertex • point – (x, y, z)-tuple, new 3D coordinates of the mesh vertex • dxfattribs – dict of DXF attributes get_mesh_vertex_cache() -> MeshVertexCache Get a MeshVertexCache object for this POLYMESH. The caching object provides fast access to the location attribute of mesh vertices. MeshVertexCache class ezdxf.entities.MeshVertexCache Cache mesh vertices in a dict, keys are 0-based (row, col) tuples. Set vertex location: cache[row, col] = (x, y, z) Get vertex location: x, y, z = cache[row, col] vertices Dict of mesh vertices, keys are 0-based (row, col) tuples. __getitem__(pos: Tuple[int, int]) -> Union[Sequence[float], Vec2, Vec3] Get mesh vertex location as (x, y, z)-tuple. Parameters pos – 0-based (row, col)-tuple. __setitem__(pos: Tuple[int, int], location: Union[Sequence[float], Vec2, Vec3]) -> None Get mesh vertex location as (x, y, z)-tuple. Parameters • pos – 0-based (row, col)-tuple. • location – (x, y, z)-tuple Polyface ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Polyline │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'POLYLINE' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_polyface() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF Attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────────────┘ SEE ALSO: Tutorial for Polyface class ezdxf.entities.Polyface A polyface consist of multiple location independent 3D areas called faces. The Polyface is a subclass of Polyline, DXF type is also 'POLYLINE' but get_mode() returns 'AcDbPolyFaceMesh'. append_face(face: FaceType, dxfattribs=None) -> None Append a single face. A face is a list of (x, y, z) tuples. Parameters • face – List[(x, y, z) tuples] • dxfattribs – dict of DXF attributes for VERTEX objects append_faces(faces: Iterable[FaceType], dxfattribs=None) -> None Append multiple faces. faces is a list of single faces and a single face is a list of (x, y, z) tuples. Parameters • faces – list of List[(x, y, z) tuples] • dxfattribs – dict of DXF attributes for the VERTEX objects faces() -> Iterator[List[DXFVertex]] Iterable of all faces, a face is a tuple of vertices. Returns [vertex, vertex, vertex, [vertex,] face_record] Return type list optimize(precision: int = 6) -> None Rebuilds Polyface including vertex optimization by merging vertices with nearly same vertex locations. Parameters precision – floating point precision for determining identical vertex locations Ray RAY entity (DXF Reference) starts at Ray.dxf.point and continues to infinity (construction line). ┌─────────────────────────┬────────────────────────────────────┐ │Subclass of │ ezdxf.entities.XLine │ ├─────────────────────────┼────────────────────────────────────┤ │DXF type │ 'RAY' │ ├─────────────────────────┼────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_ray() │ ├─────────────────────────┼────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴────────────────────────────────────┘ class ezdxf.entities.Ray dxf.start Start point as (3D Point in WCS) dxf.unit_vector Unit direction vector as (3D Point in WCS) transform(m: Matrix44) -> XLine Transform the XLINE/RAY entity by transformation matrix m inplace. translate(dx: float, dy: float, dz: float) -> XLine Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis. Region REGION (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp. SEE ALSO: Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE? ┌─────────────────────────┬───────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Body │ ├─────────────────────────┼───────────────────────────────────────┤ │DXF type │ 'REGION' │ ├─────────────────────────┼───────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_region() │ ├─────────────────────────┼───────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼───────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴───────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Region Same attributes and methods as parent class Body. Shape SHAPES (DXF Reference) are objects that are used like block references, each SHAPE reference can be scaled and rotated individually. The SHAPE definitions are stored in external shape files (*.SHX), and ezdxf can not create this shape files. ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'SHAPE' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_shape() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴──────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Shape dxf.insert Insertion location as (2D/3D Point in WCS) dxf.name Shape name (str) dxf.size Shape size (float) dxf.rotation Rotation angle in degrees; default value is 0 dxf.xscale Relative X scale factor (float); default value is 1 dxf.oblique Oblique angle in degrees (float); default value is 0 transform(m: Matrix44) -> Shape Transform the SHAPE entity by transformation matrix m inplace. Solid SOLID (DXF Reference) is a filled triangle or quadrilateral. Access vertices by name (entity.dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). If only 3 vertices are provided the last (3rd) vertex will be repeated in the DXF file. The SOLID entity stores the vertices in an unusual way, the last two vertices are reversed. The coordinates [(0, 0), (1, 0), (1, 1), (0, 1)] do not create a square as you would expect: [image] Reverse the last two vertices to get the expected square: [(0, 0), (1, 0), (0, 1), (1, 1)] [image] NOTE: The Solid.vertices() and Solid.wcs_vertices() methods return the vertices in the expected (reversed) order. ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'SOLID' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_solid() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴──────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Solid dxf.vtx0 Location of 1. vertex (2D/3D Point in OCS) dxf.vtx1 Location of 2. vertex (2D/3D Point in OCS) dxf.vtx2 Location of 3. vertex (2D/3D Point in OCS) dxf.vtx3 Location of 4. vertex (2D/3D Point in OCS) transform(m: Matrix44) -> Solid Transform the SOLID/TRACE entity by transformation matrix m inplace. vertices(close: bool = False) -> List[Vec3] Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return duplicated last vertex if represents a triangle. New in version 0.15. wcs_vertices(close: bool = False) -> List[Vec3] Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return duplicated last vertex if represents a triangle. New in version 0.15. Spline SPLINE curve (DXF Reference), all coordinates have to be 3D coordinates even the spline is only a 2D planar curve. The spline curve is defined by control points, knot values and weights. The control points establish the spline, the various types of knot vector determines the shape of the curve and the weights of rational splines define how strong a control point influences the shape. To create a Spline curve you just need a bunch of fit points - knot values and weights are optional (tested with AutoCAD 2010). If you add additional data, be sure that you know what you do. New in version 0.16: The function ezdxf.math.fit_points_to_cad_cv() calculates control vertices from given fit points. This control vertices define a cubic B-spline which matches visually the SPLINE entities created by BricsCAD and AutoCAD from fit points. SEE ALSO: • Wikipedia article about B_splines • Department of Computer Science and Technology at the Cambridge University • Tutorial for Spline ┌─────────────────────────┬─────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────┤ │DXF type │ 'SPLINE' │ ├─────────────────────────┼─────────────────────────────────┤ │Factory function │ see table below │ ├─────────────────────────┼─────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────┘ Factory Functions ┌─────────────────────────────────┬──────────────────────────────┐ │Basic spline entity │ add_spline() │ ├─────────────────────────────────┼──────────────────────────────┤ │Spline control frame from fit │ add_spline_control_frame() │ │points │ │ ├─────────────────────────────────┼──────────────────────────────┤ │Open uniform spline │ add_open_spline() │ ├─────────────────────────────────┼──────────────────────────────┤ │Closed uniform spline │ add_closed_spline() │ ├─────────────────────────────────┼──────────────────────────────┤ │Open rational uniform spline │ add_rational_spline() │ └─────────────────────────────────┴──────────────────────────────┘ │Closed rational uniform spline │ add_closed_rational_spline() │ └─────────────────────────────────┴──────────────────────────────┘ class ezdxf.entities.Spline All points in WCS as (x, y, z) tuples dxf.degree Degree of the spline curve (int). dxf.flags Bit coded option flags, constants defined in ezdxf.lldxf.const: ┌────────────────┬───────┬────────────────────────┐ │dxf.flags │ Value │ Description │ ├────────────────┼───────┼────────────────────────┤ │CLOSED_SPLINE │ 1 │ Spline is closed │ ├────────────────┼───────┼────────────────────────┤ │PERIODIC_SPLINE │ 2 │ │ ├────────────────┼───────┼────────────────────────┤ │RATIONAL_SPLINE │ 4 │ │ ├────────────────┼───────┼────────────────────────┤ │PLANAR_SPLINE │ 8 │ │ ├────────────────┼───────┼────────────────────────┤ │LINEAR_SPLINE │ 16 │ planar bit is also set │ └────────────────┴───────┴────────────────────────┘ dxf.n_knots Count of knot values (int), automatically set by ezdxf (read only) dxf.n_fit_points Count of fit points (int), automatically set by ezdxf (read only) dxf.n_control_points Count of control points (int), automatically set by ezdxf (read only) dxf.knot_tolerance Knot tolerance (float); default = 1e-10 dxf.fit_tolerance Fit tolerance (float); default = 1e-10 dxf.control_point_tolerance Control point tolerance (float); default = 1e-10 dxf.start_tangent Start tangent vector as (3D vector in WCS) dxf.end_tangent End tangent vector as (3D vector in WCS) closed True if spline is closed. A closed spline has a connection from the last control point to the first control point. (read/write) control_points VertexArray of control points in WCS. fit_points VertexArray of fit points in WCS. knots Knot values as array.array('d'). weights Control point weights as array.array('d'). control_point_count() -> int Count of control points. fit_point_count() -> int Count of fit points. knot_count() -> int Count of knot values. construction_tool() -> BSpline Returns the construction tool ezdxf.math.BSpline. apply_construction_tool(s) -> Spline Apply SPLINE data from a BSpline construction tool or from a geomdl.BSpline.Curve object. flattening(distance: float, segments: int = 4) -> Iterator[Vec3] Adaptive recursive flattening. The argument segments is the minimum count of approximation segments between two knots, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Parameters • distance – maximum distance from the projected curve point onto the segment chord. • segments – minimum segment count between two knots New in version 0.15. set_open_uniform(control_points: Sequence[Union[Sequence[float], Vec2, Vec3]], degree: int = 3) -> None Open B-spline with uniform knot vector, start and end at your first and last control points. set_uniform(control_points: Sequence[Union[Sequence[float], Vec2, Vec3]], degree: int = 3) -> None B-spline with a uniform knot vector, does NOT start and end at your first and last control points. set_closed(control_points: Sequence[Union[Sequence[float], Vec2, Vec3]], degree=3) -> None Closed B-spline with uniform knot vector, start and end at your first control point. set_open_rational(control_points: Sequence[Union[Sequence[float], Vec2, Vec3]], weights: Sequence[float], degree: int = 3) -> None Open rational B-spline with a uniform knot vector, start and end at your first and last control points, and has additional control possibilities by weighting each control point. set_uniform_rational(control_points: Sequence[Union[Sequence[float], Vec2, Vec3]], weights: Sequence[float], degree: int = 3) -> None Rational B-spline with a uniform knot vector, does NOT start and end at your first and last control points, and has additional control possibilities by weighting each control point. set_closed_rational(control_points: Sequence[Union[Sequence[float], Vec2, Vec3]], weights: Sequence[float], degree: int = 3) -> None Closed rational B-spline with a uniform knot vector, start and end at your first control point, and has additional control possibilities by weighting each control point. transform(m: Matrix44) -> Spline Transform the SPLINE entity by transformation matrix m inplace. classmethod from_arc(entity: DXFGraphic) -> Spline Create a new SPLINE entity from a CIRCLE, ARC or ELLIPSE entity. The new SPLINE entity has no owner, no handle, is not stored in the entity database nor assigned to any layout! Surface SURFACE (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp. SEE ALSO: Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE? ┌─────────────────────────┬────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Body │ ├─────────────────────────┼────────────────────────────────────────┤ │DXF type │ 'SURFACE' │ ├─────────────────────────┼────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_surface() │ ├─────────────────────────┼────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴────────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Surface Same attributes and methods as parent class Body. dxf.u_count Number of U isolines. dxf.v_count Number of V2 isolines. ExtrudedSurface (DXF Reference) ┌─────────────────────────┬─────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Surface │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │DXF type │ 'EXTRUDEDSURFACE' │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_extruded_surface() │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │Required DXF version │ DXF R2007 ('AC1021') │ └─────────────────────────┴─────────────────────────────────────────────────┘ class ezdxf.entities.ExtrudedSurface Same attributes and methods as parent class Surface. dxf.class_id dxf.sweep_vector dxf.draft_angle dxf.draft_start_distance dxf.draft_end_distance dxf.twist_angle dxf.scale_factor dxf.align_angle dxf.solid dxf.sweep_alignment_flags ┌──┬────────────────────────────────┐ │0 │ No alignment │ ├──┼────────────────────────────────┤ │1 │ Align sweep entity to path │ ├──┼────────────────────────────────┤ │2 │ Translate sweep entity to path │ ├──┼────────────────────────────────┤ │3 │ Translate path to sweep entity │ └──┴────────────────────────────────┘ dxf.align_start dxf.bank dxf.base_point_set dxf.sweep_entity_transform_computed dxf.path_entity_transform_computed dxf.reference_vector_for_controlling_twist transformation_matrix_extruded_entity type: Matrix44 sweep_entity_transformation_matrix type: Matrix44 path_entity_transformation_matrix type: Matrix44 LoftedSurface (DXF Reference) ┌─────────────────────────┬───────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Surface │ ├─────────────────────────┼───────────────────────────────────────────────┤ │DXF type │ 'LOFTEDSURFACE' │ ├─────────────────────────┼───────────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_lofted_surface() │ ├─────────────────────────┼───────────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼───────────────────────────────────────────────┤ │Required DXF version │ DXF R2007 ('AC1021') │ └─────────────────────────┴───────────────────────────────────────────────┘ class ezdxf.entities.LoftedSurface Same attributes and methods as parent class Surface. dxf.plane_normal_lofting_type dxf.start_draft_angle dxf.end_draft_angle dxf.start_draft_magnitude dxf.end_draft_magnitude dxf.arc_length_parameterization dxf.no_twist dxf.align_direction dxf.simple_surfaces dxf.closed_surfaces dxf.solid dxf.ruled_surface dxf.virtual_guide set_transformation_matrix_lofted_entity type: Matrix44 RevolvedSurface (DXF Reference) ┌─────────────────────────┬─────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Surface │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │DXF type │ 'REVOLVEDSURFACE' │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_revolved_surface() │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────────────────┤ │Required DXF version │ DXF R2007 ('AC1021') │ └─────────────────────────┴─────────────────────────────────────────────────┘ class ezdxf.entities.RevolvedSurface Same attributes and methods as parent class Surface. dxf.class_id dxf.axis_point dxf.axis_vector dxf.revolve_angle dxf.start_angle dxf.draft_angle dxf.start_draft_distance dxf.end_draft_distance dxf.twist_angle dxf.solid dxf.close_to_axis transformation_matrix_revolved_entity type: Matrix44 SweptSurface (DXF Reference) ┌─────────────────────────┬──────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Surface │ ├─────────────────────────┼──────────────────────────────────────────────┤ │DXF type │ 'SWEPTSURFACE' │ ├─────────────────────────┼──────────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_swept_surface() │ ├─────────────────────────┼──────────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼──────────────────────────────────────────────┤ │Required DXF version │ DXF R2007 ('AC1021') │ └─────────────────────────┴──────────────────────────────────────────────┘ class ezdxf.entities.SweptSurface Same attributes and methods as parent class Surface. dxf.swept_entity_id dxf.path_entity_id dxf.draft_angle draft_start_distance dxf.draft_end_distance dxf.twist_angle dxf.scale_factor dxf.align_angle dxf.solid dxf.sweep_alignment dxf.align_start dxf.bank dxf.base_point_set dxf.sweep_entity_transform_computed dxf.path_entity_transform_computed dxf.reference_vector_for_controlling_twist transformation_matrix_sweep_entity type: Matrix44 transformation_matrix_path_entity() type: Matrix44 sweep_entity_transformation_matrix() type: Matrix44 path_entity_transformation_matrix() type: Matrix44 Text The single line TEXT entity (DXF Reference). The style attribute stores the associated Textstyle entity as string, which defines the basic font properties. The text size is stored as cap height in the height attribute in drawing units. Text alignments are defined as enums of type ezdxf.enums.TextEntityAlignment. SEE ALSO: See the documentation for the Textstyle class to understand the limitations of text representation in the DXF format. Tutorial for Text ┌─────────────────────────┬─────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────┤ │DXF type │ 'TEXT' │ ├─────────────────────────┼─────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_text() │ ├─────────────────────────┼─────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Text dxf.text Text content as string. dxf.insert First alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT, ALIGNED and FIT. dxf.align_point The main alignment point of text (2D/3D Point in OCS), if the alignment is anything else than LEFT, or the second alignment point for the ALIGNED and FIT alignments. dxf.height Text height in drawing units as float value, the default value is 1. dxf.rotation Text rotation in degrees as float value, the default value is 0. dxf.oblique Text oblique angle (slanting) in degrees as float value, the default value is 0 (straight vertical text). dxf.style Textstyle name as case insensitive string, the default value is “Standard” dxf.width Width scale factor as float value, the default value is 1. dxf.halign Horizontal alignment flag as int value, use the set_placement() and get_align_enum() methods to handle text alignment, the default value is 0. ┌──┬──────────────────────────────────┐ │0 │ Left │ ├──┼──────────────────────────────────┤ │2 │ Right │ ├──┼──────────────────────────────────┤ │3 │ Aligned (if vertical alignment = │ │ │ 0) │ ├──┼──────────────────────────────────┤ │4 │ Middle (if vertical alignment = │ │ │ 0) │ ├──┼──────────────────────────────────┤ │5 │ Fit (if vertical alignment = 0) │ └──┴──────────────────────────────────┘ dxf.valign Vertical alignment flag as int value, use the set_placement() and get_align_enum() methods to handle text alignment, the default value is 0. ┌──┬──────────┐ │0 │ Baseline │ ├──┼──────────┤ │1 │ Bottom │ ├──┼──────────┤ │2 │ Middle │ ├──┼──────────┤ │3 │ Top │ └──┴──────────┘ dxf.text_generation_flag Text generation flags as int value, use the is_backward and is_upside_down attributes to handle this flags. ┌──┬──────────────────────────────────┐ │2 │ text is backward (mirrored in X) │ ├──┼──────────────────────────────────┤ │4 │ text is upside down (mirrored in │ │ │ Y) │ └──┴──────────────────────────────────┘ property is_backward: bool Get/set text generation flag BACKWARDS, for mirrored text along the x-axis. property is_upside_down: bool Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis. set_placement(p1: Union[Sequence[float], Vec2, Vec3], p2: Optional[Union[Sequence[float], Vec2, Vec3]] = None, align: Optional[‐ TextEntityAlignment] = None) -> Text Set text alignment and location. The alignments ALIGNED and FIT are special, they require a second alignment point, the text is aligned on the virtual line between these two points and sits vertically at the baseline. • ALIGNED: Text is stretched or compressed to fit exactly between p1 and p2 and the text height is also adjusted to preserve height/width ratio. • FIT: Text is stretched or compressed to fit exactly between p1 and p2 but only the text width is adjusted, the text height is fixed by the dxf.height attribute. • MIDDLE: also a special adjustment, centered text like MIDDLE_CENTER, but vertically centred at the total height of the text. Parameters • p1 – first alignment point as (x, y[, z]) • p2 – second alignment point as (x, y[, z]), required for ALIGNED and FIT else ignored • align – new alignment as enum TextEntityAlignment, None to preserve the existing alignment. set_pos(p1: Union[Sequence[float], Vec2, Vec3], p2: Optional[Union[Sequence[float], Vec2, Vec3]] = None, align: Optional[str] = None) -> Text Set text alignment and location. (deprecated) The alignments “ALIGNED” and “FIT” are special, they require a second alignment point, the text is aligned on the virtual line between these two points and sits vertically at the base line. • “ALIGNED”: Text is stretched or compressed to fit exactly between p1 and p2 and the text height is also adjusted to preserve height/width ratio. • “FIT”: Text is stretched or compressed to fit exactly between p1 and p2 but only the text width is adjusted, the text height is fixed by the dxf.height attribute. • “MIDDLE”: also a special adjustment, centered text like “MIDDLE_CENTER”, but vertically centred at the total height of the text. WARNING: Will be removed in v1.0.0, use set_placement() Parameters • p1 – first alignment point as (x, y[, z]) • p2 – second alignment point as (x, y[, z]), required for “ALIGNED” and “FIT” else ignored • align – new alignment as string or None to preserve the existing alignment. get_placement() -> Tuple[TextEntityAlignment, Vec3, Optional[Vec3]] Returns a tuple (align, p1, p2), align is the alignment enum TextEntityAlignment, p1 is the alignment point, p2 is only relevant if align is ALIGNED or FIT, otherwise it is None. get_pos() -> Tuple[str, Vec3, Optional[Vec3]] Returns a tuple (align, p1, p2), align is the alignment method, p1 is the alignment point, p2 is only relevant if align is “ALIGNED” or “FIT”, otherwise it is None (deprecated). WARNING: Will be removed in v1.0.0, use get_placement() get_align_enum() -> TextEntityAlignment Returns the current text alignment as TextEntityAlignment, see also set_placement(). get_align() -> str Returns the current text alignment as string (deprecated). WARNING: Will be removed in v1.0.0, use get_align_enum() set_align_enum(align=TextEntityAlignment.LEFT) -> Text Just for experts: Sets the text alignment without setting the alignment points, set adjustment points attr:dxf.insert and dxf.align_point manually. Parameters align – TextEntityAlignment set_align(align: str = 'LEFT') -> Text Set the text alignment as string (deprecated) WARNING: Will be removed in v1.0.0, use set_align_enum() transform(m: Matrix44) -> Text Transform the TEXT entity by transformation matrix m inplace. translate(dx: float, dy: float, dz: float) -> Text Optimized TEXT/ATTRIB/ATTDEF translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self. plain_text() -> str Returns text content without formatting codes. font_name() -> str Returns the font name of the associated Textstyle. fit_length() -> float Returns the text length for alignments TextEntityAlignment.FIT and TextEntityAlignment.ALIGNED, defined by the distance from the insertion point to the align point or 0 for all other alignments. Trace TRACE entity (DXF Reference) is solid filled triangle or quadrilateral. Access vertices by name (entity.dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). If only 3 vertices are provided the last (3rd) vertex will be repeated in the DXF file. The TRACE entity stores the vertices in an unusual way, the last two vertices are reversed. The coordinates [(0, 0), (1, 0), (1, 1), (0, 1)] do not create a square as you would expect: [image] Reverse the last two vertices to get the expected square: [(0, 0), (1, 0), (0, 1), (1, 1)] [image] NOTE: The Trace.vertices() and Trace.wcs_vertices() methods return the vertices in the expected (reversed) order. ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'TRACE' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_trace() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴──────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Trace dxf.vtx0 Location of 1. vertex (2D/3D Point in OCS) dxf.vtx1 Location of 2. vertex (2D/3D Point in OCS) dxf.vtx2 Location of 3. vertex (2D/3D Point in OCS) dxf.vtx3 Location of 4. vertex (2D/3D Point in OCS) transform(m: Matrix44) -> Solid Transform the SOLID/TRACE entity by transformation matrix m inplace. vertices(close: bool = False) -> List[Vec3] Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return duplicated last vertex if represents a triangle. New in version 0.15. wcs_vertices(close: bool = False) -> List[Vec3] Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return duplicated last vertex if represents a triangle. New in version 0.15. Underlay UNDERLAY entity (DXF Reference) links an underlay file to the DXF file, the file itself is not embedded into the DXF file, it is always a separated file. The (PDF)UNDERLAY entity is like a block reference, you can use it multiple times to add the underlay on different locations with different scales and rotations. But therefore you need a also a (PDF)DEFINITION entity, see UnderlayDefinition. The DXF standard supports three different file formats: PDF, DWF (DWFx) and DGN. An Underlay can be clipped by a rectangle or a polygon path. The clipping coordinates are 2D OCS coordinates in drawing units but without scaling. ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ internal base class │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────────────┘ class ezdxf.entities.Underlay Base class of PdfUnderlay, DwfUnderlay and DgnUnderlay dxf.insert Insertion point, lower left corner of the image in OCS. dxf.scale_x Scaling factor in x-direction (float) dxf.scale_y Scaling factor in y-direction (float) dxf.scale_z Scaling factor in z-direction (float) dxf.rotation ccw rotation in degrees around the extrusion vector (float) dxf.extrusion extrusion vector, default = (0, 0, 1) dxf.underlay_def_handle Handle to the underlay definition entity, see UnderlayDefinition dxf.flags ┌───────────────────────────────┬───────┬───────────────────────┐ │dxf.flags │ Value │ Description │ ├───────────────────────────────┼───────┼───────────────────────┤ │UNDERLAY_CLIPPING │ 1 │ clipping is on/off │ ├───────────────────────────────┼───────┼───────────────────────┤ │UNDERLAY_ON │ 2 │ underlay is on/off │ ├───────────────────────────────┼───────┼───────────────────────┤ │UNDERLAY_MONOCHROME │ 4 │ Monochrome │ ├───────────────────────────────┼───────┼───────────────────────┤ │UNDERLAY_ADJUST_FOR_BACKGROUND │ 8 │ Adjust for background │ └───────────────────────────────┴───────┴───────────────────────┘ dxf.contrast Contrast value (20 - 100; default = 100) dxf.fade Fade value (0 - 80; default = 0) clipping True or False (read/write) on True or False (read/write) monochrome True or False (read/write) adjust_for_background True or False (read/write) scale Scaling (x, y, z) tuple (read/write) boundary_path Boundary path as list of vertices (read/write). Two vertices describe a rectangle (lower left and upper right corner), more than two vertices is a polygon as clipping path. get_underlay_def() Returns the associated DEFINITION entity. see UnderlayDefinition. set_underlay_def() Set the associated DEFINITION entity. see UnderlayDefinition. reset_boundary_path() -> None Removes the clipping path. PdfUnderlay ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Underlay │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'PDFUNDERLAY' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────────────┘ class ezdxf.entities.PdfUnderlay PDF underlay. DwfUnderlay ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Underlay │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'DWFUNDERLAY' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────────────┘ class ezdxf.entities.DwfUnderlay DWF underlay. DgnUnderlay ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Underlay │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'DGNUNDERLAY' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼─────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴─────────────────────────────────────────┘ class ezdxf.entities.DgnUnderlay DGN underlay. Viewport The VIEWPORT (DXF Reference) entity is a window from a paperspace layout to the modelspace. ┌─────────────────────────┬─────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼─────────────────────────────────────────┤ │DXF type │ 'VIEWPORT' │ ├─────────────────────────┼─────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.Paperspace.add_viewport() │ ├─────────────────────────┼─────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ └─────────────────────────┴─────────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Viewport dxf.center Center point of the viewport located in the paper space layout in paper space units stored as 3D point. (Error in the DXF reference) dxf.width Viewport width in paperspace units (float) dxf.height Viewport height in paperspace units (float) dxf.status Viewport status field (int) ┌───┬──────────────────────────────────┐ │-1 │ On, but is fully off screen, or │ │ │ is one of the viewports that is │ │ │ not active because the $MAXACTVP │ │ │ count is currently being │ │ │ exceeded. │ ├───┼──────────────────────────────────┤ │0 │ Off │ ├───┼──────────────────────────────────┤ │>0 │ On and active. The value │ │ │ indicates the order of stacking │ │ │ for the viewports, where 1 is │ │ │ the active viewport, 2 is the │ │ │ next, and so forth │ └───┴──────────────────────────────────┘ dxf.id Viewport id (int) dxf.view_center_point View center point in modelspace stored as 2D point, but represents a WCS point. (Error in the DXF reference) dxf.snap_base_point dxf.snap_spacing dxf.snap_angle dxf.grid_spacing dxf.view_direction_vector View direction (3D vector in WCS). dxf.view_target_point View target point (3D point in WCS). dxf.perspective_lens_length Lens focal length in mm as 35mm film equivalent. dxf.front_clip_plane_z_value dxf.back_clip_plane_z_value dxf.view_height View height in WCS. dxf.view_twist_angle dxf.circle_zoom dxf.flags Viewport status bit-coded flags: ┌───────────────────┬───────────────────────────────┬──────────────────────────┐ │Bit value │ Constant in ezdxf.const │ Description │ └───────────────────┴───────────────────────────────┴──────────────────────────┘ │1 (0x1) │ VSF_PERSPECTIVE_MODE │ Enables perspective mode │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │2 (0x2) │ VSF_FRONT_CLIPPING │ Enables front clipping │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │4 (0x4) │ VSF_BACK_CLIPPING │ Enables back clipping │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │8 (0x8) │ VSF_USC_FOLLOW │ Enables UCS follow │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │16 (0x10) │ VSF_FRONT_CLIPPING_NOT_AT_EYE │ Enables front clip not │ │ │ │ at eye │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │32 (0x20) │ VSF_UCS_ICON_VISIBILITY │ Enables UCS icon │ │ │ │ visibility │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │64 (0x40) │ VSF_UCS_ICON_AT_ORIGIN │ Enables UCS icon at │ │ │ │ origin │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │128 (0x80) │ VSF_FAST_ZOOM │ Enables fast zoom │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │256 (0x100) │ VSF_SNAP_MODE │ Enables snap mode │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │512 (0x200) │ VSF_GRID_MODE │ Enables grid mode │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │1024 (0x400) │ VSF_ISOMETRIC_SNAP_STYLE │ Enables isometric snap │ │ │ │ style │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │2048 (0x800) │ VSF_HIDE_PLOT_MODE │ Enables hide plot mode │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │4096 (0x1000) │ VSF_KISOPAIR_TOP │ kIsoPairTop. If set and │ │ │ │ kIsoPairRight is not │ │ │ │ set, then isopair top is │ │ │ │ enabled. If both │ │ │ │ kIsoPairTop and │ │ │ │ kIsoPairRight are set, │ │ │ │ then isopair left is │ │ │ │ enabled │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │8192 (0x2000) │ VSF_KISOPAIR_RIGHT │ kIsoPairRight. If set │ │ │ │ and kIsoPairTop is not │ │ │ │ set, then isopair right │ │ │ │ is enabled │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │16384 (0x4000) │ VSF_LOCK_ZOOM │ Enables viewport zoom │ │ │ │ locking │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │32768 (0x8000) │ VSF_CURRENTLY_ALWAYS_ENABLED │ Currently always enabled │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │65536 (0x10000) │ VSF_NON_RECTANGULAR_CLIPPING │ Enables non-rectangular │ │ │ │ clipping │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │131072 (0x20000) │ VSF_TURN_VIEWPORT_OFF │ Turns the viewport off │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │262144 (0x40000) │ VSF_NO_GRID_LIMITS │ Enables the display of │ │ │ │ the grid beyond the │ │ │ │ drawing limits │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │524288 (0x80000) │ VSF_ADAPTIVE_GRID_DISPLAY │ Enable adaptive grid │ │ │ │ display │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │1048576 (0x100000) │ VSF_SUBDIVIDE_GRID │ Enables subdivision of │ │ │ │ the grid below the set │ │ │ │ grid spacing when the │ │ │ │ grid display is adaptive │ ├───────────────────┼───────────────────────────────┼──────────────────────────┤ │2097152 (0x200000) │ VSF_GRID_FOLLOW_WORKPLANE │ Enables grid follows │ │ │ │ workplane switching │ └───────────────────┴───────────────────────────────┴──────────────────────────┘ Use helper method set_flag_state() to set and clear viewport flags, e.g. lock viewport: vp.set_flag_state(ezdxf.const.VSF_LOCK_ZOOM, True) dxf.clipping_boundary_handle dxf.plot_style_name dxf.render_mode ┌──┬───────────────────────────────┐ │0 │ 2D Optimized (classic 2D) │ ├──┼───────────────────────────────┤ │1 │ Wireframe │ ├──┼───────────────────────────────┤ │2 │ Hidden line │ ├──┼───────────────────────────────┤ │3 │ Flat shaded │ ├──┼───────────────────────────────┤ │4 │ Gouraud shaded │ ├──┼───────────────────────────────┤ │5 │ Flat shaded with wireframe │ ├──┼───────────────────────────────┤ │6 │ Gouraud shaded with wireframe │ └──┴───────────────────────────────┘ dxf.ucs_per_viewport dxf.ucs_icon dxf.ucs_origin UCS origin as 3D point. dxf.ucs_x_axis UCS x-axis as 3D vector. dxf.ucs_y_axis UCS y-axis as 3D vector. dxf.ucs_handle Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed. dxf.ucs_ortho_type ┌──┬──────────────────┐ │0 │ not orthographic │ ├──┼──────────────────┤ │1 │ Top │ ├──┼──────────────────┤ │2 │ Bottom │ ├──┼──────────────────┤ │3 │ Front │ ├──┼──────────────────┤ │4 │ Back │ ├──┼──────────────────┤ │5 │ Left │ ├──┼──────────────────┤ │6 │ Right │ └──┴──────────────────┘ dxf.ucs_base_handle Handle of UCSTable of base UCS if UCS is orthographic (‐ Viewport.dxf.ucs_ortho_type is non-zero). If not present and Viewport.dxf.ucs_ortho_type is non-zero, then base UCS is taken to be WORLD. dxf.elevation dxf.shade_plot_mode (DXF R2004) ┌──┬──────────────┐ │0 │ As Displayed │ ├──┼──────────────┤ │1 │ Wireframe │ ├──┼──────────────┤ │2 │ Hidden │ ├──┼──────────────┤ │3 │ Rendered │ └──┴──────────────┘ dxf.grid_frequency Frequency of major grid lines compared to minor grid lines. (DXF R2007) dxf.background_handle dxf.shade_plot_handle dxf.visual_style_handle dxf.default_lighting_flag dxf.default_lighting_style ┌──┬────────────────────┐ │0 │ One distant light │ ├──┼────────────────────┤ │1 │ Two distant lights │ └──┴────────────────────┘ dxf.view_brightness dxf.view_contrast dxf.ambient_light_color_1 as AutoCAD Color Index (ACI) dxf.ambient_light_color_2 as true color value dxf.ambient_light_color_3 as true color value dxf.sun_handle dxf.ref_vp_object_1 dxf.ref_vp_object_2 dxf.ref_vp_object_3 dxf.ref_vp_object_4 frozen_layers Set/get frozen layers as list of layer names. is_frozen(layer_name: str) -> bool Returns True if layer_name id frozen in this viewport. freeze(layer_name: str) -> None Freeze layer_name in this viewport. thaw(layer_name: str) -> None Thaw layer_name in this viewport. has_extended_clipping_path Returns True if a non-rectangular clipping path is defined. clipping_rect() -> Tuple[Vec2, Vec2] Returns the lower left and the upper right corner of the clipping rectangle. clipping_rect_corners() -> List[Vec2] Returns the default rectangular clipping path as list of vertices. Use function ezdxf.path.make_path() to get also non-rectangular shaped clipping paths if defined. get_aspect_ratio() -> float Returns the aspect ratio of the viewport, return 0.0 if width or height is zero. get_modelspace_limits() -> Tuple[float, float, float, float] Returns the limits of the modelspace to view in drawing units as tuple (min_x, min_y, max_x, max_y). get_scale() -> float Returns the scaling factor from modelspace to viewport. get_transformation_matrix() -> Matrix44 Returns the transformation matrix from modelspace to viewport. Wipeout THE WIPEOUT (DXF Reference) entity is a polygonal area that masks underlying objects with the current background color. The WIPEOUT entity is based on the IMAGE entity, but usage does not require any knowledge about the IMAGE entity. The handles to the support entities ImageDef and ImageDefReactor are always “0”, both are not needed by the WIPEOUT entity. ┌─────────────────────────┬────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Image │ ├─────────────────────────┼────────────────────────────────────────┤ │DXF type │ 'WIPEOUT' │ ├─────────────────────────┼────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_wipeout() │ ├─────────────────────────┼────────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼────────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴────────────────────────────────────────┘ WARNING: Do not instantiate entity classes by yourself - always use the provided factory functions! class ezdxf.entities.Wipeout set_masking_area(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> None Set a new masking area, the area is placed in the layout xy-plane. XLine XLINE entity (DXF Reference) is a construction line that extents to infinity in both directions. ┌─────────────────────────┬──────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFGraphic │ ├─────────────────────────┼──────────────────────────────────────┤ │DXF type │ 'XLINE' │ ├─────────────────────────┼──────────────────────────────────────┤ │Factory function │ ezdxf.layouts.BaseLayout.add_xline() │ ├─────────────────────────┼──────────────────────────────────────┤ │Inherited DXF attributes │ Common graphical DXF attributes │ ├─────────────────────────┼──────────────────────────────────────┤ │Required DXF version │ DXF R2000 ('AC1015') │ └─────────────────────────┴──────────────────────────────────────┘ class ezdxf.entities.XLine dxf.start Location point of line as (3D Point in WCS) dxf.unit_vector Unit direction vector as (3D Point in WCS) transform(m: Matrix44) -> XLine Transform the XLINE/RAY entity by transformation matrix m inplace. translate(dx: float, dy: float, dz: float) -> XLine Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis. DXF Objects All DXF objects can only reside in the OBJECTS section of a DXF document. Dictionary The DICTIONARY is a general storage entity. AutoCAD maintains items such as MLINE_STYLES and GROUP definitions as objects in dictionaries. Other applications are free to create and use their own dictionaries as they see fit. The prefix 'ACAD_' is reserved for use by AutoCAD applications. Dictionary entries are (key, DXFEntity) pairs for fully loaded or new created DXF documents. The referenced entities are owned by the dictionary and cannot be graphical entities that always belong to the layout in which they are located. Loading DXF files is done in two passes, because at the first loading stage not all referenced objects are already stored in the entity database. Therefore the entities are stored as handles strings at the first loading stage and have to be replaced by the real entity at the second loading stage. If the entity is still a handle string after the second loading stage, the entity does not exist. Dictionary keys are handled case insensitive by AutoCAD, but not by ezdxf, in doubt use an uppercase key. AutoCAD stores all keys in uppercase. ┌─────────────────┬────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────┼────────────────────────────────────────────────────────┤ │DXF type │ 'DICTIONARY' │ ├─────────────────┼────────────────────────────────────────────────────────┤ │Factory function │ ezdxf.sections.objects.ObjectsSection.add_dictionary() │ └─────────────────┴────────────────────────────────────────────────────────┘ WARNING: Do not instantiate object classes by yourself - always use the provided factory functions! class ezdxf.entities.Dictionary dxf.hard_owned If set to 1, indicates that elements of the dictionary are to be treated as hard-owned. dxf.cloning Duplicate record cloning flag (determines how to merge duplicate entries, ignored by ezdxf): ┌──┬─────────────────┐ │0 │ not applicable │ ├──┼─────────────────┤ │1 │ keep existing │ ├──┼─────────────────┤ │2 │ use clone │ ├──┼─────────────────┤ │3 │ <xref>$0$<name> │ ├──┼─────────────────┤ │4 │ $0$<name> │ ├──┼─────────────────┤ │5 │ Unmangle name │ └──┴─────────────────┘ is_hard_owner Returns True if the dictionary is hard owner of entities. Hard owned entities will be destroyed by deleting the dictionary. __len__() -> int Returns count of dictionary entries. __contains__(key: str) -> bool Returns key in self. __getitem__(key: str) -> DXFEntity Return self[key]. The returned value can be a handle string if the entity does not exist. Raises DXFKeyError – key does not exist __setitem__(key: str, entity: DXFObject) -> None Set self[key] = entity. Only DXF objects stored in the OBJECTS section are allowed as content of Dictionary objects. DXF entities stored in layouts are not allowed. Raises DXFTypeError – invalid DXF type __delitem__(key: str) -> None Delete self[key]. Raises DXFKeyError – key does not exist keys() Returns a KeysView of all dictionary keys. items() Returns an ItemsView for all dictionary entries as (key, entity) pairs. An entity can be a handle string if the entity does not exist. count() -> int Returns count of dictionary entries. get(key: str, default: Optional[DXFObject] = None) -> Optional[DXFObject] Returns the DXFEntity for key, if key exist else default. An entity can be a handle string if the entity does not exist. add(key: str, entity: DXFObject) -> None Add entry (key, value). Raises • DXFValueError – invalid entity handle • DXFTypeError – invalid DXF type remove(key: str) -> None Delete entry key. Raises DXFKeyError, if key does not exist. Destroys hard owned DXF entities. discard(key: str) -> None Delete entry key if exists. Does not raise an exception if key doesn’t exist and does not destroy hard owned DXF entities. clear() -> None Delete all entries from the dictionary and destroys hard owned DXF entities. add_new_dict(key: str, hard_owned: bool = False) -> Dictionary Create a new sub-dictionary of type Dictionary. Parameters • key – name of the sub-dictionary • hard_owned – entries of the new dictionary are hard owned get_required_dict(key: str, hard_owned=False) -> Dictionary Get entry key or create a new Dictionary, if Key not exist. add_dict_var(key: str, value: str) -> DictionaryVar Add a new DictionaryVar. Parameters • key – entry name as string • value – entry value as string add_xrecord(key: str) -> XRecord Add a new XRecord. Parameters key – entry name as string link_dxf_object(name: str, obj: DXFObject) -> None Add obj and set owner of obj to this dictionary. Graphical DXF entities have to reside in a layout and therefore can not be owned by a Dictionary. Raises DXFTypeError – obj has invalid DXF type DictionaryWithDefault ┌─────────────────┬─────────────────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.Dictionary │ ├─────────────────┼─────────────────────────────────────────────────────────────────────┤ │DXF type │ 'ACDBDICTIONARYWDFLT' │ ├─────────────────┼─────────────────────────────────────────────────────────────────────┤ │Factory function │ ezdxf.sections.objects.ObjectsSection.add_dictionary_with_default() │ └─────────────────┴─────────────────────────────────────────────────────────────────────┘ class ezdxf.entities.DictionaryWithDefault dxf.default Handle to default entry as hex string like FF00. get(key: str, default: Optional[DXFObject] = None) -> Optional[DXFObject] Returns DXFEntity for key or the predefined dictionary wide dxf.default entity if key does not exist or None if default value also not exist. set_default(default: DXFObject) -> None Set dictionary wide default entry. Parameters default – default entry as DXFEntity DictionaryVar ┌─────────────────┬──────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────┼──────────────────────────────────────────┤ │DXF type │ 'DICTIONARYVAR' │ ├─────────────────┼──────────────────────────────────────────┤ │Factory function │ ezdxf.entities.Dictionary.add_dict_var() │ └─────────────────┴──────────────────────────────────────────┘ class ezdxf.entities.DictionaryVar dxf.schema Object schema number (currently set to 0) dxf.value Value as string. property value: str Get/set the value of the DictionaryVar as string. DXFLayout LAYOUT entity is part of a modelspace or paperspace layout definitions. ┌─────────────────┬──────────────────────────────────┐ │Subclass of │ ezdxf.entities.PlotSettings │ └─────────────────┴──────────────────────────────────┘ │DXF type │ 'LAYOUT' │ ├─────────────────┼──────────────────────────────────┤ │Factory function │ internal data structure, use │ │ │ Layouts to manage layout │ │ │ objects. │ └─────────────────┴──────────────────────────────────┘ class ezdxf.entities.DXFLayout dxf.name Layout name as shown in tabs by CAD applications TODO DXFObject Common base class for all non-graphical DXF objects. class ezdxf.entities.DXFObject A class hierarchy marker class and subclass of ezdxf.entities.DXFEntity GeoData The GEODATA entity is associated to the Modelspace object. The GEODATA entity is supported since the DXF version R2000, but was officially documented the first time in the DXF reference for version R2009. ┌─────────────────────┬────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────────┼────────────────────────────────────────┤ │DXF type │ 'GEODATA' │ ├─────────────────────┼────────────────────────────────────────┤ │Factory function │ ezdxf.layouts.Modelspace.new_geodata() │ ├─────────────────────┼────────────────────────────────────────┤ │Required DXF version │ R2010 ('AC1024') │ └─────────────────────┴────────────────────────────────────────┘ SEE ALSO: using_geodata.py WARNING: Do not instantiate object classes by yourself - always use the provided factory functions! class ezdxf.entities.GeoData dxf.version ┌──┬───────┐ │1 │ R2009 │ ├──┼───────┤ │2 │ R2010 │ └──┴───────┘ dxf.coordinate_type ┌──┬─────────────────────────────────┐ │0 │ unknown │ ├──┼─────────────────────────────────┤ │1 │ local grid │ ├──┼─────────────────────────────────┤ │2 │ projected grid │ ├──┼─────────────────────────────────┤ │3 │ geographic (latitude/longitude) │ └──┴─────────────────────────────────┘ dxf.block_record_handle Handle of host BLOCK_RECORD table entry, in general the Modelspace. Changed in version 0.10: renamed from dxf.block_record dxf.design_point Reference point in WCS coordinates. dxf.reference_point Reference point in geo coordinates, valid only when coordinate type is local grid. The difference between dxf.design_point and dxf.reference_point defines the translation from WCS coordinates to geo-coordinates. dxf.north_direction North direction as 2D vector. Defines the rotation (about the dxf.design_point) to transform from WCS coordinates to geo-coordinates dxf.horizontal_unit_scale Horizontal unit scale, factor which converts horizontal design coordinates to meters by multiplication. dxf.vertical_unit_scale Vertical unit scale, factor which converts vertical design coordinates to meters by multiplication. dxf.horizontal_units Horizontal units (see BlockRecord). Will be 0 (Unitless) if units specified by horizontal unit scale is not supported by AutoCAD enumeration. dxf.vertical_units Vertical units (see BlockRecord). Will be 0 (Unitless) if units specified by vertical unit scale is not supported by AutoCAD enumeration. dxf.up_direction Up direction as 3D vector. dxf.scale_estimation_method ┌──┬───────────────────────────────┐ │1 │ none │ ├──┼───────────────────────────────┤ │2 │ user specified scale factor │ ├──┼───────────────────────────────┤ │3 │ grid scale at reference point │ ├──┼───────────────────────────────┤ │4 │ prismoidal │ └──┴───────────────────────────────┘ dxf.sea_level_correction Bool flag specifying whether to do sea level correction. dxf.user_scale_factor dxf.sea_level_elevation dxf.coordinate_projection_radius dxf.geo_rss_tag dxf.observation_from_tag dxf.observation_to_tag dxf.mesh_faces_count source_vertices 2D source vertices in the CRS of the GeoData as VertexArray. Used together with target_vertices to define the transformation from the CRS of the GeoData to WGS84. target_vertices 2D target vertices in WGS84 (EPSG:4326) as VertexArray. Used together with source_vertices to define the transformation from the CRS of the geoData to WGS84. faces List of face definition tuples, each face entry is a 3-tuple of vertex indices (0-based). coordinate_system_definition The coordinate system definition string. Stored as XML. Defines the CRS used by the GeoData. The EPSG number and other details like the axis-ordering of the CRS is stored. get_crs() -> Tuple[int, bool] Returns the EPSG index and axis-ordering, axis-ordering is True if fist axis is labeled “E” or “W” and False if first axis is labeled “N” or “S”. If axis-ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON (see chapter 3.1.1). Raises InvalidGeoDataException – for invalid or unknown XML data The EPSG number is stored in a tag like: <Alias id="27700" type="CoordinateSystem"> <ObjectId>OSGB1936.NationalGrid</ObjectId> <Namespace>EPSG Code</Namespace> </Alias> The axis-ordering is stored in a tag like: <Axis uom="METER"> <CoordinateSystemAxis> <AxisOrder>1</AxisOrder> <AxisName>Easting</AxisName> <AxisAbbreviation>E</AxisAbbreviation> <AxisDirection>east</AxisDirection> </CoordinateSystemAxis> <CoordinateSystemAxis> <AxisOrder>2</AxisOrder> <AxisName>Northing</AxisName> <AxisAbbreviation>N</AxisAbbreviation> <AxisDirection>north</AxisDirection> </CoordinateSystemAxis> </Axis> get_crs_transformation(*, no_checks: bool = False) -> Tuple[Matrix44, int] Returns the transformation matrix and the EPSG index to transform WCS coordinates into CRS coordinates. Because of the lack of proper documentation this method works only for tested configurations, set argument no_checks to True to use the method for untested geodata configurations, but the results may be incorrect. Supports only “Local Grid” transformation! Raises InvalidGeoDataException – for untested geodata configurations setup_local_grid(*, design_point: Union[Sequence[float], Vec2, Vec3], reference_point: Union[Sequence[float], Vec2, Vec3], north_direction: Union[Sequence[float], Vec2, Vec3] = (0, 1), crs: str = '<?xml version="1.0" encoding="UTF-16" standalone="no" ?>\n<Dictionary version="1.0" xmlns="http://www.osgeo.org/mapguide/coordinatesystem">\n\n<ProjectedCoordinateSystem id="WORLD-MERCATOR">\n<Name>WORLD-MERCATOR</Name>\n<AdditionalInformation>\n<ParameterItem type="CsMap">\n<Key>CSQuadrantSimplified</Key>\n<IntegerValue>1</IntegerValue>\n</ParameterItem>\n</AdditionalInformation>\n<DomainOfValidity>\n<Extent>\n<GeographicElement>\n<GeographicBoundingBox>\n<WestBoundLongitude>-180.75</WestBoundLongitude>\n<EastBoundLongitude>180.75</EastBoundLongitude>\n<SouthBoundLatitude>-80.75</SouthBoundLatitude>\n<NorthBoundLatitude>84.75</NorthBoundLatitude>\n</GeographicBoundingBox>\n</GeographicElement>\n</Extent>\n</DomainOfValidity>\n<DatumId>WGS84</DatumId>\n<Axis uom="Meter">\n<CoordinateSystemAxis>\n<AxisOrder>1</AxisOrder>\n<AxisName>Easting</AxisName>\n<AxisAbbreviation>E</AxisAbbreviation>\n<AxisDirection>East</AxisDirection>\n</CoordinateSystemAxis>\n<CoordinateSystemAxis>\n<AxisOrder>2</AxisOrder>\n<AxisName>Northing</AxisName>\n<AxisAbbreviation>N</AxisAbbreviation>\n<AxisDirection>North</AxisDirection>\n</CoordinateSystemAxis>\n</Axis>\n<Conversion>\n<Projection>\n<OperationMethodId>Mercator (variant B)</OperationMethodId>\n<ParameterValue><OperationParameterId>Longitude of natural origin</OperationParameterId><Value uom="degree">0</Value></ParameterValue>\n<ParameterValue><OperationParameterId>Standard Parallel</OperationParameterId><Value uom="degree">0</Value></ParameterValue>\n<ParameterValue><OperationParameterId>Scaling factor for coord differences</OperationParameterId><Value uom="unity">1</Value></ParameterValue>\n<ParameterValue><OperationParameterId>False easting</OperationParameterId><Value uom="Meter">0</Value></ParameterValue>\n<ParameterValue><OperationParameterId>False northing</OperationParameterId><Value uom="Meter">0</Value></ParameterValue>\n</Projection>\n</Conversion>\n</ProjectedCoordinateSystem>\n<Alias id="3395" type="CoordinateSystem">\n<ObjectId>WORLD-MERCATOR</ObjectId>\n<Namespace>EPSG Code</Namespace>\n</Alias>\n\n<GeodeticDatum id="WGS84">\n<Name>WGS84</Name>\n<PrimeMeridianId>Greenwich</PrimeMeridianId>\n<EllipsoidId>WGS84</EllipsoidId>\n</GeodeticDatum>\n<Alias id="6326" type="Datum">\n<ObjectId>WGS84</ObjectId>\n<Namespace>EPSG Code</Namespace>\n</Alias>\n\n<Ellipsoid id="WGS84">\n<Name>WGS84</Name>\n<SemiMajorAxis uom="meter">6.37814e+06</SemiMajorAxis>\n<SecondDefiningParameter>\n<SemiMinorAxis uom="meter">6.35675e+06</SemiMinorAxis>\n</SecondDefiningParameter>\n</Ellipsoid>\n<Alias id="7030" type="Ellipsoid">\n<ObjectId>WGS84</ObjectId>\n<Namespace>EPSG Code</Namespace>\n</Alias>\n\n</Dictionary>\n') -> None Setup local grid coordinate system. This method is designed to setup CRS similar to EPSG:3395 World Mercator, the basic features of the CRS should fulfill these assumptions: • base unit of reference coordinates is 1 meter • right-handed coordinate system: +Y=north/+X=east/+Z=up The CRS string is not validated nor interpreted! HINT: The reference point must be a 2D cartesian map coordinate and not a globe (lon/lat) coordinate like stored in GeoJSON or GPS data. Parameters • design_point – WCS coordinates of the CRS reference point • reference_point – CRS reference point in 2D cartesian coordinates • north_direction – north direction a 2D vertex, default is (0, 1) • crs – Coordinate Reference System definition XML string, default is the definition string for EPSG:3395 World Mercator ImageDef IMAGEDEF entity defines an image file, which can be placed by the Image entity. ┌─────────────────────┬───────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────────┼───────────────────────────────────────────────────────┤ │DXF type │ 'IMAGEDEF' │ ├─────────────────────┼───────────────────────────────────────────────────────┤ │Factory function (1) │ ezdxf.document.Drawing.add_image_def() │ ├─────────────────────┼───────────────────────────────────────────────────────┤ │Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_image_def() │ └─────────────────────┴───────────────────────────────────────────────────────┘ WARNING: Do not instantiate object classes by yourself - always use the provided factory functions! class ezdxf.entities.ImageDef dxf.class_version Current version is 0. dxf.filename Relative (to the DXF file) or absolute path to the image file as string. dxf.image_size Image size in pixel as (x, y) tuple. dxf.pixel_size Default size of one pixel in drawing units as (x, y) tuple. dxf.loaded 0 = unloaded; 1 = loaded, default = 1 dxf.resolution_units ┌──┬─────────────┐ │0 │ No units │ ├──┼─────────────┤ │2 │ Centimeters │ ├──┼─────────────┤ │5 │ Inch │ └──┴─────────────┘ Default = 0 ImageDefReactor class ezdxf.entities.ImageDefReactor dxf.class_version dxf.image_handle MLeaderStyle The MLEADERSTYLE object (DXF Reference) store all attributes required to create new MultiLeader entities. The meaning of these attributes are not really documented in the DXF Reference. The default style “Standard” always exist. SEE ALSO: • ezdxf.entities.MultiLeader • ezdxf.render.MultiLeaderBuilder • Tutorial for MultiLeader Create a new MLeaderStyle: import ezdxf doc = ezdxf.new() new_style = doc.mleader_styles.new("NewStyle") Duplicate an existing style: duplicated_style = doc.mleader_styles.duplicate_entry("Standard", "DuplicatedStyle") ┌─────────────────┬─────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────┼─────────────────────────────────────────────┤ │DXF type │ 'MLEADERSTYLE' │ ├─────────────────┼─────────────────────────────────────────────┤ │Factory function │ ezdxf.document.Drawing.mleader_styles.new() │ └─────────────────┴─────────────────────────────────────────────┘ class ezdxf.entities.MLeaderStyle dxf.align_space unknown meaning dxf.arrow_head_handle handle of default arrow head, see also ezdxf.render.arrows module, by default no handle is set, which mean default arrow “closed filled” dxf.arrow_head_size default arrow head size in drawing units, default is 4.0 dxf.block_color default block color as ;term:raw color value, default is BY_BLOCK_RAW_VALUE dxf.block_connection_type ┌──┬─────────────────┐ │0 │ center extents │ ├──┼─────────────────┤ │1 │ insertion point │ └──┴─────────────────┘ dxf.block_record_handle handle to block record of the BLOCK content, not set by default dxf.block_rotation default BLOCK rotation in radians, default is 0.0 dxf.block_scale_x default block x-axis scale factor, default is 1.0 dxf.block_scale_y default block y-axis scale factor, default is 1.0 dxf.block_scale_z default block z-axis scale factor, default is 1.0 dxf.break_gap_size default break gap size, default is 3.75 dxf.char_height default MTEXT char height, default is 4.0 dxf.content_type ┌──┬───────────┐ │0 │ none │ ├──┼───────────┤ │1 │ BLOCK │ ├──┼───────────┤ │2 │ MTEXT │ ├──┼───────────┤ │3 │ TOLERANCE │ └──┴───────────┘ default is MTEXT (2) dxf.default_text_content default MTEXT content as string, default is “” dxf.dogleg_length default dogleg length, default is 8.0 dxf.draw_leader_order_type unknown meaning dxf.draw_mleader_order_type unknown meaning dxf.first_segment_angle_constraint angle of fist leader segment in radians, default is 0.0 dxf.has_block_rotation dxf.has_block_scaling dxf.has_dogleg default is 1 dxf.has_landing default is 1 dxf.is_annotative default is 0 dxf.landing_gap default landing gap size, default is 2.0 dxf.leader_line_color default leader line color as raw color value, default is BY_BLOCK_RAW_VALUE dxf.leader_linetype_handle handle of default leader linetype dxf.leader_lineweight default leader lineweight, default is LINEWEIGHT_BYBLOCK dxf.leader_type ┌──┬──────────────────────┐ │0 │ invisible │ ├──┼──────────────────────┤ │1 │ straight line leader │ ├──┼──────────────────────┤ │2 │ spline leader │ └──┴──────────────────────┘ default is 1 dxf.max_leader_segments_points max count of leader segments, default is 2 dxf.name MLEADERSTYLE name dxf.overwrite_property_value unknown meaning dxf.scale overall scaling factor, default is 1.0 dxf.second_segment_angle_constraint angle of fist leader segment in radians, default is 0.0 dxf.text_align_always_left use always left side to attach leaders, default is 0 dxf.text_alignment_type unknown meaning - its not the MTEXT attachment point! dxf.text_angle_type ┌──┬──────────────────────────────────┐ │0 │ text angle is equal to last │ │ │ leader line segment angle │ ├──┼──────────────────────────────────┤ │1 │ text is horizontal │ ├──┼──────────────────────────────────┤ │2 │ text angle is equal to last │ │ │ leader line segment angle, but │ │ │ potentially rotated by 180 │ │ │ degrees so the right side is up │ │ │ for readability. │ └──┴──────────────────────────────────┘ default is 1 dxf.text_attachment_direction defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top & bottom: ┌──┬──────────────────────────────────┐ │0 │ horizontal - left & right of │ │ │ content │ ├──┼──────────────────────────────────┤ │1 │ vertical - top & bottom of │ │ │ content │ └──┴──────────────────────────────────┘ default is 0 dxf.text_bottom_attachment_type ┌───┬─────────────────────┐ │9 │ center │ ├───┼─────────────────────┤ │10 │ overline and center │ └───┴─────────────────────┘ default is 9 dxf.text_color default MTEXT color as raw color value, default is BY_BLOCK_RAW_VALUE dxf.text_left_attachment_type ┌──┬──────────────────────────────────┐ │0 │ top of top MTEXT line │ ├──┼──────────────────────────────────┤ │1 │ middle of top MTEXT line │ ├──┼──────────────────────────────────┤ │2 │ middle of whole MTEXT │ ├──┼──────────────────────────────────┤ │3 │ middle of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │4 │ bottom of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │5 │ bottom of bottom MTEXT line & │ │ │ underline bottom MTEXT line │ ├──┼──────────────────────────────────┤ │6 │ bottom of top MTEXT line & │ │ │ underline top MTEXT line │ ├──┼──────────────────────────────────┤ │7 │ bottom of top MTEXT line │ ├──┼──────────────────────────────────┤ │8 │ bottom of top MTEXT line & │ │ │ underline all MTEXT lines │ └──┴──────────────────────────────────┘ dxf.text_right_attachment_type ┌──┬──────────────────────────────────┐ │0 │ top of top MTEXT line │ ├──┼──────────────────────────────────┤ │1 │ middle of top MTEXT line │ ├──┼──────────────────────────────────┤ │2 │ middle of whole MTEXT │ ├──┼──────────────────────────────────┤ │3 │ middle of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │4 │ bottom of bottom MTEXT line │ ├──┼──────────────────────────────────┤ │5 │ bottom of bottom MTEXT line & │ │ │ underline bottom MTEXT line │ ├──┼──────────────────────────────────┤ │6 │ bottom of top MTEXT line & │ │ │ underline top MTEXT line │ ├──┼──────────────────────────────────┤ │7 │ bottom of top MTEXT line │ ├──┼──────────────────────────────────┤ │8 │ bottom of top MTEXT line & │ │ │ underline all MTEXT lines │ └──┴──────────────────────────────────┘ dxf.text_style_handle handle of the default MTEXT text style, not set by default, which means “Standard” dxf.text_top_attachment_type ┌───┬─────────────────────┐ │9 │ center │ ├───┼─────────────────────┤ │10 │ overline and center │ └───┴─────────────────────┘ Placeholder The ACDBPLACEHOLDER object for internal usage. ┌─────────────────┬─────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────┼─────────────────────────────────────────────────────────┤ │DXF type │ 'ACDBPLACEHOLDER' │ ├─────────────────┼─────────────────────────────────────────────────────────┤ │Factory function │ ezdxf.sections.objects.ObjectsSection.add_placeholder() │ └─────────────────┴─────────────────────────────────────────────────────────┘ WARNING: Do not instantiate object classes by yourself - always use the provided factory functions! class ezdxf.entities.Placeholder PlotSettings All PLOTSETTINGS attributes are part of the DXFLayout entity, I don’t know if this entity also appears as standalone entity. ┌─────────────────┬──────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────┼──────────────────────────┤ │DXF type │ 'PLOTSETTINGS' │ ├─────────────────┼──────────────────────────┤ │Factory function │ internal data structure │ └─────────────────┴──────────────────────────┘ class ezdxf.entities.PlotSettings dxf.page_setup_name Page setup name TODO Sun SUN entity defines properties of the sun. ┌─────────────────┬──────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────┼──────────────────────────────────┤ │DXF type │ 'SUN' │ ├─────────────────┼──────────────────────────────────┤ │Factory function │ creating a new SUN entity is not │ │ │ supported │ └─────────────────┴──────────────────────────────────┘ class ezdxf.entities.Sun dxf.version Current version is 1. dxf.status on = 1 or off = 0 dxf.color AutoCAD Color Index (ACI) value of the sun. dxf.true_color true color value of the sun. dxf.intensity Intensity value in the range of 0 to 1. (float) dxf.julian_day use calendardate() to convert dxf.julian_day to datetime.datetime object. dxf.time Day time in seconds past midnight. (int) dxf.daylight_savings_time dxf.shadows ┌──┬─────────────────────────┐ │0 │ Sun do not cast shadows │ ├──┼─────────────────────────┤ │1 │ Sun do cast shadows │ └──┴─────────────────────────┘ dxf.shadow_type dxf.shadow_map_size dxf.shadow_softness UnderlayDefinition UnderlayDefinition (DXF Reference) defines an underlay file, which can be placed by the Underlay entity. ┌─────────────────────┬──────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │DXF type │ internal base class │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │ └─────────────────────┴──────────────────────────────────────────────────────────┘ class ezdxf.entities.UnderlayDefinition Base class of PdfDefinition, DwfDefinition and DgnDefinition dxf.filename Relative (to the DXF file) or absolute path to the underlay file as string. dxf.name Defines which part of the underlay file to display. ┌──────┬──────────────────┐ │'pdf' │ PDF page number │ ├──────┼──────────────────┤ │'dgn' │ always 'default' │ ├──────┼──────────────────┤ │'dwf' │ ? │ └──────┴──────────────────┘ WARNING: Do not instantiate object classes by yourself - always use the provided factory functions! PdfDefinition ┌─────────────────────┬──────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.UnderlayDefinition │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │DXF type │ 'PDFDEFINITION' │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │ └─────────────────────┴──────────────────────────────────────────────────────────┘ class ezdxf.entities.PdfDefinition PDF underlay file. DwfDefinition ┌─────────────────────┬──────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.UnderlayDefinition │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │DXF type │ 'DWFDEFINITION' │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │ └─────────────────────┴──────────────────────────────────────────────────────────┘ class ezdxf.entities.DwfDefinition DWF underlay file. DgnDefinition ┌─────────────────────┬──────────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.UnderlayDefinition │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │DXF type │ 'DGNDEFINITION' │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │ ├─────────────────────┼──────────────────────────────────────────────────────────┤ │Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │ └─────────────────────┴──────────────────────────────────────────────────────────┘ class ezdxf.entities.DgnDefinition DGN underlay file. XRecord Important class for storing application defined data in DXF files. XRECORD objects are used to store and manage arbitrary data. They are composed of DXF group codes ranging from 1 through 369. This object is similar in concept to XDATA but is not limited by size or order. To reference a XRECORD by an DXF entity, store the handle of the XRECORD in the XDATA section, application defined data or the ExtensionDict of the DXF entity. SEE ALSO: • Extended Data (XDATA) • Extension Dictionary • Storing Custom Data in DXF Files ┌─────────────────┬─────────────────────────────────────────────────────┐ │Subclass of │ ezdxf.entities.DXFObject │ ├─────────────────┼─────────────────────────────────────────────────────┤ │DXF type │ 'XRECORD' │ ├─────────────────┼─────────────────────────────────────────────────────┤ │Factory function │ ezdxf.sections.objects.ObjectsSection.add_xrecord() │ └─────────────────┴─────────────────────────────────────────────────────┘ WARNING: Do not instantiate object classes by yourself - always use the provided factory functions! class ezdxf.entities.XRecord dxf.cloning Duplicate record cloning flag (determines how to merge duplicate entries, ignored by ezdxf): ┌──┬─────────────────┐ │0 │ not applicable │ ├──┼─────────────────┤ │1 │ keep existing │ ├──┼─────────────────┤ │2 │ use clone │ ├──┼─────────────────┤ │3 │ <xref>$0$<name> │ ├──┼─────────────────┤ │4 │ $0$<name> │ ├──┼─────────────────┤ │5 │ Unmangle name │ └──┴─────────────────┘ tags Raw DXF tag container Tags. Be careful ezdxf does not validate the content of XRECORDS. clear() -> None Remove all DXF tags. reset(tags: Iterable[Union[DXFTag, Tuple[int, Any]]]) -> None Reset DXF tags. extend(tags: Iterable[Union[DXFTag, Tuple[int, Any]]]) -> None Extend DXF tags. Extended Data (XDATA) Extended data (XDATA) is a DXF tags structure to store arbitrary data in DXF entities. The XDATA is associated to an AppID and only one tag list is supported for each AppID per entity. WARNING: Low level usage of XDATA is an advanced feature, it is the responsibility of the programmer to create valid XDATA structures. Any errors can invalidate the DXF file! This section shows how to store DXF tags directly in DXF entity but there is also a more user friendly and safer way to store custom XDATA in DXF entities: • XDataUserList • XDataUserDict Use the high level methods of DXFEntity to manage XDATA tags. • has_xdata() • get_xdata() • set_xdata() Get XDATA tags as a ezdxf.lldxf.tags.Tags data structure, without the mandatory first tag (1001, AppID): if entity.has_xdata("EZDXF"): tags = entity.get_xdata("EZDXF") # or use alternatively: try: tags = entity.get_xdata("EZDXF") except DXFValueError: # XDATA for "EZDXF" does not exist ... Set DXF tags as list of (group code, value) tuples or as ezdxf.lldxf.tags.Tags data structure, valid DXF tags for XDATA are documented in the section about the Extended Data internals. The mandatory first tag (1001, AppID) is inserted automatically if not present. Set only new XDATA tags: if not entity.has_xdata("EZDXF"): entity.set_xdata("EZDXF", [(1000, "MyString")]) Replace or set new XDATA tags: entity.set_xdata("EZDXF", [(1000, "MyString")]) SEE ALSO: • Tutorial: Storing Custom Data in DXF Files • Internals about Extended Data tags • Internal XDATA management class: XData • DXF R2018 Reference Application-Defined Data (AppData) The application-defined data feature is not very well documented in the DXF reference, so usage as custom data store is not recommended. AutoCAD uses these feature to store the handle to the extension dictionary (ExtensionDict) of a DXF entity and the handles to the persistent reactors (Reactors) of a DXF entity. Use the high level methods of DXFEntity to manage application-defined data tags. • has_app_data() • get_app_data() • set_app_data() • discard_app_data() HINT: Ezdxf uses special classes to manage the extension dictionary and the reactor handles. These features cannot be accessed by the methods above. Set application-defined data: entity.set_app_data("YOURAPPID", [(1, "DataString")])) Setting the content tags can contain the opening structure tag (102, “{YOURAPPID”) and the closing tag (102, “}”), but doesn’t have to. The returned Tags objects does not contain these structure tags. Which tags are valid for application-defined data is not documented. The AppID has to have an entry in the AppID table. Get application-defined data: if entity.has_app_data("YOURAPPID"): tags = entity.get_app_data("YOURAPPID") # tags content is [DXFTag(1, 'DataString')] SEE ALSO: • Internals about Application-Defined Codes • Internal AppData management class: AppData Extension Dictionary Every entity can have an extension dictionary, which can reference arbitrary DXF objects from the OBJECTS section but not graphical entities. Using this mechanism, several applications can attach data to the same entity. The usage of extension dictionaries is more complex than Extended Data (XDATA) but also more flexible with higher capacity for adding data. Use the high level methods of DXFEntity to manage extension dictionaries. • has_extension_dict() • get_extension_dict() • new_extension_dict() • discard_extension_dict() The main data storage objects referenced by extension dictionaries are: • Dictionary, structural container • DictionaryVar, stores a single string • XRecord, stores arbitrary data SEE ALSO: • Tutorial: Storing Custom Data in DXF Files class ezdxf.entities.xdict.ExtensionDict Internal management class for extension dictionaries. SEE ALSO: • Underlying DXF Dictionary class • DXF Internals: Extension Dictionary • DXF R2018 Reference property is_alive Returns True if the underlying Dictionary object is not deleted. __contains__(key: str) Return key in self. __getitem__(key: str) Get self[key]. __setitem__(key: str, value) Set self[key] to value. Only DXF objects stored in the OBJECTS section are allowed as content of the extension dictionary. DXF entities stored in layouts are not allowed. Raises DXFTypeError – invalid DXF type __delitem__(key: str) Delete self[key], destroys referenced entity. __len__() Returns count of extension dictionary entries. get(key: str, default=None) -> Optional[DXFEntity] Return extension dictionary entry key. keys() Returns a KeysView of all extension dictionary keys. items() Returns an ItemsView for all extension dictionary entries as (key, entity) pairs. An entity can be a handle string if the entity does not exist. discard(key: str) -> None Discard extension dictionary entry key. add_dictionary(name: str, hard_owned: bool = True) -> Dictionary Create a new Dictionary object as extension dictionary entry name. add_dictionary_var(name: str, value: str) -> DictionaryVar Create a new DictionaryVar object as extension dictionary entry name. add_xrecord(name: str) -> XRecord Create a new XRecord object as extension dictionary entry name. link_dxf_object(name: str, obj: DXFObject) -> None Link obj to the extension dictionary as entry name. Linked objects are owned by the extensions dictionary and therefore cannot be a graphical entity, which have to be owned by a BaseLayout. Raises DXFTypeError – obj has invalid DXF type destroy() Destroy the underlying Dictionary object. Reactors Persistent reactors are optional object handles of objects registering themselves as reactors on an object. Any DXF object or DXF entity may have reactors. Use the high level methods of DXFEntity to manage persistent reactor handles. • has_reactors() • get_reactors() • set_reactors() • append_reactor_handle() • discard_reactor_handle() Ezdxf keeps these reactors only up to date, if this is absolute necessary according to the DXF reference. SEE ALSO: • Internals about Persistent Reactors • Internal Reactors management class: Reactors Block Reference Management The package ezdxf is not designed as a CAD library and does not automatically monitor all internal changes. This enables faster entity processing at the cost of an unknown state of the DXF document. In order to carry out precise BLOCK reference management, i.e. to handle dependencies or to delete unused BLOCK definition, the block reference status (counter) must be acquired explicitly by the package user. All block reference management structures must be explicitly recreated each time the document content is changed. This is not very efficient, but it is safe. WARNING: And even with all this careful approach, it is always possible to destroy a DXF document by deleting an absolutely necessary block definition. Always remember that ezdxf is not intended or suitable as a basis for a CAD application! New in version 0.18. class ezdxf.blkrefs.BlockDefinitionIndex(doc: Drawing) Index of all BlockRecord entities representing real BLOCK definitions, excluding all BlockRecord entities defining model space or paper space layouts. External references (XREF) and XREF overlays are included. property block_records: Iterator[BlockRecord] Returns an iterator of all BlockRecord entities representing BLOCK definitions. rebuild() Rebuild index from scratch. has_handle(handle: str) -> bool Returns True if a BlockRecord for the given block record handle exist. by_handle(handle: str) -> Optional[BlockRecord] Returns the BlockRecord for the given block record handle or None. has_name(name: str) -> bool Returns True if a BlockRecord for the given block name exist. by_name(name: str) -> Optional[BlockRecord] Returns BlockRecord for the given block name or None. class ezdxf.blkrefs.BlockReferenceCounter(doc: Drawing, index: BlockDefinitionIndex = None) Counts all block references in a DXF document. Check if a block is referenced by any entity or any resource (DIMSYTLE, MLEADERSTYLE) in a DXF document: import ezdxf from ezdxf.blkrefs import BlockReferenceCounter doc = ezdxf.readfile("your.dxf") counter = BlockReferenceCounter(doc) count = counter.by_name("XYZ") print(f"Block 'XYZ' if referenced {count} times.") by_handle(handle: str) -> int Returns the block reference count for a given BlockRecord handle. by_name(block_name: str) -> int Returns the block reference count for a given block name. Const The module ezdxf.lldxf.const, is also accessible from the ezdxf namespace: from ezdxf.lldxf.const import DXF12 import ezdxf print(DXF12) print(ezdxf.const.DXF12) DXF Version Strings ┌────────┬──────────┬─────────┐ │Name │ Version │ Alias │ ├────────┼──────────┼─────────┤ │DXF9 │ “AC1004” │ “R9” │ ├────────┼──────────┼─────────┤ │DXF10 │ “AC1006” │ “R10” │ ├────────┼──────────┼─────────┤ │DXF12 │ “AC1009” │ “R12” │ ├────────┼──────────┼─────────┤ │DXF13 │ “AC1012” │ “R13” │ ├────────┼──────────┼─────────┤ │DXF14 │ “AC1014” │ “R14” │ ├────────┼──────────┼─────────┤ │DXF2000 │ “AC1015” │ “R2000” │ ├────────┼──────────┼─────────┤ │DXF2004 │ “AC1018” │ “R2004” │ ├────────┼──────────┼─────────┤ │DXF2007 │ “AC1021” │ “R2007” │ ├────────┼──────────┼─────────┤ │DXF2010 │ “AC1024” │ “R2010” │ ├────────┼──────────┼─────────┤ │DXF2013 │ “AC1027” │ “R2013” │ ├────────┼──────────┼─────────┤ │DXF2018 │ “AC1032” │ “R2018” │ └────────┴──────────┴─────────┘ Exceptions class ezdxf.lldxf.const.DXFError Base exception for all ezdxf exceptions. class ezdxf.lldxf.const.DXFStructureError(DXFError) class ezdxf.lldxf.const.DXFVersionError(DXFError) Errors related to features not supported by the chosen DXF Version class ezdxf.lldxf.const.DXFValueError(DXFError) class ezdxf.lldxf.const.DXFInvalidLineType(DXFValueError) class ezdxf.lldxf.const.DXFBlockInUseError(DXFValueError) class ezdxf.lldxf.const.DXFKeyError(DXFError) class ezdxf.lldxf.const.DXFUndefinedBlockError(DXFKeyError) class ezdxf.lldxf.const.DXFAttributeError(DXFError) class ezdxf.lldxf.const.DXFIndexError(DXFError) class ezdxf.lldxf.const.DXFTypeError(DXFError) class ezdxf.lldxf.const.DXFTableEntryError(DXFValueError) DXF Entity Creation Layout Factory Methods Recommended way to create DXF entities. For all supported entities exist at least one factory method in the ezdxf.layouts.BaseLayout class. All factory methods have the prefix: add_... import ezdxf doc = ezdxf.new() msp = doc.modelspace() msp.add_line((0, 0, 0), (3, 0, 0), dxfattribs={"color": 2}) Thematic Index of Layout Factory Methods DXF Primitives • add_3dface() • add_arc() • add_circle() • add_ellipse() • add_hatch() • add_helix() • add_image() • add_leader() • add_line() • add_lwpolyline() • add_mesh() • add_mline() • add_mpolygon() • add_multileader_mtext() • add_multileader_block() • add_point() • add_polyface() • add_polyline2d() • add_polyline3d() • add_polymesh() • add_ray() • add_shape() • add_solid() • add_trace() • add_wipeout() • add_xline() Text Entities • add_attdef() • add_mtext_dynamic_auto_height_columns() • add_mtext_dynamic_manual_height_columns() • add_mtext_static_columns() • add_mtext() • add_text() Spline Entity • add_cad_spline_control_frame() • add_open_spline() • add_rational_spline() • add_spline_control_frame() • add_spline() Block References and Underlays • add_arrow_blockref() • add_auto_blockref() • add_blockref() • add_underlay() Viewport Entity Only available in paper space layouts. • add_viewport() Dimension Entities Linear Dimension • add_aligned_dim() • add_linear_dim() • add_multi_point_linear_dim() Radius and Diameter Dimension • add_diameter_dim_2p() • add_diameter_dim() • add_radius_dim_2p() • add_radius_dim_cra() • add_radius_dim() Angular Dimension • add_angular_dim_2l() • add_angular_dim_3p() • add_angular_dim_arc() • add_angular_dim_cra() Arc Dimension • add_arc_dim_3p() • add_arc_dim_arc() • add_arc_dim_cra() Ordinate Dimension • add_ordinate_dim() • add_ordinate_x_dim() • add_ordinate_y_dim() Miscellaneous • add_entity() • add_foreign_entity() • add_arrow() ACIS Entities The creation of the required ACIS data has do be done by an external library! • add_3dsolid() • add_body() • add_extruded_surface() • add_lofted_surface() • add_region() • add_revolved_surface() • add_surface() • add_swept_surface() SEE ALSO: Layout base class: BaseLayout Factory Functions Alternative way to create DXF entities for advanced ezdxf users. The ezdxf.entities.factory module provides the new() function to create new DXF entities by their DXF name and a dictionary of DXF attributes. This will bypass the validity checks in the factory methods of the BaseLayout class. This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the entity to a layout (and document) by the layout method add_entity(). import ezdxf from ezdxf.entities import factory doc = ezdxf.new() msp = doc.modelspace() line = factory.new( "LINE", dxfattribs={ "start": (0, 0, 0), "end": (3, 0, 0), "color": 2, }, ) msp.add_entity(line) Direct Object Instantiation For advanced developers with knowledge about the internal design of ezdxf. Import the entity classes from sub-package ezdxf.entities and instantiate them. This will bypass the validity checks in the factory methods of the BaseLayout class and maybe additional required setup procedures for some entities - study the source code!. WARNING: A refactoring of the internal ezdxf structures will break your code. This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the entity to a layout (and document) by the layout method add_entity(). import ezdxf from ezdxf.entities import Line doc = ezdxf.new() msp = doc.modelspace() line = Line.new( dxfattribs={ "start": (0, 0, 0), "end": (3, 0, 0), "color": 2, } ) msp.add_entity(line) Enums TextEntityAlignment class ezdxf.enums.TextEntityAlignment(value) Text alignment enum for the Text, Attrib and AttDef entities. LEFT CENTER RIGHT ALIGNED MIDDLE FIT BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT TOP_LEFT TOP_CENTER TOP_RIGHT MTextEntityAlignment class ezdxf.enums.MTextEntityAlignment(value) Text alignment enum for the MText entity. TOP_LEFT TOP_CENTER TOP_RIGHT MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT MTextParagraphAlignment class ezdxf.enums.MTextParagraphAlignment(value) An enumeration. DEFAULT LEFT RIGHT CENTER JUSTIFIED DISTRIBUTED MTextFlowDirection class ezdxf.enums.MTextFlowDirection(value) An enumeration. LEFT_TO_RIGHT TOP_TO_BOTTOM BY_STYLE MTextLineAlignment class ezdxf.enums.MTextLineAlignment(value) An enumeration. BOTTOM MIDDLE TOP MTextStroke class ezdxf.enums.MTextStroke(value) Combination of flags is supported: UNDERLINE + STRIKE_THROUGH UNDERLINE STRIKE_THROUGH OVERLINE MTextLineSpacing class ezdxf.enums.MTextLineSpacing(value) An enumeration. AT_LEAST EXACT MTextBackgroundColor class ezdxf.enums.MTextBackgroundColor(value) An enumeration. OFF COLOR WINDOW CANVAS InsertUnits class ezdxf.enums.InsertUnits(value) An enumeration. Unitless Inches Feet Miles Millimeters Centimeters Meters Kilometers Microinches Mils Yards Angstroms Nanometers Microns Decimeters Decameters Hectometers Gigameters AstronomicalUnits Lightyears Parsecs USSurveyFeet USSurveyInch USSurveyYard USSurveyMile Measurement class ezdxf.enums.Measurement(value) An enumeration. Imperial Metric LengthUnits class ezdxf.enums.LengthUnits(value) An enumeration. Scientific Decimal Engineering Architectural Fractional AngularUnits class ezdxf.enums.AngularUnits(value) An enumeration. DecimalDegrees DegreesMinutesSeconds Grad Radians SortEntities class ezdxf.enums.SortEntities(value) An enumeration. DISABLE SELECTION Sorts for object selection SNAP Sorts for object snap REDRAW Sorts for redraws; obsolete MSLIDE Sorts for MSLIDE command slide creation; obsolete REGEN Sorts for REGEN commands PLOT Sorts for plotting POSTSCRIPT Sorts for PostScript output; obsolete ACI class ezdxf.enums.ACI(value) AutoCAD Color Index BYBLOCK BYLAYER BYOBJECT RED YELLOW GREEN CYAN BLUE MAGENTA BLACK WHITE Colors Colors Module This module provides functions and constants to manage all kinds of colors in DXF documents. Converter Functions ezdxf.colors.rgb2int(rgb: Tuple[int, int, int]) -> int Combined integer value from (r, g, b) tuple. ezdxf.colors.int2rgb(value: int) -> Tuple[int, int, int] Split RGB integer value into (r, g, b) tuple. ezdxf.colors.aci2rgb(index: int) -> Tuple[int, int, int] Convert AutoCAD Color Index (ACI) into (r, g, b) tuple, based on default AutoCAD colors. ezdxf.colors.luminance(color: Tuple[int, int, int]) -> float Returns perceived luminance for a RGB color in the range [0.0, 1.0] from dark to light. ezdxf.colors.decode_raw_color(value: int) -> Tuple[int, Union[int, Tuple[int, int, int]]] Decode raw color value as tuple(type, Union[aci, (r, g, b)]), the true color value is a (r, g, b) tuple. ezdxf.colors.decode_raw_color_int(value: int) -> Tuple[int, int] Decode raw color value as tuple(type, int), the true color value is a 24-bit int value. ezdxf.colors.encode_raw_color(value: Union[int, Tuple[int, int, int]]) -> int Encode true color value or AutoCAD Color Index (ACI) color value into a :term: raw color value. ezdxf.colors.transparency2float(value: int) -> float Returns transparency value as float from 0 to 1, 0 for no transparency (opaque) and 1 for 100% transparency. Parameters value – DXF integer transparency value, 0 for 100% transparency and 255 for opaque ezdxf.colors.float2transparency(value: float) -> int Returns DXF transparency value as integer in the range from 0 to 255, where 0 is 100% transparent and 255 is opaque. Parameters value – transparency value as float in the range from 0 to 1, where 0 is opaque and 1 is 100% transparent. ACI Color Values Common AutoCAD Color Index (ACI) values, also accessible as IntEnum ezdxf.enums.ACI ┌────────────────────────────┬─────┐ │BYBLOCK │ 0 │ ├────────────────────────────┼─────┤ │BYLAYER │ 256 │ ├────────────────────────────┼─────┤ │BYOBJECT │ 257 │ ├────────────────────────────┼─────┤ │RED │ 1 │ └────────────────────────────┴─────┘ │YELLOW │ 2 │ ├────────────────────────────┼─────┤ │GREEN │ 3 │ ├────────────────────────────┼─────┤ │CYAN │ 4 │ ├────────────────────────────┼─────┤ │BLUE │ 5 │ ├────────────────────────────┼─────┤ │MAGENTA │ 6 │ ├────────────────────────────┼─────┤ │BLACK (on light background) │ 7 │ ├────────────────────────────┼─────┤ │WHITE (on dark background) │ 7 │ └────────────────────────────┴─────┘ Default Palettes Default color mappings from AutoCAD Color Index (ACI) to true color values. ┌────────────┬───────────────────────────────┐ │model space │ DXF_DEFAULT_COLORS │ ├────────────┼───────────────────────────────┤ │paper space │ DXF_DEFAULT_PAPERSPACE_COLORS │ └────────────┴───────────────────────────────┘ Raw Color Types ┌─────────────────────┬──────┐ │COLOR_TYPE_BY_LAYER │ 0xC0 │ ├─────────────────────┼──────┤ │COLOR_TYPE_BY_BLOCK │ 0xC1 │ ├─────────────────────┼──────┤ │COLOR_TYPE_RGB │ 0xC2 │ ├─────────────────────┼──────┤ │COLOR_TYPE_ACI │ 0xC3 │ ├─────────────────────┼──────┤ │COLOR_TYPE_WINDOW_BG │ 0xC8 │ └─────────────────────┴──────┘ Raw Color Vales ┌────────────────────┬─────────────┐ │BY_LAYER_RAW_VALUE │ -1073741824 │ ├────────────────────┼─────────────┤ │BY_BLOCK_RAW_VALUE │ -1056964608 │ ├────────────────────┼─────────────┤ │WINDOW_BG_RAW_VALUE │ -939524096 │ └────────────────────┴─────────────┘ Transparency Values ┌─────────────────────┬───────────┐ │OPAQUE │ 0x20000FF │ ├─────────────────────┼───────────┤ │TRANSPARENCY_10 │ 0x20000E5 │ ├─────────────────────┼───────────┤ │TRANSPARENCY_20 │ 0x20000CC │ ├─────────────────────┼───────────┤ │TRANSPARENCY_30 │ 0x20000B2 │ ├─────────────────────┼───────────┤ │TRANSPARENCY_40 │ 0x2000099 │ ├─────────────────────┼───────────┤ │TRANSPARENCY_50 │ 0x200007F │ ├─────────────────────┼───────────┤ │TRANSPARENCY_60 │ 0x2000066 │ ├─────────────────────┼───────────┤ │TRANSPARENCY_70 │ 0x200004C │ ├─────────────────────┼───────────┤ │TRANSPARENCY_80 │ 0x2000032 │ ├─────────────────────┼───────────┤ │TRANSPARENCY_90 │ 0x2000019 │ ├─────────────────────┼───────────┤ │TRANSPARENCY_BYBLOCK │ 0x1000000 │ └─────────────────────┴───────────┘ Data Query SEE ALSO: For usage of the query features see the tutorial: Tutorial for getting data from DXF files Entity Query String QueryString := EntityQuery ("[" AttribQuery "]" "i"?)* The query string is the combination of two queries, first the required entity query and second the optional attribute query, enclosed in square brackets, append 'i' after the closing square bracket to ignore case for strings. Entity Query The entity query is a whitespace separated list of DXF entity names or the special name '*'. Where '*' means all DXF entities, exclude some entity types by appending their names with a preceding ! (e.g. all entities except LINE = '* !LINE'). All DXF names have to be uppercase. Attribute Query The optional attribute query is a boolean expression, supported operators are: • not (!): !term is true, if term is false • and (&): term & term is true, if both terms are true • or (|): term | term is true, if one term is true • and arbitrary nested round brackets • append (i) after the closing square bracket to ignore case for strings Attribute selection is a term: “name comparator value”, where name is a DXF entity attribute in lowercase, value is a integer, float or double quoted string, valid comparators are: • == equal “value” • != not equal “value” • < lower than “value” • <= lower or equal than “value” • > greater than “value” • >= greater or equal than “value” • ? match regular expression “value” • !? does not match regular expression “value” Query Result The EntityQuery class is the return type of all query() methods. EntityQuery contains all DXF entities of the source collection, which matches one name of the entity query AND the whole attribute query. If a DXF entity does not have or support a required attribute, the corresponding attribute search term is False. examples: • LINE[text ? ".*"]: always empty, because the LINE entity has no text attribute. • LINE CIRCLE[layer=="construction"]: all LINE and CIRCLE entities with layer == "construction" • *[!(layer=="construction" & color<7)]: all entities except those with layer == "construction" and color < 7 • *[layer=="construction"]i, (ignore case) all entities with layer == "construction" | "Construction" | "ConStruction" … EntityQuery Class class ezdxf.query.EntityQuery The EntityQuery class is a result container, which is filled with DXF entities matching the query string. It is possible to add entities to the container (extend), remove entities from the container and to filter the container. Supports the standard Python Sequence methods and protocols. Does not remove automatically destroyed entities (entities deleted by calling method destroy()), the method purge() has to be called explicitly to remove the destroyed entities. first First entity or None. last Last entity or None. __len__() -> int Returns count of DXF entities. __getitem__(item) Returns DXFEntity at index item, supports negative indices and slicing. Returns all entities which support a specific DXF attribute, if item is a DXF attribute name as string. Changed in version 0.18: support DXF attribute name as argument __setitem__(key, value) Set the DXF attribute key for all supported DXF entities to value. New in version 0.18. __delitem__(key) Discard the DXF attribute key from all supported DXF entities. New in version 0.18. __eq__(other) Equal selector (self == other). Returns all entities where the selected DXF attribute is equal to other. New in version 0.18. __ne__(other) Not equal selector (self != other). Returns all entities where the selected DXF attribute is not equal to other. New in version 0.18. __lt__(other) Less than selector (self < other). Returns all entities where the selected DXF attribute is less than other. Raises TypeError – for vector based attributes like center or insert New in version 0.18. __le__(other) Less equal selector (self <= other). Returns all entities where the selected DXF attribute is less or equal other. Raises TypeError – for vector based attributes like center or insert New in version 0.18. __gt__(other) Greater than selector (self > other). Returns all entities where the selected DXF attribute is greater than other. Raises TypeError – for vector based attributes like center or insert New in version 0.18. __ge__(other) Greater equal selector (self >= other). Returns all entities where the selected DXF attribute is greater or equal other. Raises TypeError – for vector based attributes like center or insert New in version 0.18. match(pattern: str) -> EntityQuery Returns all entities where the selected DXF attribute matches the regular expression pattern. Raises TypeError – for non-string based attributes New in version 0.18. __or__(other) Union operator, see union(). New in version 0.18. __and__(other) Intersection operator, see intersection(). New in version 0.18. __sub__(other) Difference operator, see difference(). New in version 0.18. __xor__(other) Symmetric difference operator, see symmetric_difference(). New in version 0.18. __iter__() -> Iterator[DXFEntity] Returns iterable of DXFEntity objects. purge() -> EntityQuery Remove destroyed entities. extend(entities: Iterable[DXFEntity], query: str = '*') -> EntityQuery Extent the EntityQuery container by entities matching an additional query. remove(query: str = '*') -> EntityQuery Remove all entities from EntityQuery container matching this additional query. query(query: str = '*') -> EntityQuery Returns a new EntityQuery container with all entities matching this additional query. Raises pyparsing.ParseException – query string parsing error groupby(dxfattrib: str = '', key: Optional[Callable[[DXFEntity], Hashable]] = None) -> Dict[Hashable, List[DXFEntity]] Returns a dict of entity lists, where entities are grouped by a DXF attribute or a key function. Parameters • dxfattrib – grouping DXF attribute as string like 'layer' • key – key function, which accepts a DXFEntity as argument, returns grouping key of this entity or None for ignore this object. Reason for ignoring: a queried DXF attribute is not supported by this entity filter(func: Callable[[DXFEntity], bool]) -> EntityQuery Returns a new EntityQuery with all entities from this container for which the callable func returns True. Build your own operator to filter by attributes which are not DXF attributes or to build complex queries: result = msp.query().filter( lambda e: hasattr(e, "rgb") and e.rbg == (0, 0, 0) ) New in version 0.18. union(other: EntityQuery) -> EntityQuery Returns a new EntityQuery with entities from self and other. All entities are unique - no duplicates. New in version 0.18. intersection(other: EntityQuery) -> EntityQuery Returns a new EntityQuery with entities common to self and other. New in version 0.18. difference(other: EntityQuery) -> EntityQuery Returns a new EntityQuery with all entities from self that are not in other. New in version 0.18. symmetric_difference(other: EntityQuery) -> EntityQuery Returns a new EntityQuery with entities in either self or other but not both. New in version 0.18. Extended EntityQuery Features New in version 0.18. The [] operator got extended features in version 0.18, until then the EntityQuery implemented the __getitem__() interface like a sequence to get entities from the container: result = msp.query(...) first = result[0] last = result[-1] sequence = result[1:-2] # returns not an EntityQuery container! Now the __getitem__() function accepts also a DXF attribute name and returns all entities which support this attribute, this is the base for supporting queries by relational operators. More on that later. The __setitem__() method assigns a DXF attribute to all supported entities in the EntityQuery container: result = msp.query(...) result["layer"] = "MyLayer" Entities which do not support an attribute are silently ignored: result = msp.query(...) result["center"] = (0, 0) # set center only of CIRCLE and ARC entities The __delitem__() method discards DXF attributes from all entities in the EntityQuery container: result = msp.query(...) # reset the layer attribute from all entities in container result to the # default layer "0" del result["layer"] Descriptors for DXF Attributes New in version 0.18. For some basic DXF attributes exist descriptors in the EntityQuery class: • layer: layer name as string • color: AutoCAD Color Index (ACI), see ezdxf.colors • linetype: linetype as string • ltscale: linetype scaling factor as float value • lineweight: Lineweights • invisible: 0 if visible 1 if invisible, 0 is the default value • true_color: true color as int value, see ezdxf.colors, has no default value • transparency: transparency as int value, see ezdxf.colors, has no default value A descriptor simplifies the attribute access through the EntityQuery container and has auto-completion support from IDEs: result = msp.query(...) # set attribute of all entities in result result.layer = "MyLayer" # delete attribute from all entities in result del result.layer # and for selector usage, see following section assert len(result.layer == "MyLayer") == 1 Relational Selection Operators New in version 0.18. The attribute selection by __getitem__() allows further selections by relational operators: msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer}) lines = msp.query("LINE") # select all entities on layer "MyLayer" entities = lines["layer"] == "MyLayer" assert len(entities) == 1 # or select all entities except the entities on layer "MyLayer" entities = lines["layer"] != "MyLayer" These operators work only with real DXF attributes, for instance the rgb attribute of graphical entities is not a real DXF attribute either the vertices of the LWPOLYLINE entity. The selection by relational operators is case insensitive by default, because all names of DXF table entries are handled case insensitive. But if required the selection mode can be set to case sensitive: lines = msp.query("LINE") # use case sensitive selection: "MyLayer" != "MYLAYER" lines.ignore_case = False entities = lines["layer"] == "MYLAYER" assert len(entities) == 0 # the result container has the default setting: assert entities.ignore_case is True Supported selection operators are: • == equal “value” • != not equal “value” • < lower than “value” • <= lower or equal than “value” • > greater than “value” • >= greater or equal than “value” The relational operators <, >, <= and >= are not supported for vector-based attributes such as center or insert and raise a TypeError. NOTE: These operators are selection operators and not logic operators, therefore the logic operators and, or and not are not applicable. The methods union(), intersection(), difference() and symmetric_difference() can be used to combine selection. See section Query Set Operators and Build Own Filters. Regular Expression Selection The EntityQuery.match() method returns all entities where the selected DXF attribute matches the given regular expression. This methods work only on string based attributes, raises TypeError otherwise. From here on I use only descriptors for attribute selection if possible. msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Lay1"}) msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Lay2"}) lines = msp.query("LINE") # select all entities at layers starting with "Lay", # selection is also case insensitive by default: assert len(lines.layer.match("^Lay.*")) == 2 Build Own Filters The method EntityQuery.filter can be used to build operators for none-DXF attributes or for complex logic expressions. Find all MTEXT entities in modelspace containing “SearchText”. All MText entities have a text attribute, no need for a safety check: mtext = msp.query("MTEXT").filter(lambda e: "SearchText" in e.text) This filter checks the non-DXF attribute rgb. The filter has to check if the rgb attributes exist to avoid exceptions, because not all entities in modelspace may have the rgb attribute e.g. the DXFTagStorage entities which preserve unknown DXF entities: result = msp.query().filter( lambda e: hasattr(e, "rgb") and e.rgb == (0, 0, 0) ) Build 1-pass logic filters for complex queries, which would require otherwise multiple passes: result = msp.query().filter(lambda e: e.dxf.color < 7 and e.dxf.layer == "0") Combine filters for more complex operations. The first filter passes only valid entities and the second filter does the actual check: def validator(entity): return True # if entity is valid and has all required attributes def check(entity): return True # if entity passes the attribute checks result = msp.query().filter(validator).filter(check) Query Set Operators The | operator or EntityQuery.union() returns a new EntityQuery with all entities from both queries. All entities are unique - no duplicates. This operator acts like the logical or operator. entities = msp.query() # select all entities with color < 2 or color > 7 result = (entities.color < 2 ) | (entities.color > 7) The & operator or EntityQuery.intersection() returns a new EntityQuery with entities common to self and other. This operator acts like the logical and operator. entities = msp.query() # select all entities with color > 1 and color < 7 result = (entities.color > 1) & (entities.color < 7) The - operator or EntityQuery.difference() returns a new EntityQuery with all entities from self that are not in other. entities = msp.query() # select all entities with color > 1 and not layer == "MyLayer" result = (entities.color > 1) - (entities.layer != "MyLayer") The ^ operator or EntityQuery.symmetric_difference() returns a new EntityQuery with entities in either self or other but not both. entities = msp.query() # select all entities with color > 1 or layer == "MyLayer", exclusive # entities with color > 1 and layer == "MyLayer" result = (entities.color > 1) ^ (entities.layer == "MyLayer") The new() Function ezdxf.query.new(entities: Optional[Iterable[DXFEntity]] = None, query: str = '*') -> EntityQuery Start a new query based on sequence entities. The entities argument has to be an iterable of DXFEntity or inherited objects and returns an EntityQuery object. SEE ALSO: For usage of the groupby features see the tutorial: Retrieve entities by groupby() function Groupby Function ezdxf.groupby.groupby(entities: Iterable[DXFEntity], dxfattrib: str = '', key: KeyFunc = None) -> Dict[Hashable, List[DXFEntity]] Groups a sequence of DXF entities by a DXF attribute like 'layer', returns a dict with dxfattrib values as key and a list of entities matching this dxfattrib. A key function can be used to combine some DXF attributes (e.g. layer and color) and should return a hashable data type like a tuple of strings, integers or floats, key function example: def group_key(entity: DXFEntity): return entity.dxf.layer, entity.dxf.color For not suitable DXF entities return None to exclude this entity, in this case it’s not required, because groupby() catches DXFAttributeError exceptions to exclude entities, which do not provide layer and/or color attributes, automatically. Result dict for dxfattrib = 'layer' may look like this: { '0': [ ... list of entities ], 'ExampleLayer1': [ ... ], 'ExampleLayer2': [ ... ], ... } Result dict for key = group_key, which returns a (layer, color) tuple, may look like this: { ('0', 1): [ ... list of entities ], ('0', 3): [ ... ], ('0', 7): [ ... ], ('ExampleLayer1', 1): [ ... ], ('ExampleLayer1', 2): [ ... ], ('ExampleLayer1', 5): [ ... ], ('ExampleLayer2', 7): [ ... ], ... } All entity containers (modelspace, paperspace layouts and blocks) and the EntityQuery object have a dedicated groupby() method. Parameters • entities – sequence of DXF entities to group by a DXF attribute or a key function • dxfattrib – grouping DXF attribute like 'layer' • key – key function, which accepts a DXFEntity as argument and returns a hashable grouping key or None to ignore this entity Math Core Math core module: ezdxf.math These are the core math functions and classes which should be imported from ezdxf.math. Functions ezdxf.math.closest_point(base: Union[Sequence[float], Vec2, Vec3], points: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Vec3 Returns the closest point to base. Parameters • base – base point as Vec3 compatible object • points – iterable of points as Vec3 compatible object ezdxf.math.uniform_knot_vector(count: int, order: int, normalize=False) -> List[float] Returns an uniform knot vector for a B-spline of order and count control points. order = degree + 1 Parameters • count – count of control points • order – spline order • normalize – normalize values in range [0, 1] if True ezdxf.math.open_uniform_knot_vector(count: int, order: int, normalize=False) -> List[float] Returns an open (clamped) uniform knot vector for a B-spline of order and count control points. order = degree + 1 Parameters • count – count of control points • order – spline order • normalize – normalize values in range [0, 1] if True ezdxf.math.required_knot_values(count: int, order: int) -> int Returns the count of required knot values for a B-spline of order and count control points. Parameters • count – count of control points, in text-books referred as “n + 1” • order – order of B-Spline, in text-books referred as “k” Relationship: “p” is the degree of the B-spline, text-book notation. • k = p + 1 • 2 ≤ k ≤ n + 1 ezdxf.math.xround(value: float, rounding: float = 0.0) -> float Extended rounding function, argument rounding defines the rounding limit: ┌─────┬──────────────────────────────────┐ │0 │ remove fraction │ ├─────┼──────────────────────────────────┤ │0.1 │ round next to x.1, x.2, … x.0 │ ├─────┼──────────────────────────────────┤ │0.25 │ round next to x.25, x.50, x.75 │ │ │ or x.00 │ ├─────┼──────────────────────────────────┤ │0.5 │ round next to x.5 or x.0 │ ├─────┼──────────────────────────────────┤ │1.0 │ round to a multiple of 1: remove │ │ │ fraction │ ├─────┼──────────────────────────────────┤ │2.0 │ round to a multiple of 2: xxx2, │ │ │ xxx4, xxx6 … │ ├─────┼──────────────────────────────────┤ │5.0 │ round to a multiple of 5: xxx5 │ │ │ or xxx0 │ ├─────┼──────────────────────────────────┤ │10.0 │ round to a multiple of 10: xx10, │ │ │ xx20, … │ └─────┴──────────────────────────────────┘ Parameters • value – float value to round • rounding – rounding limit ezdxf.math.linspace(start: float, stop: float, num: int, endpoint=True) -> Iterable[float] Return evenly spaced numbers over a specified interval, like numpy.linspace(). Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can optionally be excluded. ezdxf.math.area(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> float Returns the area of a polygon, returns the projected area in the xy-plane for any vertices (z-axis will be ignored). ezdxf.math.arc_angle_span_deg(start: float, end: float) -> float Returns the counter-clockwise angle span from start to end in degrees. Returns the angle span in the range of [0, 360], 360 is a full circle. Full circle handling is a special case, because normalization of angles which describe a full circle would return 0 if treated as regular angles. e.g. (0, 360) → 360, (0, -360) → 360, (180, -180) → 360. Input angles with the same value always return 0 by definition: (0, 0) → 0, (-180, -180) → 0, (360, 360) → 0. ezdxf.math.arc_angle_span_rad(start: float, end: float) -> float Returns the counter-clockwise angle span from start to end in radians. Returns the angle span in the range of [0, 2π], 2π is a full circle. Full circle handling is a special case, because normalization of angles which describe a full circle would return 0 if treated as regular angles. e.g. (0, 2π) → 2π, (0, -2π) → 2π, (π, -π) → 2π. Input angles with the same value always return 0 by definition: (0, 0) → 0, (-π, -π) → 0, (2π, 2π) → 0. ezdxf.math.arc_segment_count(radius: float, angle: float, sagitta: float) -> int Returns the count of required segments for the approximation of an arc for a given maximum sagitta. Parameters • radius – arc radius • angle – angle span of the arc in radians • sagitta – max. distance from the center of an arc segment to the center of its chord ezdxf.math.arc_chord_length(radius: float, sagitta: float) -> float Returns the chord length for an arc defined by radius and the sagitta. Parameters • radius – arc radius • sagitta – distance from the center of the arc to the center of its base ezdxf.math.ellipse_param_span(start_param: float, end_param: float) -> float Returns the counter-clockwise params span of an elliptic arc from start- to end param. Returns the param span in the range [0, 2π], 2π is a full ellipse. Full ellipse handling is a special case, because normalization of params which describe a full ellipse would return 0 if treated as regular params. e.g. (0, 2π) → 2π, (0, -2π) → 2π, (π, -π) → 2π. Input params with the same value always return 0 by definition: (0, 0) → 0, (-π, -π) → 0, (2π, 2π) → 0. Alias to function: ezdxf.math.arc_angle_span_rad() ezdxf.math.has_matrix_2d_stretching(m: Matrix44) -> bool Returns True if matrix m performs a non-uniform xy-scaling. Uniform scaling is not stretching in this context. Does not check if the target system is a cartesian coordinate system, use the Matrix44 property is_cartesian for that. ezdxf.math.has_matrix_3d_stretching(m: Matrix44) -> bool Returns True if matrix m performs a non-uniform xyz-scaling. Uniform scaling is not stretching in this context. Does not check if the target system is a cartesian coordinate system, use the Matrix44 property is_cartesian for that. Bulge Related Functions SEE ALSO: Description of the Bulge value. ezdxf.math.arc_to_bulge(center: Union[Sequence[float], Vec2, Vec3], start_angle: float, end_angle: float, radius: float) -> Tuple[Vec2, Vec2, float] Returns bulge parameters from arc parameters. Parameters • center – circle center point as Vec2 compatible object • start_angle – start angle in radians • end_angle – end angle in radians • radius – circle radius Returns (start_point, end_point, bulge) Return type tuple ezdxf.math.bulge_3_points(start_point: Union[Sequence[float], Vec2, Vec3], end_point: Union[Sequence[float], Vec2, Vec3], point: Union[Sequence[float], Vec2, Vec3]) -> float Returns bulge value defined by three points. Based on 3-Points to Bulge by Lee Mac. Parameters • start_point – start point as Vec2 compatible object • end_point – end point as Vec2 compatible object • point – arbitrary point as Vec2 compatible object ezdxf.math.bulge_center(start_point: Union[Sequence[float], Vec2, Vec3], end_point: Union[Sequence[float], Vec2, Vec3], bulge: float) -> Vec2 Returns center of arc described by the given bulge parameters. Based on Bulge Center by Lee Mac. Parameters • start_point – start point as Vec2 compatible object • end_point – end point as Vec2 compatible object • bulge – bulge value as float ezdxf.math.bulge_radius(start_point: Union[Sequence[float], Vec2, Vec3], end_point: Union[Sequence[float], Vec2, Vec3], bulge: float) -> float Returns radius of arc defined by the given bulge parameters. Based on Bulge Radius by Lee Mac Parameters • start_point – start point as Vec2 compatible object • end_point – end point as Vec2 compatible object • bulge – bulge value ezdxf.math.bulge_to_arc(start_point: Union[Sequence[float], Vec2, Vec3], end_point: Union[Sequence[float], Vec2, Vec3], bulge: float) -> Tuple[Vec2, float, float, float] Returns arc parameters from bulge parameters. The arcs defined by bulge values of LWPolyline and 2D Polyline entities start at the vertex which includes the bulge value and ends at the following vertex. Based on Bulge to Arc by Lee Mac. Parameters • start_point – start vertex as Vec2 compatible object • end_point – end vertex as Vec2 compatible object • bulge – bulge value Returns (center, start_angle, end_angle, radius) Return type Tuple 2D Graphic Functions ezdxf.math.convex_hull_2d(points: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> List[‐ Vec2] Returns 2D convex hull for points as list of Vec2. Returns a closed polyline, first vertex == last vertex. Parameters points – iterable of points, z-axis is ignored ezdxf.math.distance_point_line_2d(point: Vec2, start: Vec2, end: Vec2) -> float Returns the normal distance from point to 2D line defined by start- and end point. ezdxf.math.intersect_polylines_2d(p1: Sequence[Vec2], p2: Sequence[Vec2], abs_tol=1e-10) -> List[Vec2] Returns the intersection points for two polylines as list of Vec2 objects, the list is empty if no intersection points exist. Does not return self intersection points of p1 or p2. Duplicate intersection points are removed from the result list, but the list does not have a particular order! You can sort the result list by result.sort() to introduce an order. Parameters • p1 – first polyline as sequence of Vec2 objects • p2 – second polyline as sequence of Vec2 objects • abs_tol – absolute tolerance for comparisons New in version 0.17.2. ezdxf.math.intersection_line_line_2d(line1: Sequence[Vec2], line2: Sequence[Vec2], virtual=True, abs_tol=1e-10) -> Optional[Vec2] Compute the intersection of two lines in the xy-plane. Parameters • line1 – start- and end point of first line to test e.g. ((x1, y1), (x2, y2)). • line2 – start- and end point of second line to test e.g. ((x3, y3), (x4, y4)). • virtual – True returns any intersection point, False returns only real intersection points. • abs_tol – tolerance for intersection test. Returns None if there is no intersection point (parallel lines) or intersection point as Vec2 ezdxf.math.is_convex_polygon_2d(polygon: List[Vec2], *, strict=False, epsilon=1e-06) -> bool Returns True if the 2D polygon is convex. This function works with open and closed polygons and clockwise or counter-clockwise vertex orientation. Coincident vertices will always be skipped and if argument strict is True, polygons with collinear vertices are not considered as convex. This solution works only for simple non-self-intersecting polygons! ezdxf.math.is_point_in_polygon_2d(point: Vec2, polygon: Sequence[Vec2], abs_tol=1e-10) -> int Test if point is inside polygon. Returns -1 (for outside) if the polygon is degenerated, no exception will be raised. Parameters • point – 2D point to test as Vec2 • polygon – sequence of 2D points as Vec2 • abs_tol – tolerance for distance check Returns +1 for inside, 0 for on boundary line, -1 for outside ezdxf.math.is_point_left_of_line(point: Vec2, start: Vec2, end: Vec2, colinear=False) -> bool Returns True if point is “left of line” defined by start- and end point, a colinear point is also “left of line” if argument colinear is True. Parameters • point – 2D point to test as Vec2 • start – line definition point as Vec2 • end – line definition point as Vec2 • colinear – a colinear point is also “left of line” if True ezdxf.math.is_point_on_line_2d(point: Vec2, start: Vec2, end: Vec2, ray=True, abs_tol=1e-10) -> bool Returns True if point is on line. Parameters • point – 2D point to test as Vec2 • start – line definition point as Vec2 • end – line definition point as Vec2 • ray – if True point has to be on the infinite ray, if False point has to be on the line segment • abs_tol – tolerance for on the line test ezdxf.math.offset_vertices_2d(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]], offset: float, closed: bool = False) -> Iterable[Vec2] Yields vertices of the offset line to the shape defined by vertices. The source shape consist of straight segments and is located in the xy-plane, the z-axis of input vertices is ignored. Takes closed shapes into account if argument closed is True, which yields intersection of first and last offset segment as first vertex for a closed shape. For closed shapes the first and last vertex can be equal, else an implicit closing segment from last to first vertex is added. A shape with equal first and last vertex is not handled automatically as closed shape. WARNING: Adjacent collinear segments in opposite directions, same as a turn by 180 degree (U-turn), leads to unexpected results. Parameters • vertices – source shape defined by vertices • offset – line offset perpendicular to direction of shape segments defined by vertices order, offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of line segment • closed – True to handle as closed shape source = [(0, 0), (3, 0), (3, 3), (0, 3)] result = list(offset_vertices_2d(source, offset=0.5, closed=True)) [image] Example for a closed collinear shape, which creates 2 additional vertices and the first one has an unexpected location: source = [(0, 0), (0, 1), (0, 2), (0, 3)] result = list(offset_vertices_2d(source, offset=0.5, closed=True)) [image] ezdxf.math.point_to_line_relation(point: Vec2, start: Vec2, end: Vec2, abs_tol=1e-10) -> int Returns -1 if point is left line, +1 if point is right of line and 0 if point is on the line. The line is defined by two vertices given as arguments start and end. Parameters • point – 2D point to test as Vec2 • start – line definition point as Vec2 • end – line definition point as Vec2 • abs_tol – tolerance for minimum distance to line ezdxf.math.rytz_axis_construction(d1: Vec3, d2: Vec3) -> Tuple[Vec3, Vec3, float] The Rytz’s axis construction is a basic method of descriptive Geometry to find the axes, the semi-major axis and semi-minor axis, starting from two conjugated half-diameters. Source: Wikipedia Given conjugated diameter d1 is the vector from center C to point P and the given conjugated diameter d2 is the vector from center C to point Q. Center of ellipse is always (0, 0, 0). This algorithm works for 2D/3D vectors. Parameters • d1 – conjugated semi-major axis as Vec3 • d2 – conjugated semi-minor axis as Vec3 Returns Tuple of (major axis, minor axis, ratio) 3D Graphic Functions SEE ALSO: The free online book 3D Math Primer for Graphics and Game Development is a very good resource for learning vector math and other graphic related topics, it is easy to read for beginners and especially targeted to programmers. ezdxf.math.basic_transformation(move: Union[Sequence[float], Vec2, Vec3] = (0, 0, 0), scale: Union[Sequence[float], Vec2, Vec3] = (1, 1, 1), z_rotation: float = 0) -> Matrix44 Returns a combined transformation matrix for translation, scaling and rotation about the z-axis. Parameters • move – translation vector • scale – x-, y- and z-axis scaling as float triplet, e.g. (2, 2, 1) • z_rotation – rotation angle about the z-axis in radians ezdxf.math.best_fit_normal(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Vec3 Returns the “best fit” normal for a plane defined by three or more vertices. This function tolerates imperfect plane vertices. Safe function to detect the extrusion vector of flat arbitrary polygons. ezdxf.math.bezier_to_bspline(curves: Iterable[Union[Bezier3P, Bezier4P]]) -> BSpline Convert multiple quadratic or cubic Bèzier curves into a single cubic B-spline (‐ ezdxf.math.BSpline). For good results the curves must be lined up seamlessly, i.e. the starting point of the following curve must be the same as the end point of the previous curve. G1 continuity or better at the connection points of the Bézier curves is required to get best results. New in version 0.16. ezdxf.math.closed_uniform_bspline(control_points: Iterable[Union[Sequence[float], Vec2, Vec3]], order: int = 4, weights: Optional[Iterable[float]] = None) -> BSpline Creates an closed uniform (periodic) B-spline curve (open curve). This B-spline does not pass any of the control points. Parameters • control_points – iterable of control points as Vec3 compatible objects • order – spline order (degree + 1) • weights – iterable of weight values ezdxf.math.cubic_bezier_bbox(curve: Bezier4P, *, abs_tol=1e-12) -> BoundingBox Returns the BoundingBox of a cubic Bézier curve of type Bezier4P. New in version 0.18. ezdxf.math.cubic_bezier_from_3p(p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], p3: Union[Sequence[float], Vec2, Vec3]) -> Bezier4P Returns a cubic Bèzier curve Bezier4P from three points. The curve starts at p1, goes through p2 and ends at p3. (source: pomax-2) New in version 0.17.2. ezdxf.math.cubic_bezier_from_arc(center: UVec = (0, 0, 0), radius: float = 1, start_angle: float = 0, end_angle: float = 360, segments: int = 1) -> Iterable[Bezier4P] Returns an approximation for a circular 2D arc by multiple cubic Bézier-curves. Parameters • center – circle center as Vec3 compatible object • radius – circle radius • start_angle – start angle in degrees • end_angle – end angle in degrees • segments – count of Bèzier-curve segments, at least one segment for each quarter (90 deg), 1 for as few as possible. ezdxf.math.cubic_bezier_from_ellipse(ellipse: ConstructionEllipse, segments: int = 1) -> Iterable[Bezier4P] Returns an approximation for an elliptic arc by multiple cubic Bézier-curves. Parameters • ellipse – ellipse parameters as ConstructionEllipse object • segments – count of Bèzier-curve segments, at least one segment for each quarter (π/2), 1 for as few as possible. ezdxf.math.cubic_bezier_interpolation(points: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Iterable[Bezier4P] Returns an interpolation curve for given data points as multiple cubic Bézier-curves. Returns n-1 cubic Bézier-curves for n given data points, curve i goes from point[i] to point[i+1]. Parameters points – data points ezdxf.math.distance_point_line_3d(point: Vec3, start: Vec3, end: Vec3) -> float Returns the normal distance from point to 3D line defined by start- and end point. ezdxf.math.estimate_end_tangent_magnitude(points: List[Vec3], method: str = 'chord') -> Tuple[float, float] Estimate tangent magnitude of start- and end tangents. Available estimation methods: • “chord”: total chord length, curve approximation by straight segments • “arc”: total arc length, curve approximation by arcs • “bezier-n”: total length from cubic bezier curve approximation, n segments per section Parameters • points – start-, end- and passing points of curve • method – tangent magnitude estimation method ezdxf.math.estimate_tangents(points: List[Vec3], method: str = '5-points', normalize=True) -> List[Vec3] Estimate tangents for curve defined by given fit points. Calculated tangents are normalized (unit-vectors). Available tangent estimation methods: • “3-points”: 3 point interpolation • “5-points”: 5 point interpolation • “bezier”: tangents from an interpolated cubic bezier curve • “diff”: finite difference Parameters • points – start-, end- and passing points of curve • method – tangent estimation method • normalize – normalize tangents if True Returns tangents as list of Vec3 objects ezdxf.math.fit_points_to_cad_cv(fit_points: Iterable[Union[Sequence[float], Vec2, Vec3]], tangents: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, estimate: str = '5-p') -> BSpline Returns a cubic BSpline from fit points as close as possible to common CAD applications like BricsCAD. There exist infinite numerical correct solution for this setup, but some facts are known: • Global curve interpolation with start- and end derivatives, e.g. 6 fit points creates 8 control vertices in BricsCAD • Degree of B-spline is always 3, the stored degree is ignored, this is only valid for B-splines defined by fit points • Knot parametrization method is “chord” • Knot distribution is “natural” The last missing parameter is the start- and end tangents estimation method used by BricsCAD, if these tangents are stored in the DXF file provide them as argument tangents as 2-tuple (start, end) and the interpolated control vertices will match the BricsCAD calculation, except for floating point imprecision. If the end tangents are not given, the start- and ent tangent directions will be estimated. The argument estimate lets choose from different estimation methods (first 3 letters are significant): • “3-points”: 3 point interpolation • “5-points”: 5 point interpolation • “bezier”: tangents from an interpolated cubic bezier curve • “diff”: finite difference The estimation method “5-p” yields the closest match to the BricsCAD rendering, but sometimes “bez” creates a better result. If I figure out how BricsCAD estimates the end tangents directions, the argument estimate gets an additional value for that case. The existing estimation methods will perform the same way as now, except for bug fixes. But the default value may change, therefore set argument estimate to specific value to always get the same result in the future. Parameters • fit_points – points the spline is passing through • tangents – start- and end tangent, default is autodetect • estimate – tangent direction estimation method Changed in version 0.16: removed unused arguments degree and method ezdxf.math.fit_points_to_cubic_bezier(fit_points: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> BSpline Returns a cubic BSpline from fit points without end tangents. This function uses the cubic Bèzier interpolation to create multiple Bèzier curves and combine them into a single B-spline, this works for short simple splines better than the fit_points_to_cad_cv(), but is worse for longer and more complex splines. Parameters fit_points – points the spline is passing through New in version 0.16. ezdxf.math.global_bspline_interpolation(fit_points: Iterable[Union[Sequence[float], Vec2, Vec3]], degree: int = 3, tangents: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, method: str = 'chord') -> BSpline B-spline interpolation by the Global Curve Interpolation. Given are the fit points and the degree of the B-spline. The function provides 3 methods for generating the parameter vector t: • “uniform”: creates a uniform t vector, from 0 to 1 evenly spaced, see uniform method • “chord”, “distance”: creates a t vector with values proportional to the fit point distances, see chord length method • “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see centripetal method • “arc”: creates a t vector with values proportional to the arc length between fit points. It is possible to constraint the curve by tangents, by start- and end tangent if only two tangents are given or by one tangent for each fit point. If tangents are given, they represent 1st derivatives and should be scaled if they are unit vectors, if only start- and end tangents given the function estimate_end_tangent_magnitude() helps with an educated guess, if all tangents are given, scaling by chord length is a reasonable choice (Piegl & Tiller). Parameters • fit_points – fit points of B-spline, as list of Vec3 compatible objects • tangents – if only two vectors are given, take the first and the last vector as start- and end tangent constraints or if for all fit points a tangent is given use all tangents as interpolation constraints (optional) • degree – degree of B-spline • method – calculation method for parameter vector t Returns BSpline ezdxf.math.have_bezier_curves_g1_continuity(b1: Union[Bezier3P, Bezier4P], b2: Union[‐ Bezier3P, Bezier4P], g1_tol: float = 0.0001) -> bool Return True if the given adjacent bezier curves have G1 continuity. New in version 0.16. ezdxf.math.intersect_polylines_3d(p1: Sequence[Vec3], p2: Sequence[Vec3], abs_tol=1e-10) -> List[Vec3] Returns the intersection points for two polylines as list of Vec3 objects, the list is empty if no intersection points exist. Does not return self intersection points of p1 or p2. Duplicate intersection points are removed from the result list, but the list does not have a particular order! You can sort the result list by result.sort() to introduce an order. Parameters • p1 – first polyline as sequence of Vec3 objects • p2 – second polyline as sequence of Vec3 objects • abs_tol – absolute tolerance for comparisons New in version 0.17.2. ezdxf.math.intersection_line_line_3d(line1: Sequence[Vec3], line2: Sequence[Vec3], virtual: bool = True, abs_tol: float = 1e-10) -> Optional[Vec3] Returns the intersection point of two 3D lines, returns None if lines do not intersect. Parameters • line1 – first line as tuple of two points as Vec3 objects • line2 – second line as tuple of two points as Vec3 objects • virtual – True returns any intersection point, False returns only real intersection points • abs_tol – absolute tolerance for comparisons New in version 0.17.2. ezdxf.math.intersection_line_polygon_3d(start: Vec3, end: Vec3, polygon: Iterable[Vec3], *, coplanar=True, boundary=True, abs_tol=1e-09) -> Optional[Vec3] Returns the intersection point of the 3D line form start to end and the given polygon. Parameters • start – start point of 3D line as Vec3 • end – end point of 3D line as Vec3 • polygon – 3D polygon as iterable of Vec3 • coplanar – if True a coplanar start- or end point as intersection point is valid • boundary – if True an intersection point at the polygon boundary line is valid • abs_tol – absolute tolerance for comparisons New in version 0.18. ezdxf.math.intersection_ray_polygon_3d(origin: Vec3, direction: Vec3, polygon: Iterable[‐ Vec3], *, boundary=True, abs_tol=1e-09) -> Optional[Vec3] Returns the intersection point of the infinite 3D ray defined by origin and the direction vector and the given polygon. Parameters • origin – origin point of the 3D ray as Vec3 • direction – direction vector of the 3D ray as Vec3 • polygon – 3D polygon as iterable of Vec3 • boundary – if True intersection points at the polygon boundary line are valid • abs_tol – absolute tolerance for comparisons New in version 0.18. ezdxf.math.intersection_ray_ray_3d(ray1: Sequence[Vec3], ray2: Sequence[Vec3], abs_tol=1e-10) -> Sequence[Vec3] Calculate intersection of two 3D rays, returns a 0-tuple for parallel rays, a 1-tuple for intersecting rays and a 2-tuple for not intersecting and not parallel rays with points of the closest approach on each ray. Parameters • ray1 – first ray as tuple of two points as Vec3 objects • ray2 – second ray as tuple of two points as Vec3 objects • abs_tol – absolute tolerance for comparisons ezdxf.math.is_planar_face(face: Sequence[Vec3], abs_tol=1e-09) -> bool Returns True if sequence of vectors is a planar face. Parameters • face – sequence of Vec3 objects • abs_tol – tolerance for normals check ezdxf.math.linear_vertex_spacing(start: Vec3, end: Vec3, count: int) -> List[Vec3] Returns count evenly spaced vertices from start to end. ezdxf.math.local_cubic_bspline_interpolation(fit_points: Iterable[Union[Sequence[float], Vec2, Vec3]], method: str = '5-points', tangents: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None) -> BSpline B-spline interpolation by ‘Local Cubic Curve Interpolation’, which creates B-spline from fit points and estimated tangent direction at start-, end- and passing points. Source: Piegl & Tiller: “The NURBS Book” - chapter 9.3.4 Available tangent estimation methods: • “3-points”: 3 point interpolation • “5-points”: 5 point interpolation • “bezier”: cubic bezier curve interpolation • “diff”: finite difference or pass pre-calculated tangents, which overrides tangent estimation. Parameters • fit_points – all B-spline fit points as Vec3 compatible objects • method – tangent estimation method • tangents – tangents as Vec3 compatible objects (optional) Returns BSpline ezdxf.math.normal_vector_3p(a: Vec3, b: Vec3, c: Vec3) -> Vec3 Returns normal vector for 3 points, which is the normalized cross product for: a->b x a->c. ezdxf.math.open_uniform_bspline(control_points: Iterable[Union[Sequence[float], Vec2, Vec3]], order: int = 4, weights: Optional[Iterable[float]] = None) -> BSpline Creates an open uniform (periodic) B-spline curve (open curve). This is an unclamped curve, which means the curve passes none of the control points. Parameters • control_points – iterable of control points as Vec3 compatible objects • order – spline order (degree + 1) • weights – iterable of weight values ezdxf.math.quadratic_bezier_bbox(curve: Bezier3P, *, abs_tol=1e-12) -> BoundingBox Returns the BoundingBox of a quadratic Bézier curve of type Bezier3P. New in version 0.18. ezdxf.math.quadratic_bezier_from_3p(p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], p3: Union[Sequence[float], Vec2, Vec3]) -> Bezier3P Returns a quadratic Bèzier curve Bezier3P from three points. The curve starts at p1, goes through p2 and ends at p3. (source: pomax-2) New in version 0.17.2. ezdxf.math.quadratic_to_cubic_bezier(curve: Bezier3P) -> Bezier4P Convert quadratic Bèzier curves (ezdxf.math.Bezier3P) into cubic Bèzier curves (‐ ezdxf.math.Bezier4P). New in version 0.16. ezdxf.math.rational_bspline_from_arc(center: Vec3 = (0, 0), radius: float = 1, start_angle: float = 0, end_angle: float = 360, segments: int = 1) -> BSpline Returns a rational B-splines for a circular 2D arc. Parameters • center – circle center as Vec3 compatible object • radius – circle radius • start_angle – start angle in degrees • end_angle – end angle in degrees • segments – count of spline segments, at least one segment for each quarter (90 deg), default is 1, for as few as needed. ezdxf.math.rational_bspline_from_ellipse(ellipse: ConstructionEllipse, segments: int = 1) -> BSpline Returns a rational B-splines for an elliptic arc. Parameters • ellipse – ellipse parameters as ConstructionEllipse object • segments – count of spline segments, at least one segment for each quarter (π/2), default is 1, for as few as needed. ezdxf.math.safe_normal_vector(vertices: Sequence[Vec3]) -> Vec3 Safe function to detect the normal vector for a face or polygon defined by 3 or more vertices. ezdxf.math.spherical_envelope(points: Sequence[Union[Sequence[float], Vec2, Vec3]]) -> Tuple[Vec3, float] Calculate the spherical envelope for the given points. Returns the centroid (a.k.a. geometric center) and the radius of the enclosing sphere. NOTE: The result does not represent the minimal bounding sphere! New in version 0.18. ezdxf.math.split_bezier(control_points: Sequence[T], t: float) -> Tuple[List[T], List[T]] Split Bèzier curves at parameter t by de Casteljau’s algorithm (source: pomax-1). Returns the control points for two new Bèzier curves of the same degree and type as the input curve. Parameters • control_points – of the Bèzier curve as Vec2 or Vec3 objects. Requires 3 points for a quadratic curve, 4 points for a cubic curve , … • t – parameter where to split the curve in the range [0, 1] New in version 0.17.2. ezdxf.math.split_polygon_by_plane(polygon: Iterable[Vec3], plane: Plane, *, coplanar=True, abs_tol=1e-09) -> Tuple[Sequence[Vec3], Sequence[Vec3]] Split a convex polygon by the given plane if needed. Returns a tuple of front- and back vertices (front, back). Returns also coplanar polygons if the argument coplanar is True, the coplanar vertices goes into either front or back depending on their orientation with respect to this plane. New in version 0.18. ezdxf.math.subdivide_face(face: Sequence[Union[Vec2, Vec3]], quads: bool = True) -> Iterable[Tuple[Vec3, ...]] Yields new subdivided faces. Creates new faces from subdivided edges and the face midpoint by linear interpolation. Parameters • face – a sequence of vertices, Vec2 and Vec3 objects supported. • quads – create quad faces if True else create triangles ezdxf.math.subdivide_ngons(faces: Iterable[Sequence[Union[Vec2, Vec3]]], max_vertex_count=4) -> Iterable[Sequence[Vec3]] Yields only triangles or quad faces, subdivides ngons into triangles. Parameters • faces – iterable of faces as sequence of Vec2 and Vec3 objects • max_vertex_count – subdivide only ngons with more vertices Transformation Classes OCS Class class ezdxf.math.OCS(extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0)) Establish an OCS for a given extrusion vector. Parameters extrusion – extrusion vector. ux x-axis unit vector uy y-axis unit vector uz z-axis unit vector from_wcs(point: Union[Sequence[float], Vec2, Vec3]) -> Union[Sequence[float], Vec2, Vec3] Returns OCS vector for WCS point. points_from_wcs(points: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Iterable[Union[Sequence[float], Vec2, Vec3]] Returns iterable of OCS vectors from WCS points. to_wcs(point: Union[Sequence[float], Vec2, Vec3]) -> Union[Sequence[float], Vec2, Vec3] Returns WCS vector for OCS point. points_to_wcs(points: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Iterable[Union[Sequence[float], Vec2, Vec3]] Returns iterable of WCS vectors for OCS points. render_axis(layout: BaseLayout, length: float = 1, colors: RGB = (1, 3, 5)) -> None Render axis as 3D lines into a layout. UCS Class class ezdxf.math.UCS(origin: Union[Sequence[float], Vec2, Vec3] = (0, 0, 0), ux: Optional[Union[Sequence[float], Vec2, Vec3]] = None, uy: Optional[Union[Sequence[float], Vec2, Vec3]] = None, uz: Optional[Union[Sequence[float], Vec2, Vec3]] = None) Establish an user coordinate system (UCS). The UCS is defined by the origin and two unit vectors for the x-, y- or z-axis, all axis in WCS. The missing axis is the cross product of the given axis. If x- and y-axis are None: ux = (1, 0, 0), uy = (0, 1, 0), uz = (0, 0, 1). Unit vectors don’t have to be normalized, normalization is done at initialization, this is also the reason why scaling gets lost by copying or rotating. Parameters • origin – defines the UCS origin in world coordinates • ux – defines the UCS x-axis as vector in WCS • uy – defines the UCS y-axis as vector in WCS • uz – defines the UCS z-axis as vector in WCS ux x-axis unit vector uy y-axis unit vector uz z-axis unit vector is_cartesian Returns True if cartesian coordinate system. copy() -> UCS Returns a copy of this UCS. to_wcs(point: Vec3) -> Vec3 Returns WCS point for UCS point. points_to_wcs(points: Iterable[Vec3]) -> Iterable[Vec3] Returns iterable of WCS vectors for UCS points. direction_to_wcs(vector: Vec3) -> Vec3 Returns WCS direction for UCS vector without origin adjustment. from_wcs(point: Vec3) -> Vec3 Returns UCS point for WCS point. points_from_wcs(points: Iterable[Vec3]) -> Iterable[Vec3] Returns iterable of UCS vectors from WCS points. direction_from_wcs(vector: Vec3) -> Vec3 Returns UCS vector for WCS vector without origin adjustment. to_ocs(point: Vec3) -> Vec3 Returns OCS vector for UCS point. The OCS is defined by the z-axis of the UCS. points_to_ocs(points: Iterable[Vec3]) -> Iterable[Vec3] Returns iterable of OCS vectors for UCS points. The OCS is defined by the z-axis of the UCS. Parameters points – iterable of UCS vertices to_ocs_angle_deg(angle: float) -> float Transforms angle from current UCS to the parent coordinate system (most likely the WCS) including the transformation to the OCS established by the extrusion vector UCS.uz. Parameters angle – in UCS in degrees transform(m: Matrix44) -> UCS General inplace transformation interface, returns self (floating interface). Parameters m – 4x4 transformation matrix (ezdxf.math.Matrix44) rotate(axis: Union[Sequence[float], Vec2, Vec3], angle: float) -> UCS Returns a new rotated UCS, with the same origin as the source UCS. The rotation vector is located in the origin and has WCS coordinates e.g. (0, 0, 1) is the WCS z-axis as rotation vector. Parameters • axis – arbitrary rotation axis as vector in WCS • angle – rotation angle in radians rotate_local_x(angle: float) -> UCS Returns a new rotated UCS, rotation axis is the local x-axis. Parameters angle – rotation angle in radians rotate_local_y(angle: float) -> UCS Returns a new rotated UCS, rotation axis is the local y-axis. Parameters angle – rotation angle in radians rotate_local_z(angle: float) -> UCS Returns a new rotated UCS, rotation axis is the local z-axis. Parameters angle – rotation angle in radians shift(delta: Union[Sequence[float], Vec2, Vec3]) -> UCS Shifts current UCS by delta vector and returns self. Parameters delta – shifting vector moveto(location: Union[Sequence[float], Vec2, Vec3]) -> UCS Place current UCS at new origin location and returns self. Parameters location – new origin in WCS static from_x_axis_and_point_in_xy(origin: Union[Sequence[float], Vec2, Vec3], axis: Union[Sequence[float], Vec2, Vec3], point: Union[Sequence[float], Vec2, Vec3]) -> UCS Returns an new UCS defined by the origin, the x-axis vector and an arbitrary point in the xy-plane. Parameters • origin – UCS origin as (x, y, z) tuple in WCS • axis – x-axis vector as (x, y, z) tuple in WCS • point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in WCS static from_x_axis_and_point_in_xz(origin: Union[Sequence[float], Vec2, Vec3], axis: Union[Sequence[float], Vec2, Vec3], point: Union[Sequence[float], Vec2, Vec3]) -> UCS Returns an new UCS defined by the origin, the x-axis vector and an arbitrary point in the xz-plane. Parameters • origin – UCS origin as (x, y, z) tuple in WCS • axis – x-axis vector as (x, y, z) tuple in WCS • point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple in WCS static from_y_axis_and_point_in_xy(origin: Union[Sequence[float], Vec2, Vec3], axis: Union[Sequence[float], Vec2, Vec3], point: Union[Sequence[float], Vec2, Vec3]) -> UCS Returns an new UCS defined by the origin, the y-axis vector and an arbitrary point in the xy-plane. Parameters • origin – UCS origin as (x, y, z) tuple in WCS • axis – y-axis vector as (x, y, z) tuple in WCS • point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in WCS static from_y_axis_and_point_in_yz(origin: Union[Sequence[float], Vec2, Vec3], axis: Union[Sequence[float], Vec2, Vec3], point: Union[Sequence[float], Vec2, Vec3]) -> UCS Returns an new UCS defined by the origin, the y-axis vector and an arbitrary point in the yz-plane. Parameters • origin – UCS origin as (x, y, z) tuple in WCS • axis – y-axis vector as (x, y, z) tuple in WCS • point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple in WCS static from_z_axis_and_point_in_xz(origin: Union[Sequence[float], Vec2, Vec3], axis: Union[Sequence[float], Vec2, Vec3], point: Union[Sequence[float], Vec2, Vec3]) -> UCS Returns an new UCS defined by the origin, the z-axis vector and an arbitrary point in the xz-plane. Parameters • origin – UCS origin as (x, y, z) tuple in WCS • axis – z-axis vector as (x, y, z) tuple in WCS • point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple in WCS static from_z_axis_and_point_in_yz(origin: Union[Sequence[float], Vec2, Vec3], axis: Union[Sequence[float], Vec2, Vec3], point: Union[Sequence[float], Vec2, Vec3]) -> UCS Returns an new UCS defined by the origin, the z-axis vector and an arbitrary point in the yz-plane. Parameters • origin – UCS origin as (x, y, z) tuple in WCS • axis – z-axis vector as (x, y, z) tuple in WCS • point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple in WCS render_axis(layout: BaseLayout, length: float = 1, colors: Tuple[int, int, int] = (1, 3, 5)) Render axis as 3D lines into a layout. Matrix44 class ezdxf.math.Matrix44(*args) This is a 4x4 transformation matrix. The utility functions for constructing transformations and transforming vectors and points assumes that vectors are stored as row vectors, meaning when multiplied, transformations are applied left to right (e.g. vAB transforms v by A then by B). Matrix44 initialization: • Matrix44() returns the identity matrix. • Matrix44(values) values is an iterable with the 16 components of the matrix. • Matrix44(row1, row2, row3, row4) four rows, each row with four values. __repr__() -> str Returns the representation string of the matrix: Matrix44((col0, col1, col2, col3), (...), (...), (...)) get_row(row: int) -> Tuple[float, ...] Get row as list of four float values. Parameters row – row index [0 .. 3] set_row(row: int, values: Sequence[float]) -> None Sets the values in a row. Parameters • row – row index [0 .. 3] • values – iterable of four row values get_col(col: int) -> Tuple[float, ...] Returns a column as a tuple of four floats. Parameters col – column index [0 .. 3] set_col(col: int, values: Sequence[float]) Sets the values in a column. Parameters • col – column index [0 .. 3] • values – iterable of four column values copy() -> Matrix44 Returns a copy of same type. __copy__() -> Matrix44 Returns a copy of same type. classmethod scale(sx: float, sy: Optional[float] = None, sz: Optional[float] = None) -> Matrix44 Returns a scaling transformation matrix. If sy is None, sy = sx, and if sz is None sz = sx. classmethod translate(dx: float, dy: float, dz: float) -> Matrix44 Returns a translation matrix for translation vector (dx, dy, dz). classmethod x_rotate(angle: float) -> Matrix44 Returns a rotation matrix about the x-axis. Parameters angle – rotation angle in radians classmethod y_rotate(angle: float) -> Matrix44 Returns a rotation matrix about the y-axis. Parameters angle – rotation angle in radians classmethod z_rotate(angle: float) -> Matrix44 Returns a rotation matrix about the z-axis. Parameters angle – rotation angle in radians classmethod axis_rotate(axis: UVec, angle: float) -> Matrix44 Returns a rotation matrix about an arbitrary axis. Parameters • axis – rotation axis as (x, y, z) tuple or Vec3 object • angle – rotation angle in radians classmethod xyz_rotate(angle_x: float, angle_y: float, angle_z: float) -> Matrix44 Returns a rotation matrix for rotation about each axis. Parameters • angle_x – rotation angle about x-axis in radians • angle_y – rotation angle about y-axis in radians • angle_z – rotation angle about z-axis in radians classmethod shear_xy(angle_x: float = 0, angle_y: float = 0) -> Matrix44 Returns a translation matrix for shear mapping (visually similar to slanting) in the xy-plane. Parameters • angle_x – slanting angle in x direction in radians • angle_y – slanting angle in y direction in radians classmethod perspective_projection(left: float, right: float, top: float, bottom: float, near: float, far: float) -> Matrix44 Returns a matrix for a 2D projection. Parameters • left – Coordinate of left of screen • right – Coordinate of right of screen • top – Coordinate of the top of the screen • bottom – Coordinate of the bottom of the screen • near – Coordinate of the near clipping plane • far – Coordinate of the far clipping plane classmethod perspective_projection_fov(fov: float, aspect: float, near: float, far: float) -> Matrix44 Returns a matrix for a 2D projection. Parameters • fov – The field of view (in radians) • aspect – The aspect ratio of the screen (width / height) • near – Coordinate of the near clipping plane • far – Coordinate of the far clipping plane static chain(*matrices: Matrix44) -> Matrix44 Compose a transformation matrix from one or more matrices. static ucs(ux: Vec3 = Vec3(1.0, 0.0, 0.0), uy: Vec3 = Vec3(0.0, 1.0, 0.0), uz: Vec3 = Vec3(0.0, 0.0, 1.0), origin: Vec3 = Vec3(0.0, 0.0, 0.0)) -> Matrix44 Returns a matrix for coordinate transformation from WCS to UCS. For transformation from UCS to WCS, transpose the returned matrix. Parameters • ux – x-axis for UCS as unit vector • uy – y-axis for UCS as unit vector • uz – z-axis for UCS as unit vector • origin – UCS origin as location vector __hash__() Return hash(self). __getitem__(index: Tuple[int, int]) Get (row, column) element. __setitem__(index: Tuple[int, int], value: float) Set (row, column) element. __iter__() -> Iterator[float] Iterates over all matrix values. rows() -> Iterable[Tuple[float, ...]] Iterate over rows as 4-tuples. columns() -> Iterable[Tuple[float, ...]] Iterate over columns as 4-tuples. __mul__(other: Matrix44) -> Matrix44 Returns a new matrix as result of the matrix multiplication with another matrix. __imul__(other: Matrix44) -> Matrix44 Inplace multiplication with another matrix. transform(vector: UVec) -> Vec3 Returns a transformed vertex. transform_direction(vector: UVec, normalize=False) -> Vec3 Returns a transformed direction vector without translation. transform_vertices(vectors: Iterable[UVec]) -> Iterable[Vec3] Returns an iterable of transformed vertices. transform_directions(vectors: Iterable[UVec], normalize=False) -> Iterable[Vec3] Returns an iterable of transformed direction vectors without translation. transpose() -> None Swaps the rows for columns inplace. determinant() -> float Returns determinant. inverse() -> None Calculates the inverse of the matrix. Raises ZeroDivisionError – if matrix has no inverse. property is_cartesian: bool Returns True if target coordinate system is a right handed orthogonal coordinate system. property is_orthogonal: bool Returns True if target coordinate system has orthogonal axis. Does not check for left- or right handed orientation, any orientation of the axis valid. Basic Construction Classes UVec class ezdxf.math.UVec Type alias for Union[Sequence[float], Vec2, Vec3] Vec3 class ezdxf.math.Vec3(*args) This is an immutable universal 3D vector object. This class is optimized for universality not for speed. Immutable means you can’t change (x, y, z) components after initialization: v1 = Vec3(1, 2, 3) v2 = v1 v2.z = 7 # this is not possible, raises AttributeError v2 = Vec3(v2.x, v2.y, 7) # this creates a new Vec3() object assert v1.z == 3 # and v1 remains unchanged Vec3 initialization: • Vec3(), returns Vec3(0, 0, 0) • Vec3((x, y)), returns Vec3(x, y, 0) • Vec3((x, y, z)), returns Vec3(x, y, z) • Vec3(x, y), returns Vec3(x, y, 0) • Vec3(x, y, z), returns Vec3(x, y, z) Addition, subtraction, scalar multiplication and scalar division left and right handed are supported: v = Vec3(1, 2, 3) v + (1, 2, 3) == Vec3(2, 4, 6) (1, 2, 3) + v == Vec3(2, 4, 6) v - (1, 2, 3) == Vec3(0, 0, 0) (1, 2, 3) - v == Vec3(0, 0, 0) v * 3 == Vec3(3, 6, 9) 3 * v == Vec3(3, 6, 9) Vec3(3, 6, 9) / 3 == Vec3(1, 2, 3) -Vec3(1, 2, 3) == (-1, -2, -3) Comparison between vectors and vectors or tuples is supported: Vec3(1, 2, 3) < Vec3 (2, 2, 2) (1, 2, 3) < tuple(Vec3(2, 2, 2)) # conversion necessary Vec3(1, 2, 3) == (1, 2, 3) bool(Vec3(1, 2, 3)) is True bool(Vec3(0, 0, 0)) is False x x-axis value y y-axis value z z-axis value xy Vec3 as (x, y, 0), projected on the xy-plane. xyz Vec3 as (x, y, z) tuple. vec2 Real 2D vector as Vec2 object. magnitude Length of vector. magnitude_xy Length of vector in the xy-plane. magnitude_square Square length of vector. is_null Vec3(0, 0, 0). Has a fixed absolute testing tolerance of 1e-12! Type True if all components are close to zero angle Angle between vector and x-axis in the xy-plane in radians. angle_deg Returns angle of vector and x-axis in the xy-plane in degrees. spatial_angle Spatial angle between vector and x-axis in radians. spatial_angle_deg Spatial angle between vector and x-axis in degrees. __str__() -> str Return '(x, y, z)' as string. __repr__() -> str Return 'Vec3(x, y, z)' as string. __len__() -> int Returns always 3. __hash__() -> int Returns hash value of vector, enables the usage of vector as key in set and dict. copy() -> Vec3 Returns a copy of vector as Vec3 object. __copy__() -> Vec3 Returns a copy of vector as Vec3 object. __deepcopy__(memodict: dict) -> Vec3 copy.deepcopy() support. __getitem__(index: int) -> float Support for indexing: • v[0] is v.x • v[1] is v.y • v[2] is v.z __iter__() -> Iterator[float] Returns iterable of x-, y- and z-axis. __abs__() -> float Returns length (magnitude) of vector. replace(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None) -> Vec3 Returns a copy of vector with replaced x-, y- and/or z-axis. classmethod generate(items: Iterable['UVec']) -> Iterable['Vec3'] Returns an iterable of Vec3 objects. classmethod list(items: Iterable['UVec']) -> List['Vec3'] Returns a list of Vec3 objects. classmethod tuple(items: Iterable['UVec']) -> Sequence['Vec3'] Returns a tuple of Vec3 objects. classmethod from_angle(angle: float, length: float = 1.0) -> Vec3 Returns a Vec3 object from angle in radians in the xy-plane, z-axis = 0. classmethod from_deg_angle(angle: float, length: float = 1.0) -> Vec3 Returns a Vec3 object from angle in degrees in the xy-plane, z-axis = 0. orthogonal(ccw: bool = True) -> Vec3 Returns orthogonal 2D vector, z-axis is unchanged. Parameters ccw – counter clockwise if True else clockwise lerp(other: UVec, factor=0.5) -> Vec3 Returns linear interpolation between self and other. Parameters • other – end point as Vec3 compatible object • factor – interpolation factor (0 = self, 1 = other, 0.5 = mid point) is_parallel(other: Vec3, *, rel_tol: float = 1e-09, abs_tol: float = 1e-12) -> bool Returns True if self and other are parallel to vectors. project(other: UVec) -> Vec3 Returns projected vector of other onto self. normalize(length: float = 1.0) -> Vec3 Returns normalized vector, optional scaled by length. reversed() -> Vec3 Returns negated vector (-self). isclose(other: UVec, *, rel_tol: float = 1e-09, abs_tol: float = 1e-12) -> bool Returns True if self is close to other. Uses math.isclose() to compare all axis. Learn more about the math.isclose() function in PEP 485. __neg__() -> Vec3 Returns negated vector (-self). __bool__() -> bool Returns True if vector is not (0, 0, 0). __eq__(other: UVec) -> bool Equal operator. Parameters other – Vec3 compatible object __lt__(other: UVec) -> bool Lower than operator. Parameters other – Vec3 compatible object __add__(other: UVec) -> Vec3 Add Vec3 operator: self + other. __radd__(other: UVec) -> Vec3 RAdd Vec3 operator: other + self. __sub__(other: UVec) -> Vec3 Sub Vec3 operator: self - other. __rsub__(other: UVec) -> Vec3 RSub Vec3 operator: other - self. __mul__(other: float) -> Vec3 Scalar Mul operator: self * other. __rmul__(other: float) -> Vec3 Scalar RMul operator: other * self. __truediv__(other: float) -> Vec3 Scalar Div operator: self / other. dot(other: UVec) -> float Dot operator: self . other Parameters other – Vec3 compatible object cross(other: UVec) -> Vec3 Dot operator: self x other Parameters other – Vec3 compatible object distance(other: UVec) -> float Returns distance between self and other vector. angle_about(base: UVec, target: UVec) -> float Returns counter clockwise angle in radians about self from base to target when projected onto the plane defined by self as the normal vector. Parameters • base – base vector, defines angle 0 • target – target vector angle_between(other: UVec) -> float Returns angle between self and other in radians. +angle is counter clockwise orientation. Parameters other – Vec3 compatible object rotate(angle: float) -> Vec3 Returns vector rotated about angle around the z-axis. Parameters angle – angle in radians rotate_deg(angle: float) -> Vec3 Returns vector rotated about angle around the z-axis. Parameters angle – angle in degrees static sum(items: Iterable['UVec']) -> Vec3 Add all vectors in items. ezdxf.math.X_AXIS Vec3(1, 0, 0) ezdxf.math.Y_AXIS Vec3(0, 1, 0) ezdxf.math.Z_AXIS Vec3(0, 0, 1) ezdxf.math.NULLVEC Vec3(0, 0, 0) Vec2 class ezdxf.math.Vec2(v=(0.0, 0.0), y=None) Vec2 represents a special 2D vector (x, y). The Vec2 class is optimized for speed and not immutable, iadd(), isub(), imul() and idiv() modifies the vector itself, the Vec3 class returns a new object. Vec2 initialization accepts float-tuples (x, y[, z]), two floats or any object providing x and y attributes like Vec2 and Vec3 objects. Parameters • v – vector object with x and y attributes/properties or a sequence of float [x, y, ...] or x-axis as float if argument y is not None • y – second float for Vec2(x, y) Vec2 implements a subset of Vec3. Plane class ezdxf.math.Plane(normal: Vec3, distance: float) Represents a plane in 3D space as normal vector and the perpendicular distance from origin. normal Normal vector of the plane. distance_from_origin The (perpendicular) distance of the plane from origin (0, 0, 0). vector Returns the location vector. classmethod from_3p(a: Vec3, b: Vec3, c: Vec3) -> Plane Returns a new plane from 3 points in space. classmethod from_vector(vector: Union[Sequence[float], Vec2, Vec3]) -> Plane Returns a new plane from the given location vector. copy() -> Plane Returns a copy of the plane. signed_distance_to(v: Vec3) -> float Returns signed distance of vertex v to plane, if distance is > 0, v is in ‘front’ of plane, in direction of the normal vector, if distance is < 0, v is at the ‘back’ of the plane, in the opposite direction of the normal vector. distance_to(v: Vec3) -> float Returns absolute (unsigned) distance of vertex v to plane. is_coplanar_vertex(v: Vec3, abs_tol=1e-09) -> bool Returns True if vertex v is coplanar, distance from plane to vertex v is 0. is_coplanar_plane(p: Plane, abs_tol=1e-09) -> bool Returns True if plane p is coplanar, normal vectors in same or opposite direction. intersect_line(start: Vec3, end: Vec3, *, coplanar=True, abs_tol=1e-09) -> Optional[Vec3] Returns the intersection point of the 3D line from start to end and this plane or None if there is no intersection. If the argument coplanar is False the start- or end point of the line are ignored as intersection points. New in version 0.18. intersect_ray(origin: Vec3, direction: Vec3) -> Optional[Vec3] Returns the intersection point of the infinite 3D ray defined by origin and the direction vector and this plane or None if there is no intersection. A coplanar ray does not intersect the plane! New in version 0.18. BoundingBox class ezdxf.math.BoundingBox(vertices: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None) 3D bounding box. Parameters vertices – iterable of (x, y, z) tuples or Vec3 objects extmin “lower left” corner of bounding box extmax “upper right” corner of bounding box property is_empty: bool Returns True if the bounding box is empty or the bounding box has a size of 0 in any or all dimensions or is undefined. Changed in version 0.18. property has_data: bool Returns True if the bonding box has known limits. property size Returns size of bounding box. property center Returns center of bounding box. inside(vertex: Union[Sequence[float], Vec2, Vec3]) -> bool Returns True if vertex is inside this bounding box. Vertices at the box border are inside! any_inside(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> bool Returns True if any vertex is inside this bounding box. Vertices at the box border are inside! all_inside(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> bool Returns True if all vertices are inside this bounding box. Vertices at the box border are inside! has_intersection(other: AbstractBoundingBox) -> bool Returns True if this bounding box intersects with other but does not include touching bounding boxes, see also has_overlap(): bbox1 = BoundingBox([(0, 0, 0), (1, 1, 1)]) bbox2 = BoundingBox([(1, 1, 1), (2, 2, 2)]) assert bbox1.has_intersection(bbox2) is False has_overlap(other: AbstractBoundingBox) -> bool Returns True if this bounding box intersects with other but in contrast to has_intersection() includes touching bounding boxes too: bbox1 = BoundingBox([(0, 0, 0), (1, 1, 1)]) bbox2 = BoundingBox([(1, 1, 1), (2, 2, 2)]) assert bbox1.has_overlap(bbox2) is True contains(other: AbstractBoundingBox) -> bool Returns True if the other bounding box is completely inside of this bounding box. New in version 0.17.2. extend(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> None Extend bounds by vertices. Parameters vertices – iterable of vertices union(other: AbstractBoundingBox) Returns a new bounding box as union of this and other bounding box. intersection(other: AbstractBoundingBox) -> BoundingBox Returns the bounding box of the intersection cube of both 3D bounding boxes. Returns an empty bounding box if the intersection volume is 0. rect_vertices() -> Tuple[Vec2, ...] Returns the corners of the bounding box in the xy-plane as Vec2 objects. cube_vertices() -> Tuple[Vec3, ...] Returns the 3D corners of the bounding box as Vec3 objects. grow(value: float) -> None Grow or shrink the bounding box by an uniform value in x, y and z-axis. A negative value shrinks the bounding box. Raises ValueError for shrinking the size of the bounding box to zero or below in any dimension. BoundingBox2d class ezdxf.math.BoundingBox2d(vertices: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None) Optimized 2D bounding box. Parameters vertices – iterable of (x, y[, z]) tuples or Vec3 objects extmin “lower left” corner of bounding box extmax “upper right” corner of bounding box property is_empty: bool Returns True if the bounding box is empty. The bounding box has a size of 0 in any or all dimensions or is undefined. property has_data: bool Returns True if the bonding box has known limits. property size Returns size of bounding box. property center Returns center of bounding box. inside(vertex: Union[Sequence[float], Vec2, Vec3]) -> bool Returns True if vertex is inside this bounding box. Vertices at the box border are inside! any_inside(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> bool Returns True if any vertex is inside this bounding box. Vertices at the box border are inside! all_inside(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> bool Returns True if all vertices are inside this bounding box. Vertices at the box border are inside! has_intersection(other: AbstractBoundingBox) -> bool Returns True if this bounding box intersects with other but does not include touching bounding boxes, see also has_overlap(): bbox1 = BoundingBox2d([(0, 0), (1, 1)]) bbox2 = BoundingBox2d([(1, 1), (2, 2)]) assert bbox1.has_intersection(bbox2) is False has_overlap(other: AbstractBoundingBox) -> bool Returns True if this bounding box intersects with other but in contrast to has_intersection() includes touching bounding boxes too: bbox1 = BoundingBox2d([(0, 0), (1, 1)]) bbox2 = BoundingBox2d([(1, 1), (2, 2)]) assert bbox1.has_overlap(bbox2) is True New in version 0.17.2. contains(other: AbstractBoundingBox) -> bool Returns True if the other bounding box is completely inside of this bounding box. New in version 0.17.2. extend(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> None Extend bounds by vertices. Parameters vertices – iterable of vertices union(other: AbstractBoundingBox) Returns a new bounding box as union of this and other bounding box. intersection(other: AbstractBoundingBox) -> BoundingBox2d Returns the bounding box of the intersection rectangle of both 2D bounding boxes. Returns an empty bounding box if the intersection area is 0. rect_vertices() -> Tuple[Vec2, ...] Returns the corners of the bounding box in the xy-plane as Vec2 objects. ConstructionRay class ezdxf.math.ConstructionRay(p1: Union[Sequence[float], Vec2, Vec3], p2: Optional[Union[Sequence[float], Vec2, Vec3]] = None, angle: Optional[float] = None) Infinite 2D construction ray as immutable object. Parameters • p1 – definition point 1 • p2 – ray direction as 2nd point or None • angle – ray direction as angle in radians or None location Location vector as Vec2. direction Direction vector as Vec2. slope Slope of ray or None if vertical. angle Angle between x-axis and ray in radians. angle_deg Angle between x-axis and ray in degrees. is_vertical True if ray is vertical (parallel to y-axis). is_horizontal True if ray is horizontal (parallel to x-axis). __str__() Return str(self). is_parallel(other: ConstructionRay) -> bool Returns True if rays are parallel. intersect(other: ConstructionRay) -> Vec2 Returns the intersection point as (x, y) tuple of self and other. Raises ParallelRaysError – if rays are parallel orthogonal(location: Union[Sequence[float], Vec2, Vec3]) -> ConstructionRay Returns orthogonal ray at location. bisectrix(other: ConstructionRay) -> ConstructionRay Bisectrix between self and other. yof(x: float) -> float Returns y-value of ray for x location. Raises ArithmeticError – for vertical rays xof(y: float) -> float Returns x-value of ray for y location. Raises ArithmeticError – for horizontal rays ConstructionLine class ezdxf.math.ConstructionLine(start: Union[Sequence[float], Vec2, Vec3], end: Union[Sequence[float], Vec2, Vec3]) 2D ConstructionLine is similar to ConstructionRay, but has a start- and endpoint. The direction of line goes from start- to endpoint, “left of line” is always in relation to this line direction. Parameters • start – start point of line as Vec2 compatible object • end – end point of line as Vec2 compatible object start start point as Vec2 end end point as Vec2 bounding_box bounding box of line as BoundingBox2d object. ray collinear ConstructionRay. is_vertical True if line is vertical. is_horizontal True if line is horizontal. __str__() Return str(self). translate(dx: float, dy: float) -> None Move line about dx in x-axis and about dy in y-axis. Parameters • dx – translation in x-axis • dy – translation in y-axis length() -> float Returns length of line. midpoint() -> Vec2 Returns mid point of line. inside_bounding_box(point: Union[Sequence[float], Vec2, Vec3]) -> bool Returns True if point is inside of line bounding box. intersect(other: ConstructionLine, abs_tol: float = 1e-10) -> Optional[Vec2] Returns the intersection point of to lines or None if they have no intersection point. Parameters • other – other ConstructionLine • abs_tol – tolerance for distance check has_intersection(other: ConstructionLine, abs_tol: float = 1e-10) -> bool Returns True if has intersection with other line. is_point_left_of_line(point: Union[Sequence[float], Vec2, Vec3], colinear=False) -> bool Returns True if point is left of construction line in relation to the line direction from start to end. If colinear is True, a colinear point is also left of the line. ConstructionCircle class ezdxf.math.ConstructionCircle(center: Union[Sequence[float], Vec2, Vec3], radius: float = 1.0) Circle construction tool. Parameters • center – center point as Vec2 compatible object • radius – circle radius > 0 center center point as Vec2 radius radius as float bounding_box 2D bounding box of circle as BoundingBox2d object. static from_3p(p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3], p3: Union[Sequence[float], Vec2, Vec3]) -> ConstructionCircle Creates a circle from three points, all points have to be compatible to Vec2 class. __str__() -> str Returns string representation of circle “ConstructionCircle(center, radius)”. translate(dx: float, dy: float) -> None Move circle about dx in x-axis and about dy in y-axis. Parameters • dx – translation in x-axis • dy – translation in y-axis point_at(angle: float) -> Vec2 Returns point on circle at angle as Vec2 object. Parameters angle – angle in radians, angle goes counter clockwise around the z-axis, x-axis = 0 deg. vertices(angles: Iterable[float]) -> Iterable[Vec2] Yields vertices of the circle for iterable angles. Parameters angles – iterable of angles as radians, angle goes counter clockwise around the z-axis, x-axis = 0 deg. New in version 0.17.1. flattening(sagitta: float) -> Iterator[Vec2] Approximate the circle by vertices, argument sagitta is the max. distance from the center of an arc segment to the center of its chord. Returns a closed polygon where the start vertex is coincident with the end vertex! New in version 0.17.1. inside(point: Union[Sequence[float], Vec2, Vec3]) -> bool Returns True if point is inside circle. tangent(angle: float) -> ConstructionRay Returns tangent to circle at angle as ConstructionRay object. Parameters angle – angle in radians intersect_ray(ray: ConstructionRay, abs_tol: float = 1e-10) -> Sequence[Vec2] Returns intersection points of circle and ray as sequence of Vec2 objects. Parameters • ray – intersection ray • abs_tol – absolute tolerance for tests (e.g. test for tangents) Returns tuple of Vec2 objects ┌───────────┬────────────────────────────────┐ │tuple size │ Description │ ├───────────┼────────────────────────────────┤ │0 │ no intersection │ ├───────────┼────────────────────────────────┤ │1 │ ray is a tangent to circle │ ├───────────┼────────────────────────────────┤ │2 │ ray intersects with the circle │ └───────────┴────────────────────────────────┘ intersect_line(line: ConstructionLine, abs_tol: float = 1e-10) -> Sequence[Vec2] Returns intersection points of circle and line as sequence of Vec2 objects. Parameters • line – intersection line • abs_tol – absolute tolerance for tests (e.g. test for tangents) Returns tuple of Vec2 objects ┌───────────┬──────────────────────────────────┐ │tuple size │ Description │ ├───────────┼──────────────────────────────────┤ │0 │ no intersection │ ├───────────┼──────────────────────────────────┤ │1 │ line intersects or touches the │ │ │ circle at one point │ ├───────────┼──────────────────────────────────┤ │2 │ line intersects the circle at │ │ │ two points │ └───────────┴──────────────────────────────────┘ New in version 0.17.1. intersect_circle(other: ConstructionCircle, abs_tol: float = 1e-10) -> Sequence[‐ Vec2] Returns intersection points of two circles as sequence of Vec2 objects. Parameters • other – intersection circle • abs_tol – absolute tolerance for tests Returns tuple of Vec2 objects ┌───────────┬──────────────────────────────────┐ │tuple size │ Description │ ├───────────┼──────────────────────────────────┤ │0 │ no intersection │ ├───────────┼──────────────────────────────────┤ │1 │ circle touches the other circle │ │ │ at one point │ ├───────────┼──────────────────────────────────┤ │2 │ circle intersects with the other │ │ │ circle │ └───────────┴──────────────────────────────────┘ ConstructionArc class ezdxf.math.ConstructionArc(center: Union[Sequence[float], Vec2, Vec3] = (0, 0), radius: float = 1.0, start_angle: float = 0.0, end_angle: float = 360.0, is_counter_clockwise: bool = True) This is a helper class to create parameters for the DXF Arc class. ConstructionArc represents a 2D arc in the xy-plane, use an UCS to place arc in 3D space, see method add_to_layout(). Implements the 2D transformation tools: translate(), scale_uniform() and rotate_z() Parameters • center – center point as Vec2 compatible object • radius – radius • start_angle – start angle in degrees • end_angle – end angle in degrees • is_counter_clockwise – swaps start- and end angle if False center center point as Vec2 radius radius as float start_angle start angle in degrees end_angle end angle in degrees angle_span Returns angle span of arc from start- to end param. start_angle_rad Returns the start angle in radians. end_angle_rad Returns the end angle in radians. start_point start point of arc as Vec2. end_point end point of arc as Vec2. bounding_box bounding box of arc as BoundingBox2d. angles(num: int) -> Iterable[float] Returns num angles from start- to end angle in degrees in counter-clockwise order. All angles are normalized in the range from [0, 360). vertices(a: Iterable[float]) -> Iterable[Vec2] Yields vertices on arc for angles in iterable a in WCS as location vectors. Parameters a – angles in the range from 0 to 360 in degrees, arc goes counter clockwise around the z-axis, WCS x-axis = 0 deg. tangents(a: Iterable[float]) -> Iterable[Vec2] Yields tangents on arc for angles in iterable a in WCS as direction vectors. Parameters a – angles in the range from 0 to 360 in degrees, arc goes counter-clockwise around the z-axis, WCS x-axis = 0 deg. translate(dx: float, dy: float) -> ConstructionArc Move arc about dx in x-axis and about dy in y-axis, returns self (floating interface). Parameters • dx – translation in x-axis • dy – translation in y-axis scale_uniform(s: float) -> ConstructionArc Scale arc inplace uniform about s in x- and y-axis, returns self (floating interface). rotate_z(angle: float) -> ConstructionArc Rotate arc inplace about z-axis, returns self (floating interface). Parameters angle – rotation angle in degrees classmethod from_2p_angle(start_point: Union[Sequence[float], Vec2, Vec3], end_point: Union[Sequence[float], Vec2, Vec3], angle: float, ccw: bool = True) -> ConstructionArc Create arc from two points and enclosing angle. Additional precondition: arc goes by default in counter-clockwise orientation from start_point to end_point, can be changed by ccw = False. Parameters • start_point – start point as Vec2 compatible object • end_point – end point as Vec2 compatible object • angle – enclosing angle in degrees • ccw – counter-clockwise direction if True classmethod from_2p_radius(start_point: Union[Sequence[float], Vec2, Vec3], end_point: Union[Sequence[float], Vec2, Vec3], radius: float, ccw: bool = True, center_is_left: bool = True) -> ConstructionArc Create arc from two points and arc radius. Additional precondition: arc goes by default in counter-clockwise orientation from start_point to end_point can be changed by ccw = False. The parameter center_is_left defines if the center of the arc is left or right of the line from start_point to end_point. Parameter ccw = False swaps start- and end point, which also inverts the meaning of center_is_left. Parameters • start_point – start point as Vec2 compatible object • end_point – end point as Vec2 compatible object • radius – arc radius • ccw – counter-clockwise direction if True • center_is_left – center point of arc is left of line from start- to end point if True classmethod from_3p(start_point: Union[Sequence[float], Vec2, Vec3], end_point: Union[Sequence[float], Vec2, Vec3], def_point: Union[Sequence[float], Vec2, Vec3], ccw: bool = True) -> ConstructionArc Create arc from three points. Additional precondition: arc goes in counter-clockwise orientation from start_point to end_point. Parameters • start_point – start point as Vec2 compatible object • end_point – end point as Vec2 compatible object • def_point – additional definition point as Vec2 compatible object • ccw – counter-clockwise direction if True add_to_layout(layout: BaseLayout, ucs: UCS = None, dxfattribs=None) -> Arc Add arc as DXF Arc entity to a layout. Supports 3D arcs by using an UCS. An ConstructionArc is always defined in the xy-plane, but by using an arbitrary UCS, the arc can be placed in 3D space, automatically OCS transformation included. Parameters • layout – destination layout as BaseLayout object • ucs – place arc in 3D space by UCS object • dxfattribs – additional DXF attributes for the ARC entity intersect_ray(ray: ConstructionRay, abs_tol: float = 1e-10) -> Sequence[Vec2] Returns intersection points of arc and ray as sequence of Vec2 objects. Parameters • ray – intersection ray • abs_tol – absolute tolerance for tests (e.g. test for tangents) Returns tuple of Vec2 objects ┌───────────┬──────────────────────────────────┐ │tuple size │ Description │ ├───────────┼──────────────────────────────────┤ │0 │ no intersection │ ├───────────┼──────────────────────────────────┤ │1 │ line intersects or touches the │ │ │ arc at one point │ ├───────────┼──────────────────────────────────┤ │2 │ line intersects the arc at two │ │ │ points │ └───────────┴──────────────────────────────────┘ New in version 0.17.1. intersect_line(line: ConstructionLine, abs_tol: float = 1e-10) -> Sequence[Vec2] Returns intersection points of arc and line as sequence of Vec2 objects. Parameters • line – intersection line • abs_tol – absolute tolerance for tests (e.g. test for tangents) Returns tuple of Vec2 objects ┌───────────┬──────────────────────────────────┐ │tuple size │ Description │ ├───────────┼──────────────────────────────────┤ │0 │ no intersection │ ├───────────┼──────────────────────────────────┤ │1 │ line intersects or touches the │ │ │ arc at one point │ ├───────────┼──────────────────────────────────┤ │2 │ line intersects the arc at two │ │ │ points │ └───────────┴──────────────────────────────────┘ New in version 0.17.1. intersect_circle(circle: ConstructionCircle, abs_tol: float = 1e-10) -> Sequence[‐ Vec2] Returns intersection points of arc and circle as sequence of Vec2 objects. Parameters • circle – intersection circle • abs_tol – absolute tolerance for tests Returns tuple of Vec2 objects ┌───────────┬──────────────────────────────────┐ │tuple size │ Description │ ├───────────┼──────────────────────────────────┤ │0 │ no intersection │ ├───────────┼──────────────────────────────────┤ │1 │ circle intersects or touches the │ │ │ arc at one point │ ├───────────┼──────────────────────────────────┤ │2 │ circle intersects the arc at two │ │ │ points │ └───────────┴──────────────────────────────────┘ New in version 0.17.1. intersect_arc(other: ConstructionArc, abs_tol: float = 1e-10) -> Sequence[Vec2] Returns intersection points of two arcs as sequence of Vec2 objects. Parameters • other – other intersection arc • abs_tol – absolute tolerance for tests Returns tuple of Vec2 objects ┌───────────┬──────────────────────────────────┐ │tuple size │ Description │ ├───────────┼──────────────────────────────────┤ │0 │ no intersection │ ├───────────┼──────────────────────────────────┤ │1 │ other arc intersects or touches │ │ │ the arc at one point │ ├───────────┼──────────────────────────────────┤ │2 │ other arc intersects the arc at │ │ │ two points │ └───────────┴──────────────────────────────────┘ New in version 0.17.1. ConstructionEllipse class ezdxf.math.ConstructionEllipse(center: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), major_axis: Union[Sequence[float], Vec2, Vec3] = Vec3(1.0, 0.0, 0.0), extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0), ratio: float = 1, start_param: float = 0, end_param: float = 6.283185307179586, ccw: bool = True) This is a helper class to create parameters for 3D ellipses. Parameters • center – 3D center point • major_axis – major axis as 3D vector • extrusion – normal vector of ellipse plane • ratio – ratio of minor axis to major axis • start_param – start param in radians • end_param – end param in radians • ccw – is counter clockwise flag - swaps start- and end param if False center center point as Vec3 major_axis major axis as Vec3 minor_axis minor axis as Vec3, automatically calculated from major_axis and extrusion. extrusion extrusion vector (normal of ellipse plane) as Vec3 ratio ratio of minor axis to major axis (float) start start param in radians (float) end end param in radians (float) start_point Returns start point of ellipse as Vec3. end_point Returns end point of ellipse as Vec3. property param_span: float Returns the counter clockwise params span from start- to end param, see also ezdxf.math.ellipse_param_span() for more information. to_ocs() -> ConstructionEllipse Returns ellipse parameters as OCS representation. OCS elevation is stored in center.z. params(num: int) -> Iterable[float] Returns num params from start- to end param in counter clockwise order. All params are normalized in the range from [0, 2π). vertices(params: Iterable[float]) -> Iterable[Vec3] Yields vertices on ellipse for iterable params in WCS. Parameters params – param values in the range from [0, 2π) in radians, param goes counter clockwise around the extrusion vector, major_axis = local x-axis = 0 rad. flattening(distance: float, segments: int = 4) -> Iterable[Vec3] Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Returns a closed polygon for a full ellipse: start vertex == end vertex. Parameters • distance – maximum distance from the projected curve point onto the segment chord. • segments – minimum segment count New in version 0.15. params_from_vertices(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Iterable[float] Yields ellipse params for all given vertices. The vertex don’t has to be exact on the ellipse curve or in the range from start- to end param or even in the ellipse plane. Param is calculated from the intersection point of the ray projected on the ellipse plane from the center of the ellipse through the vertex. WARNING: An input for start- and end vertex at param 0 and 2π return unpredictable results because of floating point inaccuracy, sometimes 0 and sometimes 2π. dxfattribs() -> Dict Returns required DXF attributes to build an ELLIPSE entity. Entity ELLIPSE has always a ratio in range from 1e-6 to 1. main_axis_points() -> Iterable[Vec3] Yields main axis points of ellipse in the range from start- to end param. classmethod from_arc(center: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), radius: float = 1, extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0), start_angle: float = 0, end_angle: float = 360, ccw: bool = True) -> ConstructionEllipse Returns ConstructionEllipse from arc or circle. Arc and Circle parameters defined in OCS. Parameters • center – center in OCS • radius – arc or circle radius • extrusion – OCS extrusion vector • start_angle – start angle in degrees • end_angle – end angle in degrees • ccw – arc curve goes counter clockwise from start to end if True transform(m: Matrix44) -> None Transform ellipse in place by transformation matrix m. swap_axis() -> None Swap axis and adjust start- and end parameter. add_to_layout(layout: BaseLayout, dxfattribs=None) -> Ellipse Add ellipse as DXF Ellipse entity to a layout. Parameters • layout – destination layout as BaseLayout object • dxfattribs – additional DXF attributes for the ELLIPSE entity ConstructionBox class ezdxf.math.ConstructionBox(center: Union[Sequence[float], Vec2, Vec3] = (0, 0), width: float = 1, height: float = 1, angle: float = 0) Helper class to create rectangles. Parameters • center – center of rectangle • width – width of rectangle • height – height of rectangle • angle – angle of rectangle in degrees center box center width box width height box height angle rotation angle in degrees corners box corners as sequence of Vec2 objects. bounding_box BoundingBox2d incircle_radius incircle radius circumcircle_radius circum circle radius __iter__() -> Iterable[Vec2] Iterable of box corners as Vec2 objects. __getitem__(corner) -> Vec2 Get corner by index corner, list like slicing is supported. __repr__() -> str Returns string representation of box as ConstructionBox(center, width, height, angle) classmethod from_points(p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3]) -> ConstructionBox Creates a box from two opposite corners, box sides are parallel to x- and y-axis. Parameters • p1 – first corner as Vec2 compatible object • p2 – second corner as Vec2 compatible object translate(dx: float, dy: float) -> None Move box about dx in x-axis and about dy in y-axis. Parameters • dx – translation in x-axis • dy – translation in y-axis expand(dw: float, dh: float) -> None Expand box: dw expand width, dh expand height. scale(sw: float, sh: float) -> None Scale box: sw scales width, sh scales height. rotate(angle: float) -> None Rotate box by angle in degrees. is_inside(point: Union[Sequence[float], Vec2, Vec3]) -> bool Returns True if point is inside of box. is_any_corner_inside(other: ConstructionBox) -> bool Returns True if any corner of other box is inside this box. is_overlapping(other: ConstructionBox) -> bool Returns True if this box and other box do overlap. border_lines() -> Sequence[ConstructionLine] Returns borderlines of box as sequence of ConstructionLine. intersect(line: ConstructionLine) -> List[Vec2] Returns 0, 1 or 2 intersection points between line and box borderlines. Parameters line – line to intersect with borderlines Returns list of intersection points ┌──────────┬────────────────────────────────┐ │list size │ Description │ ├──────────┼────────────────────────────────┤ │0 │ no intersection │ ├──────────┼────────────────────────────────┤ │1 │ line touches box at one corner │ ├──────────┼────────────────────────────────┤ │2 │ line intersects with box │ └──────────┴────────────────────────────────┘ ConstructionPolyline class ezdxf.math.ConstructionPolyline(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]], close: bool = False, rel_tol: float = 1e-09) A polyline construction tool to measure, interpolate and divide anything that can be approximated or flattened into vertices. This is an immutable data structure which supports the Sequence interface. Parameters • vertices – iterable of polyline vertices • close – True to close the polyline (first vertex == last vertex) • rel_tol – relative tolerance for floating point comparisons Example to measure or divide a SPLINE entity: import ezdxf from ezdxf.math import ConstructionPolyline doc = ezdxf.readfile("your.dxf") msp = doc.modelspace() spline = msp.query("SPLINE").first if spline is not None: polyline = ConstructionPolyline(spline.flattening(0.01)) print(f"Entity {spline} has an approximated length of {polyline.length}") # get dividing points with a distance of 1.0 drawing unit to each other points = list(polyline.divide_by_length(1.0)) New in version 0.18. property length: float Returns the overall length of the polyline. property is_closed: bool Returns True if the polyline is closed (first vertex == last vertex). data(index: int) -> Tuple[float, float, Vec3] Returns the tuple (distance from start, distance from previous vertex, vertex). All distances measured along the polyline. index_at(distance: float) -> int Returns the data index of the exact or next data entry for the given distance. Returns the index of last entry if distance > length. vertex_at(distance: float) -> Vec3 Returns the interpolated vertex at the given distance from the start of the polyline. divide(count: int) -> Iterator[Vec3] Returns count interpolated vertices along the polyline. Argument count has to be greater than 2 and the start- and end vertices are always included. divide_by_length(length: float, force_last: bool = False) -> Iterator[Vec3] Returns interpolated vertices along the polyline. Each vertex has a fix distance length from its predecessor. Yields the last vertex if argument force_last is True even if the last distance is not equal to length. Shape2d class ezdxf.math.Shape2d(vertices: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None) 2D geometry object as list of Vec2 objects, vertices can be moved, rotated and scaled. Parameters vertices – iterable of Vec2 compatible objects. vertices List of Vec2 objects bounding_box BoundingBox2d __len__() -> int Returns count of vertices. __getitem__(item: Union[int, slice]) -> Vec2 Get vertex by index item, supports list like slicing. append(vertex: Union[Sequence[float], Vec2, Vec3]) -> None Append single vertex. Parameters vertex – vertex as Vec2 compatible object extend(vertices: Iterable) -> None Append multiple vertices. Parameters vertices – iterable of vertices as Vec2 compatible objects translate(vector: Union[Sequence[float], Vec2, Vec3]) -> None Translate shape about vector. scale(sx: float = 1.0, sy: float = 1.0) -> None Scale shape about sx in x-axis and sy in y-axis. scale_uniform(scale: float) -> None Scale shape uniform about scale in x- and y-axis. rotate(angle: float, center: Optional[Union[Sequence[float], Vec2, Vec3]] = None) -> None Rotate shape around rotation center about angle in degrees. rotate_rad(angle: float, center: Optional[Union[Sequence[float], Vec2, Vec3]] = None) -> None Rotate shape around rotation center about angle in radians. offset(offset: float, closed: bool = False) -> Shape2d Returns a new offset shape, for more information see also ezdxf.math.offset_vertices_2d() function. Parameters • offset – line offset perpendicular to direction of shape segments defined by vertices order, offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of line segment • closed – True to handle as closed shape convex_hull() -> Shape2d Returns convex hull as new shape. Curves BSpline class ezdxf.math.BSpline(control_points: Iterable[Union[Sequence[float], Vec2, Vec3]], order: int = 4, knots: Optional[Iterable[float]] = None, weights: Optional[Iterable[float]] = None) Representation of a B-spline curve. The default configuration of the knot vector is a uniform open knot vector (“clamped”). Factory functions: • fit_points_to_cad_cv() • fit_points_to_cubic_bezier() • open_uniform_bspline() • closed_uniform_bspline() • rational_bspline_from_arc() • rational_bspline_from_ellipse() • global_bspline_interpolation() • local_cubic_bspline_interpolation() Parameters • control_points – iterable of control points as Vec3 compatible objects • order – spline order (degree + 1) • knots – iterable of knot values • weights – iterable of weight values property control_points: Sequence[ezdxf.math._vector.Vec3] Control points as tuple of Vec3 property count: int Count of control points, (n + 1 in text book notation). property order: int Order (k) of B-spline = p + 1 property degree: int Degree (p) of B-spline = order - 1 property max_t: float Biggest knot value. property is_rational Returns True if curve is a rational B-spline. (has weights) property is_clamped Returns True if curve is a clamped (open) B-spline. knots() -> Tuple[float, ...] Returns a tuple of knot values as floats, the knot vector always has order + count values (n + p + 2 in text book notation). weights() -> Tuple[float, ...] Returns a tuple of weights values as floats, one for each control point or an empty tuple. params(segments: int) -> Iterable[float] Yield evenly spaced parameters for given segment count. reverse() -> BSpline Returns a new BSpline object with reversed control point order. transform(m: Matrix44) -> BSpline Returns a new BSpline object transformed by a Matrix44 transformation matrix. approximate(segments: int = 20) -> Iterable[Vec3] Approximates curve by vertices as Vec3 objects, vertices count = segments + 1. flattening(distance: float, segments: int = 4) -> Iterator[Vec3] Adaptive recursive flattening. The argument segments is the minimum count of approximation segments between two knots, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Parameters • distance – maximum distance from the projected curve point onto the segment chord. • segments – minimum segment count between two knots New in version 0.15. point(t: float) -> Vec3 Returns point for parameter t. Parameters t – parameter in range [0, max_t] points(t: Iterable[float]) -> Iterable[Vec3] Yields points for parameter vector t. Parameters t – parameters in range [0, max_t] derivative(t: float, n: int = 2) -> List[Vec3] Return point and derivatives up to n <= degree for parameter t. e.g. n=1 returns point and 1st derivative. Parameters • t – parameter in range [0, max_t] • n – compute all derivatives up to n <= degree Returns n+1 values as Vec3 objects derivatives(t: Iterable[float], n: int = 2) -> Iterable[List[Vec3]] Yields points and derivatives up to n <= degree for parameter vector t. e.g. n=1 returns point and 1st derivative. Parameters • t – parameters in range [0, max_t] • n – compute all derivatives up to n <= degree Returns List of n+1 values as Vec3 objects insert_knot(t: float) -> BSpline Insert an additional knot, without altering the shape of the curve. Returns a new BSpline object. Parameters t – position of new knot 0 < t < max_t knot_refinement(u: Iterable[float]) -> BSpline Insert multiple knots, without altering the shape of the curve. Returns a new BSpline object. Parameters u – vector of new knots t and for each t: 0 < t < max_t static from_ellipse(ellipse: ConstructionEllipse) -> BSpline Returns the ellipse as BSpline of 2nd degree with as few control points as possible. static from_arc(arc: ConstructionArc) -> BSpline Returns the arc as BSpline of 2nd degree with as few control points as possible. static from_fit_points(points: Iterable[Union[Sequence[float], Vec2, Vec3]], degree=3, method='chord') -> BSpline Returns BSpline defined by fit points. static arc_approximation(arc: ConstructionArc, num: int = 16) -> BSpline Returns an arc approximation as BSpline with num control points. static ellipse_approximation(ellipse: ConstructionEllipse, num: int = 16) -> BSpline Returns an ellipse approximation as BSpline with num control points. bezier_decomposition() -> Iterable[List[Vec3]] Decompose a non-rational B-spline into multiple Bézier curves. This is the preferred method to represent the most common non-rational B-splines of 3rd degree by cubic Bézier curves, which are often supported by render backends. Returns Yields control points of Bézier curves, each Bézier segment has degree+1 control points e.g. B-spline of 3rd degree yields cubic Bézier curves of 4 control points. cubic_bezier_approximation(level: int = 3, segments: int = None) -> Iterable['Bezier4P'] Approximate arbitrary B-splines (degree != 3 and/or rational) by multiple segments of cubic Bézier curves. The choice of cubic Bézier curves is based on the widely support of this curves by many render backends. For cubic non-rational B-splines, which is maybe the most common used B-spline, is bezier_decomposition() the better choice. 1. approximation by level: an educated guess, the first level of approximation segments is based on the count of control points and their distribution along the B-spline, every additional level is a subdivision of the previous level. E.g. a B-Spline of 8 control points has 7 segments at the first level, 14 at the 2nd level and 28 at the 3rd level, a level >= 3 is recommended. 2. approximation by a given count of evenly distributed approximation segments. Parameters • level – subdivision level of approximation segments (ignored if argument segments is not None) • segments – absolute count of approximation segments Returns Yields control points of cubic Bézier curves as Bezier4P objects Bezier class ezdxf.math.Bezier(defpoints: Iterable[Union[Sequence[float], Vec2, Vec3]]) A Bézier curve is a parametric curve used in computer graphics and related fields. Bézier curves are used to model smooth curves that can be scaled indefinitely. “Paths”, as they are commonly referred to in image manipulation programs, are combinations of linked Bézier curves. Paths are not bound by the limits of rasterized images and are intuitive to modify. (Source: Wikipedia) This is a generic implementation which works with any count of definition points greater than 2, but it is a simple and slow implementation. For more performance look at the specialized Bezier4P class. Objects are immutable. Parameters defpoints – iterable of definition points as Vec3 compatible objects. control_points Control points as tuple of Vec3 objects. params(segments: int) -> Iterable[float] Yield evenly spaced parameters from 0 to 1 for given segment count. reverse() -> Bezier Returns a new Bèzier-curve with reversed control point order. transform(m: Matrix44) -> Bezier General transformation interface, returns a new Bezier curve. Parameters m – 4x4 transformation matrix (ezdxf.math.Matrix44) approximate(segments: int = 20) -> Iterable[Vec3] Approximates curve by vertices as Vec3 objects, vertices count = segments + 1. flattening(distance: float, segments: int = 4) -> Iterable[Vec3] Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Parameters • distance – maximum distance from the center of the curve (Cn) to the center of the linear (C1) curve between two approximation points to determine if a segment should be subdivided. • segments – minimum segment count New in version 0.15. point(t: float) -> Vec3 Returns a point for parameter t in range [0, 1] as Vec3 object. points(t: Iterable[float]) -> Iterable[Vec3] Yields multiple points for parameters in vector t as Vec3 objects. Parameters have to be in range [0, 1]. derivative(t: float) -> Tuple[Vec3, Vec3, Vec3] Returns (point, 1st derivative, 2nd derivative) tuple for parameter t in range [0, 1] as Vec3 objects. derivatives(t: Iterable[float]) -> Iterable[Tuple[Vec3, Vec3, Vec3]] Returns multiple (point, 1st derivative, 2nd derivative) tuples for parameter vector t as Vec3 objects. Parameters in range [0, 1] Bezier4P class ezdxf.math.Bezier4P(defpoints: Sequence[UVec]) control_points Control points as tuple of Vec3 or Vec2 objects. reverse() -> Bezier4P Returns a new Bèzier-curve with reversed control point order. transform(m: Matrix44) -> Bezier4P General transformation interface, returns a new Bezier4p curve and it is always a 3D curve. Parameters m – 4x4 transformation matrix (ezdxf.math.Matrix44) New in version 0.14. approximate(segments: int) -> Iterable[AnyVec] Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y[, z]) tuples. Parameters segments – count of segments for approximation flattening(distance: float, segments: int = 4) -> Iterable[Union[Vec2, Vec3]] Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Parameters • distance – maximum distance from the center of the cubic (C3) curve to the center of the linear (C1) curve between two approximation points to determine if a segment should be subdivided. • segments – minimum segment count New in version 0.15. approximated_length(segments: int = 128) -> float Returns estimated length of Bèzier-curve as approximation by line segments. point(t: float) -> AnyVec Returns point for location t` at the Bèzier-curve. Parameters t – curve position in the range [0, 1] tangent(t: float) -> AnyVec Returns direction vector of tangent for location t at the Bèzier-curve. Parameters t – curve position in the range [0, 1] Bezier3P class ezdxf.math.Bezier3P(defpoints: Sequence[UVec]) control_points Control points as tuple of Vec3 or Vec2 objects. reverse() -> Bezier3P Returns a new Bèzier-curve with reversed control point order. transform(m: Matrix44) -> Bezier3P General transformation interface, returns a new Bezier3P curve and it is always a 3D curve. Parameters m – 4x4 transformation matrix (ezdxf.math.Matrix44) approximate(segments: int) -> Iterable['AnyVec'] Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y[, z]) tuples. Parameters segments – count of segments for approximation flattening(distance: float, segments: int = 4) -> Iterable['AnyVec'] Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Parameters • distance – maximum distance from the center of the quadratic (C2) curve to the center of the linear (C1) curve between two approximation points to determine if a segment should be subdivided. • segments – minimum segment count approximated_length(segments: int = 128) -> float Returns estimated length of Bèzier-curve as approximation by line segments. point(t: float) -> AnyVec Returns point for location t` at the Bèzier-curve. Parameters t – curve position in the range [0, 1] tangent(t: float) -> AnyVec Returns direction vector of tangent for location t at the Bèzier-curve. Parameters t – curve position in the range [0, 1] ApproxParamT class ezdxf.math.ApproxParamT(curve, *, max_t: float = 1.0, segments: int = 100) Approximation tool for parametrized curves. • approximate parameter t for a given distance from the start of the curve • approximate the distance for a given parameter t from the start of the curve These approximations can be applied to all parametrized curves which provide a point() method, like Bezier4P, Bezier3P and BSpline. The approximation is based on equally spaced parameters from 0 to max_t for a given segment count. The flattening() method can not be used for the curve approximation, because the required parameter t is not logged by the flattening process. Parameters • curve – curve object, requires a method point() • max_t – the max. parameter value • segments – count of approximation segments New in version 0.18. property max_t: float property polyline: ezdxf.math.polyline.ConstructionPolyline param_t(distance: float) Approximate parameter t for the given distance from the start of the curve. distance(t: float) -> float Approximate the distance from the start of the curve to the point t on the curve. BezierSurface class ezdxf.math.BezierSurface(defpoints: List[List[Union[Sequence[float], Vec2, Vec3]]]) BezierSurface defines a mesh of m x n control points. This is a parametric surface, which means the m-dimension goes from 0 to 1 as parameter u and the n-dimension goes from 0 to 1 as parameter v. Parameters defpoints – matrix (list of lists) of m rows and n columns: [ [m1n1, m1n2, … ], [m2n1, m2n2, …] … ] each element is a 3D location as (x, y, z) tuple. nrows count of rows (m-dimension) ncols count of columns (n-dimension) point(u: float, v: float) -> Vec3 Returns a point for location (u, v) at the Bézier surface as (x, y, z) tuple, parameters u and v in the range of [0, 1]. approximate(usegs: int, vsegs: int) -> List[List[Vec3]] Approximate surface as grid of (x, y, z) Vec3. Parameters • usegs – count of segments in u-direction (m-dimension) • vsegs – count of segments in v-direction (n-dimension) Returns list of usegs + 1 rows, each row is a list of vsegs + 1 vertices as Vec3. EulerSpiral class ezdxf.math.EulerSpiral(curvature: float = 1.0) This class represents an euler spiral (clothoid) for curvature (Radius of curvature). This is a parametric curve, which always starts at the origin = (0, 0). Parameters curvature – radius of curvature radius(t: float) -> float Get radius of circle at distance t. tangent(t: float) -> Vec3 Get tangent at distance t as Vec3 object. distance(radius: float) -> float Get distance L from origin for radius. point(t: float) -> Vec3 Get point at distance t as Vec3. circle_center(t: float) -> Vec3 Get circle center at distance t. approximate(length: float, segments: int) -> Iterable[Vec3] Approximate curve of length with line segments. Generates segments+1 vertices as Vec3 objects. bspline(length: float, segments: int = 10, degree: int = 3, method: str = 'uniform') -> BSpline Approximate euler spiral as B-spline. Parameters • length – length of euler spiral • segments – count of fit points for B-spline calculation • degree – degree of BSpline • method – calculation method for parameter vector t Returns BSpline Clipping Clipping module: ezdxf.math.clipping ezdxf.math.clipping.greiner_hormann_union(p1: Iterable[Union[Sequence[float], Vec2, Vec3]], p2: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> List[List[Vec2]] Returns the UNION of polygon p1 | polygon p2. This algorithm works only for polygons with real intersection points and line end points on face edges are not considered as such intersection points! New in version 0.18. ezdxf.math.clipping.greiner_hormann_difference(p1: Iterable[Union[Sequence[float], Vec2, Vec3]], p2: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> List[List[Vec2]] Returns the DIFFERENCE of polygon p1 - polygon p2. This algorithm works only for polygons with real intersection points and line end points on face edges are not considered as such intersection points! New in version 0.18. ezdxf.math.clipping.greiner_hormann_intersection(p1: Iterable[Union[Sequence[float], Vec2, Vec3]], p2: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> List[List[Vec2]] Returns the INTERSECTION of polygon p1 & polygon p2. This algorithm works only for polygons with real intersection points and line end points on face edges are not considered as such intersection points! New in version 0.18. class ezdxf.math.clipping.ClippingPolygon2d(vertices: Iterable[Vec2], ccw_check=True) The clipping path is an arbitrary polygon. clip_polygon(polygon: Iterable[Vec2]) -> Sequence[Vec2] Returns the clipped polygon. clip_polyline(polyline: Iterable[Vec2]) -> Sequence[Sequence[Vec2]] Returns the parts of the clipped polyline. clip_line(start: Vec2, end: Vec2) -> Sequence[Vec2] Returns the clipped line. is_inside(point: Vec2) -> bool Returns True if point is inside the clipping polygon. class ezdxf.math.clipping.ClippingRect2d(bottom_left: Vec2, top_right: Vec2) The clipping path is a rectangle parallel to the x- and y-axis. This class will get an optimized implementation in the future. clip_polygon(polygon: Iterable[Vec2]) -> Sequence[Vec2] Returns the clipped polygon. clip_polyline(polyline: Iterable[Vec2]) -> Sequence[Sequence[Vec2]] Returns the parts of the clipped polyline. clip_line(start: Vec2, end: Vec2) -> Sequence[Vec2] Returns the clipped line. is_inside(point: Vec2) -> bool Returns True if point is inside the clipping rectangle. Clustering Clustering module: ezdxf.math.clustering ezdxf.math.clustering.average_cluster_radius(clusters: List[List[Union[Vec2, Vec3]]]) -> float Returns the average cluster radius. ezdxf.math.clustering.average_intra_cluster_distance(clusters: List[List[Union[Vec2, Vec3]]]) -> float Returns the average point-to-point intra cluster distance. ezdxf.math.clustering.dbscan(points: List[Union[Vec2, Vec3]], *, radius: float, min_points: int = 4, rtree: Optional[RTree] = None, max_node_size: int = 5) -> List[List[Union[Vec2, Vec3]]] DBSCAN clustering. https://en.wikipedia.org/wiki/DBSCAN Parameters • points – list of points to cluster • radius – radius of the dense regions • min_points – minimum number of points that needs to be within the radius for a point to be a core point (must be >= 2) • rtree – optional RTree • max_node_size – max node size for internally created RTree Returns list of clusters, each cluster is a list of points New in version 0.18. ezdxf.math.clustering.k_means(points: List[Union[Vec2, Vec3]], k: int, max_iter: int = 10) -> List[List[Union[Vec2, Vec3]]] K-means clustering. https://en.wikipedia.org/wiki/K-means_clustering Parameters • points – list of points to cluster • k – number of clusters • max_iter – max iterations Returns list of clusters, each cluster is a list of points New in version 0.18. Linear Algebra Linear algebra module for internal usage: ezdxf.math.linalg Functions ezdxf.math.linalg.gauss_jordan_solver(A: Iterable[Iterable[float]], B: Iterable[Iterable[float]]) -> Tuple[Matrix, Matrix] Solves the linear equation system given by a nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B by the Gauss-Jordan algorithm, which is the slowest of all, but it is very reliable. Returns a copy of the modified input matrix A and the result matrix x. Internally used for matrix inverse calculation. Parameters • A – matrix [[a11, a12, …, a1n], [a21, a22, …, a2n], [a21, a22, …, a2n], … [an1, an2, …, ann]] • B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]] Returns 2-tuple of Matrix objects Raises ZeroDivisionError – singular matrix ezdxf.math.linalg.gauss_jordan_inverse(A: Iterable[Iterable[float]]) -> Matrix Returns the inverse of matrix A as Matrix object. HINT: For small matrices (n<10) is this function faster than LUDecomposition(m).inverse() and as fast even if the decomposition is already done. Raises ZeroDivisionError – singular matrix ezdxf.math.linalg.gauss_vector_solver(A: Iterable[Iterable[float]], B: Iterable[float]) -> List[float] Solves the linear equation system given by a nxn Matrix A . x = B, right-hand side quantities as vector B with n elements by the Gauss-Elimination algorithm, which is faster than the Gauss-Jordan algorithm. The speed improvement is more significant for solving multiple right-hand side quantities as matrix at once. Reference implementation for error checking. Parameters • A – matrix [[a11, a12, …, a1n], [a21, a22, …, a2n], [a21, a22, …, a2n], … [an1, an2, …, ann]] • B – vector [b1, b2, …, bn] Returns vector as list of floats Raises ZeroDivisionError – singular matrix ezdxf.math.linalg.gauss_matrix_solver(A: Iterable[Iterable[float]], B: Iterable[Iterable[float]]) -> Matrix Solves the linear equation system given by a nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B by the Gauss-Elimination algorithm, which is faster than the Gauss-Jordan algorithm. Reference implementation for error checking. Parameters • A – matrix [[a11, a12, …, a1n], [a21, a22, …, a2n], [a21, a22, …, a2n], … [an1, an2, …, ann]] • B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]] Returns matrix as Matrix object Raises ZeroDivisionError – singular matrix ezdxf.math.linalg.tridiagonal_vector_solver(A: Iterable[Iterable[float]], B: Iterable[float]) -> List[float] Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side quantities as vector B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1 (c)]. Note: a0 is not used but has to be present, cn-1 is also not used and must not be present. If an ZeroDivisionError exception occurs, the equation system can possibly be solved by BandedMatrixLU(A, 1, 1).solve_vector(B) Parameters • A – diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]] [[b0, c0, 0, 0, ...], [a1, b1, c1, 0, ...], [0, a2, b2, c2, ...], ... ] • B – iterable of floats [[b1, b1, …, bn] Returns list of floats Raises ZeroDivisionError – singular matrix ezdxf.math.linalg.tridiagonal_matrix_solver(A: Iterable[Iterable[float]], B: Iterable[Iterable[float]]) -> Matrix Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1 (c)]. Note: a0 is not used but has to be present, cn-1 is also not used and must not be present. If an ZeroDivisionError exception occurs, the equation system can possibly be solved by BandedMatrixLU(A, 1, 1).solve_vector(B) Parameters • A – diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]] [[b0, c0, 0, 0, ...], [a1, b1, c1, 0, ...], [0, a2, b2, c2, ...], ... ] • B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]] Returns matrix as Matrix object Raises ZeroDivisionError – singular matrix ezdxf.math.linalg.banded_matrix(A: Matrix, check_all=True) -> Tuple[Matrix, int, int] Transform matrix A into a compact banded matrix representation. Returns compact representation as Matrix object and lower- and upper band count m1 and m2. Parameters • A – input Matrix • check_all – check all diagonals if True or abort testing after first all zero diagonal if False. ezdxf.math.linalg.detect_banded_matrix(A: Matrix, check_all=True) -> Tuple[int, int] Returns lower- and upper band count m1 and m2. Parameters • A – input Matrix • check_all – check all diagonals if True or abort testing after first all zero diagonal if False. ezdxf.math.linalg.compact_banded_matrix(A: Matrix, m1: int, m2: int) -> Matrix Returns compact banded matrix representation as Matrix object. Parameters • A – matrix to transform • m1 – lower band count, excluding main matrix diagonal • m2 – upper band count, excluding main matrix diagonal ezdxf.math.linalg.freeze_matrix(A: Union[Iterable[Iterable[float]], Matrix]) -> Matrix Returns a frozen matrix, all data is stored in immutable tuples. Matrix Class class ezdxf.math.linalg.Matrix(items: Optional[Any] = None, shape: Optional[Tuple[int, int]] = None, matrix: Optional[List[List[float]]] = None) Basic matrix implementation without any optimization for speed or memory usage. Matrix data is stored in row major order, this means in a list of rows, where each row is a list of floats. Direct access to the data is accessible by the attribute Matrix.matrix. The matrix can be frozen by function freeze_matrix() or method Matrix.freeze(), than the data is stored in immutable tuples. Initialization: • Matrix(shape=(rows, cols)) … new matrix filled with zeros • Matrix(matrix[, shape=(rows, cols)]) … from copy of matrix and optional reshape • Matrix([[row_0], [row_1], …, [row_n]]) … from Iterable[Iterable[float]] • Matrix([a1, a2, …, an], shape=(rows, cols)) … from Iterable[float] and shape nrows Count of matrix rows. ncols Count of matrix columns. shape Shape of matrix as (n, m) tuple for n rows and m columns. static reshape(items: Iterable[float], shape: Tuple[int, int]) -> Matrix Returns a new matrix for iterable items in the configuration of shape. classmethod identity(shape: Tuple[int, int]) -> Matrix Returns the identity matrix for configuration shape. row(index: int) -> List[float] Returns row index as list of floats. iter_row(index: int) -> Iterator[float] Yield values of row index. col(index: int) -> List[float] Return column index as list of floats. iter_col(index: int) -> Iterator[float] Yield values of column index. diag(index: int) -> List[float] Returns diagonal index as list of floats. An index of 0 specifies the main diagonal, negative values specifies diagonals below the main diagonal and positive values specifies diagonals above the main diagonal. e.g. given a 4x4 matrix: • index 0 is [00, 11, 22, 33], • index -1 is [10, 21, 32] and • index +1 is [01, 12, 23] iter_diag(index: int) -> Iterator[float] Yield values of diagonal index, see also diag(). rows() -> List[List[float]] Return a list of all rows. cols() -> List[List[float]] Return a list of all columns. set_row(index: int, items: Union[float, Sequence[float]] = 1.0) -> None Set row values to a fixed value or from an iterable of floats. set_col(index: int, items: Union[float, Iterable[float]] = 1.0) -> None Set column values to a fixed value or from an iterable of floats. set_diag(index: int = 0, items: Union[float, Iterable[float]] = 1.0) -> None Set diagonal values to a fixed value or from an iterable of floats. An index of 0 specifies the main diagonal, negative values specifies diagonals below the main diagonal and positive values specifies diagonals above the main diagonal. e.g. given a 4x4 matrix: index 0 is [00, 11, 22, 33], index -1 is [10, 21, 32] and index +1 is [01, 12, 23] append_row(items: Sequence[float]) -> None Append a row to the matrix. append_col(items: Sequence[float]) -> None Append a column to the matrix. swap_rows(a: int, b: int) -> None Swap rows a and b inplace. swap_cols(a: int, b: int) -> None Swap columns a and b inplace. transpose() -> Matrix Returns a new transposed matrix. inverse() -> Matrix Returns inverse of matrix as new object. determinant() -> float Returns determinant of matrix, raises ZeroDivisionError if matrix is singular. freeze() -> Matrix Returns a frozen matrix, all data is stored in immutable tuples. lu_decomp() -> LUDecomposition Returns the LU decomposition as LUDecomposition object, a faster linear equation solver. __getitem__(item: Tuple[int, int]) -> float Get value by (row, col) index tuple, fancy slicing as known from numpy is not supported. __setitem__(item: Tuple[int, int], value: float) Set value by (row, col) index tuple, fancy slicing as known from numpy is not supported. __eq__(other: object) -> bool Returns True if matrices are equal, tolerance value for comparison is adjustable by the attribute Matrix.abs_tol. __add__(other: Union[Matrix, float]) -> Matrix Matrix addition by another matrix or a float, returns a new matrix. __sub__(other: Union[Matrix, float]) -> Matrix Matrix subtraction by another matrix or a float, returns a new matrix. __mul__(other: Union[Matrix, float]) -> Matrix Matrix multiplication by another matrix or a float, returns a new matrix. LUDecomposition Class class ezdxf.math.linalg.LUDecomposition(A: Iterable[Iterable[float]]) Represents a LU decomposition matrix of A, raise ZeroDivisionError for a singular matrix. This algorithm is a little bit faster than the Gauss-Elimination algorithm using CPython and much faster when using pypy. The LUDecomposition.matrix attribute gives access to the matrix data as list of rows like in the Matrix class, and the LUDecomposition.index attribute gives access to the swapped row indices. Parameters A – matrix [[a11, a12, …, a1n], [a21, a22, …, a2n], [a21, a22, …, a2n], … [an1, an2, …, ann]] Raises ZeroDivisionError – singular matrix nrows Count of matrix rows (and cols). solve_vector(B: Iterable[float]) -> List[float] Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as vector B with n elements. Parameters B – vector [b1, b2, …, bn] Returns vector as list of floats solve_matrix(B: Iterable[Iterable[float]]) -> Matrix Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B. Parameters B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]] Returns matrix as Matrix object inverse() -> Matrix Returns the inverse of matrix as Matrix object, raise ZeroDivisionError for a singular matrix. determinant() -> float Returns the determinant of matrix, raises ZeroDivisionError if matrix is singular. BandedMatrixLU Class class ezdxf.math.linalg.BandedMatrixLU(A: Matrix, m1: int, m2: int) Represents a LU decomposition of a compact banded matrix. upper Upper triangle lower Lower triangle m1 Lower band count, excluding main matrix diagonal m2 Upper band count, excluding main matrix diagonal index Swapped indices nrows Count of matrix rows. solve_vector(B: Iterable[float]) -> List[float] Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as vector B with n elements. Parameters B – vector [b1, b2, …, bn] Returns vector as list of floats solve_matrix(B: Iterable[Iterable[float]]) -> Matrix Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B. Parameters B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]] Returns matrix as Matrix object determinant() -> float Returns the determinant of matrix. RTree RTree module: ezdxf.math.rtree class ezdxf.math.rtree.RTree(points: Iterable[AnyVec], max_node_size: int = 5) Immutable spatial search tree loosely based on R-trees. The search tree is buildup once at initialization and immutable afterwards, because rebuilding the tree after inserting or deleting nodes is very costly and also keeps the implementation very simple. Without the ability to alter the content the restrictions which forces the tree balance at growing and shrinking of the original R-trees, could be ignored, like the fixed minimum and maximum node size. This class uses internally only 3D bounding boxes, but also supports Vec2 as well as Vec3 objects as input data, but point types should not be mixed in a single search tree. The point objects keep their type and identity and the returned points of queries can be compared by the is operator for identity to the input points. The implementation requires a maximum node size of at least 2 and does not support empty trees! Raises ValueError – max. node size too small or no data given New in version 0.18. __len__() Returns the count of points in the search tree. __iter__() -> Iterator[Union[Vec2, Vec3]] Yields all points in the search tree. contains(point: Union[Vec2, Vec3]) -> bool Returns True if point exists, the comparison is done by the isclose() method and not by the identity operator is. nearest_neighbor(target: Union[Vec2, Vec3]) -> Tuple[Union[Vec2, Vec3], float] Returns the closest point to the target point and the distance between these points. points_in_sphere(center: Union[Vec2, Vec3], radius: float) -> Iterator[Union[Vec2, Vec3]] Returns all points in the range of the given sphere including the points at the boundary. points_in_bbox(bbox: BoundingBox) -> Iterator[Union[Vec2, Vec3]] Returns all points in the range of the given bounding box including the points at the boundary. avg_leaf_size(spread: float = 1.0) -> float Returns the average size of the leaf bounding boxes. The size of a leaf bounding box is the maximum size in all dimensions. Excludes outliers of sizes beyond mean + standard deviation * spread. Returns 0.0 if less than two points in tree. avg_spherical_envelope_radius(spread: float = 1.0) -> float Returns the average radius of spherical envelopes of the leaf nodes. Excludes outliers with radius beyond mean + standard deviation * spread. Returns 0.0 if less than two points in tree. avg_nn_distance(spread: float = 1.0) -> float Returns the average of the nearest neighbor distances inside (!) leaf nodes. Excludes outliers with a distance beyond the overall mean + standard deviation * spread. Returns 0.0 if less than two points in tree. WARNING: This is a brute force check with O(n!) for each leaf node, where n is the point count of the leaf node. Triangulation Triangulation module: ezdxf.math.triangulation ezdxf.math.triangulation.mapbox_earcut_2d(exterior: Iterable[Union[Sequence[float], Vec2, Vec3]], holes: Optional[Iterable[Iterable[Union[Sequence[float], Vec2, Vec3]]]] = None) -> List[Sequence[Vec2]] Mapbox triangulation algorithm with hole support for 2D polygons. Implements a modified ear slicing algorithm, optimized by z-order curve hashing and extended to handle holes, twisted polygons, degeneracies and self-intersections in a way that doesn’t guarantee correctness of triangulation, but attempts to always produce acceptable results for practical data. Source: https://github.com/mapbox/earcut Parameters • exterior – exterior polygon as iterable of Vec2 objects • holes – iterable of holes as iterable of Vec2 objects, a hole with single point represents a Steiner point. Returns yields the result as 3-tuples of Vec2 objects New in version 0.18. ezdxf.math.triangulation.mapbox_earcut_3d(exterior: Iterable[Union[Sequence[float], Vec2, Vec3]], holes: Optional[Iterable[Iterable[Union[Sequence[float], Vec2, Vec3]]]] = None) -> Iterator[Tuple[Vec3, Vec3, Vec3]] Mapbox triangulation algorithm with hole support for flat 3D polygons. Implements a modified ear slicing algorithm, optimized by z-order curve hashing and extended to handle holes, twisted polygons, degeneracies and self-intersections in a way that doesn’t guarantee correctness of triangulation, but attempts to always produce acceptable results for practical data. Source: https://github.com/mapbox/earcut Parameters • exterior – exterior polygon as iterable of Vec3 objects • holes – iterable of holes as iterable of Vec3 objects, a hole with single point represents a Steiner point. Returns yields the result as 3-tuples of Vec3 objects Raises • TypeError – invalid input data type • ZeroDivisionError – normal vector calculation failed New in version 0.18. Construction Path This module implements a geometric Path, supported by several render backends, with the goal to create such paths from DXF entities like LWPOLYLINE, POLYLINE or HATCH and send them to the render backend, see ezdxf.addons.drawing. Minimum common interface: • matplotlib: PathPatch • matplotlib.path.Path() codes: • MOVETO • LINETO • CURVE3 - quadratic Bèzier-curve • CURVE4 - cubic Bèzier-curve • PyQt: QPainterPath • moveTo() • lineTo() • quadTo() - quadratic Bèzier-curve (converted to a cubic Bèzier-curve) • cubicTo() - cubic Bèzier-curve • PyCairo: Context • move_to() • line_to() • no support for quadratic Bèzier-curve • curve_to() - cubic Bèzier-curve • SVG: SVG-Path • “M” - absolute move to • “L” - absolute line to • “Q” - absolute quadratic Bèzier-curve • “C” - absolute cubic Bèzier-curve ARC and ELLIPSE entities are approximated by multiple cubic Bézier-curves, which are close enough for display rendering. Non-rational SPLINES of 3rd degree can be represented exact as multiple cubic Bézier-curves, other B-splines will be approximated. The XLINE and the RAY entities are not supported, because of their infinite nature. This Path class is a full featured 3D object, although the backends only support 2D paths. HINT: A Path can not represent a point. A Path with only a start point yields no vertices! Changed in version 0.16: Refactored the module ezdxf.render.path into the subpackage ezdxf.path. The usability of the Path class expanded by the introduction of the reverse conversion from Path to DXF entities (LWPOLYLINE, POLYLINE, LINE), and many other tools in ezdxf v0.16. To emphasize this new usability, the Path class has got its own subpackage ezdxf.path. New in version 0.17: Added the Path.move_to() command and Multi-Path support. Empty-Path Contains only a start point, the length of the path is 0 and the methods Path.approximate(), Path.flattening() and Path.control_vertices() do not yield any vertices. Single-Path The Path object contains only one path without gaps, the property Path.has_sub_paths is False and the method Path.sub_paths() yields only this one path. Multi-Path The Path object contains more than one path, the property Path.has_sub_paths is True and the method Path.sub_paths() yields all paths within this object as single-path objects. It is not possible to detect the orientation of a multi-path object, therefore the methods Path.has_clockwise_orientation(), Path.clockwise() and Path.counter_clockwise() raise a TypeError exception. WARNING: Always import from the top level ezdxf.path, never from the sub-modules Factory Functions Functions to create Path objects from other objects. ezdxf.path.make_path(entity: DXFEntity) -> Path Factory function to create a single Path object from a DXF entity. Supported DXF types: • LINE • CIRCLE • ARC • ELLIPSE • SPLINE and HELIX • LWPOLYLINE • 2D and 3D POLYLINE • SOLID, TRACE, 3DFACE • IMAGE, WIPEOUT clipping path • VIEWPORT clipping path • HATCH as Multi-Path object, new in v0.17 Parameters • entity – DXF entity • segments – minimal count of cubic Bézier-curves for elliptical arcs like CIRCLE, ARC, ELLIPSE, see Path.add_ellipse() • level – subdivide level for SPLINE approximation, see Path.add_spline() Raises TypeError – for unsupported DXF types New in version 0.16. Changed in version 0.17: support for HATCH as Multi-Path object ezdxf.path.from_hatch(hatch: Hatch) -> Iterator[Path] Yield all HATCH boundary paths as separated Path objects. New in version 0.16. Changed in version 17.1: Attaches the boundary state to each path as ezdxf.lldxf.const.BoundaryPathState. ezdxf.path.from_vertices(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]], close=False) -> Path Returns a Path object from the given vertices. ezdxf.path.from_matplotlib_path(mpath, curves=True) -> Iterator[Path] Yields multiple Path objects from a Matplotlib Path (TextPath) object. (requires Matplotlib) New in version 0.16. ezdxf.path.multi_path_from_matplotlib_path(mpath, curves=True) -> Path Returns a Path object from a Matplotlib Path (TextPath) object. (requires Matplotlib). Returns a multi-path object if necessary. New in version 0.17. ezdxf.path.from_qpainter_path(qpath) -> Iterator[Path] Yields multiple Path objects from a QPainterPath. (requires Qt bindings) New in version 0.16. ezdxf.path.multi_path_from_qpainter_path(qpath) -> Path Returns a Path objects from a QPainterPath. Returns a multi-path object if necessary. (requires Qt bindings) New in version 0.17. Render Functions Functions to create DXF entities from paths and add them to the modelspace, a paperspace layout or a block definition. ezdxf.path.render_hatches(layout: Layout, paths: Iterable[Path], *, edge_path: bool = True, distance: float = 0.01, segments: int = 4, g1_tol: float = 0.0001, extrusion: UVec = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> EntityQuery Render the given paths into layout as Hatch entities. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • layout – the modelspace, a paperspace layout or a block definition • paths – iterable of Path objects • edge_path – True for edge paths build of LINE and SPLINE edges, False for only LWPOLYLINE paths as boundary paths • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve to flatten polyline paths • g1_tol – tolerance for G1 continuity check to separate SPLINE edges • extrusion – extrusion vector for all paths • dxfattribs – additional DXF attribs Returns created entities in an EntityQuery object New in version 0.16. ezdxf.path.render_lines(layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, dxfattribs=None) -> EntityQuery Render the given paths into layout as Line entities. Parameters • layout – the modelspace, a paperspace layout or a block definition • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • dxfattribs – additional DXF attribs Returns created entities in an EntityQuery object New in version 0.16. ezdxf.path.render_lwpolylines(layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion: UVec = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> EntityQuery Render the given paths into layout as LWPolyline entities. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • layout – the modelspace, a paperspace layout or a block definition • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • extrusion – extrusion vector for all paths • dxfattribs – additional DXF attribs Returns created entities in an EntityQuery object New in version 0.16. ezdxf.path.render_mpolygons(layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion: UVec = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> EntityQuery Render the given paths into layout as MPolygon entities. The MPOLYGON entity supports only polyline boundary paths. All curves will be approximated. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • layout – the modelspace, a paperspace layout or a block definition • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve to flatten polyline paths • extrusion – extrusion vector for all paths • dxfattribs – additional DXF attribs Returns created entities in an EntityQuery object New in version 0.17. ezdxf.path.render_polylines2d(layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion: UVec = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> EntityQuery Render the given paths into layout as 2D Polyline entities. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector.The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • layout – the modelspace, a paperspace layout or a block definition • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • extrusion – extrusion vector for all paths • dxfattribs – additional DXF attribs Returns created entities in an EntityQuery object New in version 0.16. ezdxf.path.render_polylines3d(layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, dxfattribs=None) -> EntityQuery Render the given paths into layout as 3D Polyline entities. Parameters • layout – the modelspace, a paperspace layout or a block definition • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • dxfattribs – additional DXF attribs Returns created entities in an EntityQuery object New in version 0.16. ezdxf.path.render_splines_and_polylines(layout: Layout, paths: Iterable[Path], *, g1_tol: float = 0.0001, dxfattribs=None) -> EntityQuery Render the given paths into layout as Spline and 3D Polyline entities. Parameters • layout – the modelspace, a paperspace layout or a block definition • paths – iterable of Path objects • g1_tol – tolerance for G1 continuity check • dxfattribs – additional DXF attribs Returns created entities in an EntityQuery object New in version 0.16. Entity Maker Functions to create DXF entities from paths. ezdxf.path.to_hatches(paths: Iterable[Path], *, edge_path: bool = True, distance: float = 0.01, segments: int = 4, g1_tol: float = 0.0001, extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> Iterator[Hatch] Convert the given paths into Hatch entities. Uses LWPOLYLINE paths for boundaries without curves and edge paths, build of LINE and SPLINE edges, as boundary paths for boundaries including curves. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • paths – iterable of Path objects • edge_path – True for edge paths build of LINE and SPLINE edges, False for only LWPOLYLINE paths as boundary paths • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve to flatten LWPOLYLINE paths • g1_tol – tolerance for G1 continuity check to separate SPLINE edges • extrusion – extrusion vector to all paths • dxfattribs – additional DXF attribs Returns iterable of Hatch objects New in version 0.16. ezdxf.path.to_lines(paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, dxfattribs=None) -> Iterator[Line] Convert the given paths into Line entities. Parameters • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • dxfattribs – additional DXF attribs Returns iterable of Line objects New in version 0.16. ezdxf.path.to_lwpolylines(paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> Iterator[LWPolyline] Convert the given paths into LWPolyline entities. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • extrusion – extrusion vector for all paths • dxfattribs – additional DXF attribs Returns iterable of LWPolyline objects New in version 0.16. ezdxf.path.to_mpolygons(paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> Iterator[MPolygon] Convert the given paths into MPolygon entities. In contrast to HATCH, MPOLYGON supports only polyline boundary paths. All curves will be approximated. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve to flatten LWPOLYLINE paths • extrusion – extrusion vector to all paths • dxfattribs – additional DXF attribs Returns iterable of MPolygon objects New in version 0.17. ezdxf.path.to_polylines2d(paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0), dxfattribs=None) -> Iterator[Polyline] Convert the given paths into 2D Polyline entities. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first path. Parameters • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • extrusion – extrusion vector for all paths • dxfattribs – additional DXF attribs Returns iterable of 2D Polyline objects New in version 0.16. ezdxf.path.to_polylines3d(paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, dxfattribs=None) -> Iterator[Polyline] Convert the given paths into 3D Polyline entities. Parameters • paths – iterable of Path objects • distance – maximum distance, see Path.flattening() • segments – minimum segment count per Bézier curve • dxfattribs – additional DXF attribs Returns iterable of 3D Polyline objects New in version 0.16. ezdxf.path.to_splines_and_polylines(paths: Iterable[Path], *, g1_tol: float = 0.0001, dxfattribs=None) -> Iterator[Union[Spline, Polyline]] Convert the given paths into Spline and 3D Polyline entities. Parameters • paths – iterable of Path objects • g1_tol – tolerance for G1 continuity check • dxfattribs – additional DXF attribs Returns iterable of Line objects New in version 0.16. Tool Maker Functions to create construction tools. ezdxf.path.to_bsplines_and_vertices(path: Path, g1_tol: float = 0.0001) -> Iterator[Union[BSpline, List[Vec3]]] Convert a Path object into multiple cubic B-splines and polylines as lists of vertices. Breaks adjacent Bèzier without G1 continuity into separated B-splines. Parameters • path – Path objects • g1_tol – tolerance for G1 continuity check Returns BSpline and lists of Vec3 New in version 0.16. ezdxf.path.to_matplotlib_path(paths: Iterable[Path], extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0)) Convert the given paths into a single matplotlib.path.Path object. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector.The default extrusion vector is the WCS z-axis. The Matplotlib Path is a 2D object with OCS coordinates and the z-elevation is lost. (requires Matplotlib) Parameters • paths – iterable of Path objects • extrusion – extrusion vector for all paths Returns matplotlib Path in OCS! New in version 0.16. ezdxf.path.to_qpainter_path(paths: Iterable[Path], extrusion: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 1.0)) Convert the given paths into a QtGui.QPainterPath object. The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The QPainterPath is a 2D object with OCS coordinates and the z-elevation is lost. (requires Qt bindings) Parameters • paths – iterable of Path objects • extrusion – extrusion vector for all paths Returns QPainterPath in OCS! New in version 0.16. Utility Functions ezdxf.path.add_bezier3p(path: Path, curves: Iterable[Bezier3P]) -> None Add multiple quadratic Bèzier-curves to the given path. Auto-detect the connection point to the given path, if neither the start- nor the end point of the curves is close to the path end point, a line from the path end point to the start point of the first curve will be added automatically. Changed in version 0.16.2: add linear Bézier curve segments as LINE_TO commands ezdxf.path.add_bezier4p(path: Path, curves: Iterable[Bezier4P]) -> None Add multiple cubic Bèzier-curves to the given path. Auto-detect the connection point to the given path, if neither the start- nor the end point of the curves is close to the path end point, a line from the path end point to the start point of the first curve will be added automatically. Changed in version 0.16.2: add linear Bézier curve segments as LINE_TO commands ezdxf.path.add_ellipse(path: Path, ellipse: ConstructionEllipse, segments=1, reset=True) -> None Add an elliptical arc as multiple cubic Bèzier-curves to the given path, use from_arc() constructor of class ConstructionEllipse to add circular arcs. Auto-detect the connection point to the given path, if neither the start- nor the end point of the ellipse is close to the path end point, a line from the path end point to the ellipse start point will be added automatically (see add_bezier4p()). By default the start of an empty path is set to the start point of the ellipse, setting argument reset to False prevents this behavior. Parameters • path – Path object • ellipse – ellipse parameters as ConstructionEllipse object • segments – count of Bèzier-curve segments, at least one segment for each quarter (pi/2), 1 for as few as possible. • reset – set start point to start of ellipse if path is empty ezdxf.path.add_spline(path: Path, spline: BSpline, level=4, reset=True) -> None Add a B-spline as multiple cubic Bèzier-curves. Non-rational B-splines of 3rd degree gets a perfect conversion to cubic bezier curves with a minimal count of curve segments, all other B-spline require much more curve segments for approximation. Auto-detect the connection point to the given path, if neither the start- nor the end point of the B-spline is close to the path end point, a line from the path end point to the start point of the B-spline will be added automatically. (see add_bezier4p()). By default the start of an empty path is set to the start point of the spline, setting argument reset to False prevents this behavior. Parameters • path – Path object • spline – B-spline parameters as BSpline object • level – subdivision level of approximation segments • reset – set start point to start of spline if path is empty ezdxf.path.bbox(paths: Iterable[Path], *, fast=False) -> BoundingBox Returns the BoundingBox for the given paths. Parameters • paths – iterable of Path objects • fast – calculates the precise bounding box of Bèzier curves if False, otherwise uses the control points of Bézier curves to determine their bounding box. Changed in version 0.18: Uses a new algorithm to determine exact Bézier curve bounding boxes. Added argument fast and removed the arguments flatten and segments. ezdxf.path.chamfer(points: Sequence[Vec3], length: float) -> Path Returns a Path with chamfers of given length between straight line segments. Parameters • points – coordinates of the line segments • length – chamfer length New in version 0.18. ezdxf.path.chamfer2(points: Sequence[Vec3], a: float, b: float) -> Path Returns a Path with chamfers at the given distances a and b from the segment points between straight line segments. Parameters • points – coordinates of the line segments • a – distance of the chamfer start point to the segment point • b – distance of the chamfer end point to the segment point New in version 0.18. ezdxf.path.fillet(points: Sequence[Vec3], radius: float) -> Path Returns a Path with circular fillets of given radius between straight line segments. Parameters • points – coordinates of the line segments • radius – fillet radius New in version 0.18. ezdxf.path.fit_paths_into_box(paths: Iterable[Path], size: Tuple[float, float, float], uniform: bool = True, source_box: Optional[BoundingBox] = None) -> List[Path] Scale the given paths to fit into a box of the given size, so that all path vertices are inside these borders. If source_box is None the default source bounding box is calculated from the control points of the paths. Note: if the target size has a z-size of 0, the paths are projected into the xy-plane, same is true for the x-size, projects into the yz-plane and the y-size, projects into and xz-plane. Parameters • paths – iterable of Path objects • size – target box size as tuple of x-, y- and z-size values • uniform – True for uniform scaling • source_box – pass precalculated source bounding box, or None to calculate the default source bounding box from the control vertices ezdxf.path.have_close_control_vertices(a: Path, b: Path, *, rel_tol=1e-09, abs_tol=1e-12) -> bool Returns True if the control vertices of given paths are close. New in version 0.16.5. ezdxf.path.lines_to_curve3(path: Path) -> Path Replaces all lines by quadratic Bézier curves. Returns a new Path instance. ezdxf.path.lines_to_curve4(path: Path) -> Path Replaces all lines by cubic Bézier curves. Returns a new Path instance. ezdxf.path.polygonal_fillet(points: Sequence[Vec3], radius: float, count: int = 32) -> Path Returns a Path with polygonal fillets of given radius between straight line segments. The count argument defines the vertex count of the fillet for a full circle. Parameters • points – coordinates of the line segments • radius – fillet radius • count – polygon vertex count for a full circle, minimum is 4 New in version 0.18. ezdxf.path.single_paths(paths: Iterable[Path]) -> Iterable[Path] Yields all given paths and their sub-paths as single path objects. New in version 0.17. ezdxf.path.to_multi_path(paths: Iterable[Path]) -> Path Returns a multi-path object from all given paths and their sub-paths. Ignores paths without any commands (empty paths). New in version 0.17. ezdxf.path.transform_paths(paths: Iterable[Path], m: Matrix44) -> List[Path] Transform multiple Path objects at once by transformation matrix m. Returns a list of the transformed Path objects. Parameters • paths – iterable of Path objects • m – transformation matrix of type Matrix44 ezdxf.path.transform_paths_to_ocs(paths: Iterable[Path], ocs: OCS) -> List[Path] Transform multiple Path objects at once from WCS to OCS. Returns a list of the transformed Path objects. Parameters • paths – iterable of Path objects • ocs – OCS transformation of type OCS ezdxf.path.triangulate(paths: Iterable[Path], max_flattening_distance: float = 0.01) -> Iterator[Sequence[Vec2]] Tessellate nested 2D paths into triangle-faces. For 3D paths the projection onto the xy-plane will be triangulated. New in version 0.18.1. Basic Shapes ezdxf.path.elliptic_transformation(center: Union[Sequence[float], Vec2, Vec3] = (0, 0, 0), radius: float = 1, ratio: float = 1, rotation: float = 0) -> Matrix44 Returns the transformation matrix to transform an unit circle into an arbitrary circular- or elliptic arc. Example how to create an ellipse with an major axis length of 3, a minor axis length 1.5 and rotated about 90°: m = elliptic_transformation(radius=3, ratio=0.5, rotation=math.pi / 2) ellipse = shapes.unit_circle(transform=m) Parameters • center – curve center in WCS • radius – radius of the major axis in drawing units • ratio – ratio of minor axis to major axis • rotation – rotation angle about the z-axis in radians ezdxf.path.gear(count: int, top_width: float, bottom_width: float, height: float, outside_radius: float, transform: Optional[Matrix44] = None) -> Path Returns a gear (cogwheel) shape as a Path object, with the center at (0, 0, 0). The base geometry is created by function ezdxf.render.forms.gear(). WARNING: This function does not create correct gears for mechanical engineering! Parameters • count – teeth count >= 3 • top_width – teeth width at outside radius • bottom_width – teeth width at base radius • height – teeth height; base radius = outside radius - height • outside_radius – outside radius • transform – transformation Matrix applied to the gear shape ezdxf.path.helix(radius: float, pitch: float, turns: float, ccw=True, segments: int = 4) -> Path Returns a helix as a Path object. The center of the helix is always (0, 0, 0), a positive pitch value creates a helix along the +z-axis, a negative value along the -z-axis. Parameters • radius – helix radius • pitch – the height of one complete helix turn • turns – count of turns • ccw – creates a counter-clockwise turning (right-handed) helix if True • segments – cubic Bezier segments per turn New in version 0.18. ezdxf.path.ngon(count: int, length: Optional[float] = None, radius: float = 1.0, transform: Optional[Matrix44] = None) -> Path Returns a regular polygon a Path object, with the center at (0, 0, 0). The polygon size is determined by the edge length or the circum radius argument. If both are given length has higher priority. Default size is a radius of 1. The ngon starts with the first vertex is on the x-axis! The base geometry is created by function ezdxf.render.forms.ngon(). Parameters • count – count of polygon corners >= 3 • length – length of polygon side • radius – circum radius, default is 1 • transform – transformation Matrix applied to the ngon ezdxf.path.rect(width: float = 1, height: float = 1, transform: Optional[Matrix44] = None) -> Path Returns a closed rectangle as a Path object, with the center at (0, 0, 0) and the given width and height in drawing units. Parameters • width – width of the rectangle in drawing units, width > 0 • height – height of the rectangle in drawing units, height > 0 • transform – transformation Matrix applied to the rectangle ezdxf.path.star(count: int, r1: float, r2: float, transform: Optional[Matrix44] = None) -> Path Returns a star shape as a Path object, with the center at (0, 0, 0). Argument count defines the count of star spikes, r1 defines the radius of the “outer” vertices and r2 defines the radius of the “inner” vertices, but this does not mean that r1 has to be greater than r2. The star shape starts with the first vertex is on the x-axis! The base geometry is created by function ezdxf.render.forms.star(). Parameters • count – spike count >= 3 • r1 – radius 1 • r2 – radius 2 • transform – transformation Matrix applied to the star ezdxf.path.unit_circle(start_angle: float = 0, end_angle: float = 6.283185307179586, segments: int = 1, transform: Optional[Matrix44] = None) -> Path Returns an unit circle as a Path object, with the center at (0, 0, 0) and the radius of 1 drawing unit. The arc spans from the start- to the end angle in counter clockwise orientation. The end angle has to be greater than the start angle and the angle span has to be greater than 0. Parameters • start_angle – start angle in radians • end_angle – end angle in radians (end_angle > start_angle!) • segments – count of Bèzier-curve segments, default is one segment for each arc quarter (π/2) • transform – transformation Matrix applied to the unit circle ezdxf.path.wedge(start_angle: float, end_angle: float, segments: int = 1, transform: Optional[Matrix44] = None) -> Path Returns a wedge as a Path object, with the center at (0, 0, 0) and the radius of 1 drawing unit. The arc spans from the start- to the end angle in counter clockwise orientation. The end angle has to be greater than the start angle and the angle span has to be greater than 0. Parameters • start_angle – start angle in radians • end_angle – end angle in radians (end_angle > start_angle!) • segments – count of Bèzier-curve segments, default is one segment for each arc quarter (π/2) • transform – transformation Matrix applied to the wedge The text2path add-on provides additional functions to create paths from text strings and DXF text entities. The Path Class class ezdxf.path.Path property end: ezdxf.math._vector.Vec3 Path end point. property has_curves: bool Returns True if the path has any curve segments. property has_lines: bool Returns True if the path has any line segments. property has_sub_paths: bool Returns True if the path is a Multi-Path object which contains multiple sub-paths. New in version 0.17. property is_closed: bool Returns True if the start point is close to the end point. property start: ezdxf.math._vector.Vec3 Path start point, resetting the start point of an empty path is possible. property user_data: Any Attach arbitrary user data to a Path object. The user data is copied by reference, no deep copy is applied therefore a mutable state is shared between copies. append_path(path: Path) -> None Append another path to this path. Adds a self.line_to(path.start) if the end of this path != the start of appended path. New in version 0.17. approximate(segments: int = 20) -> Iterator[Vec3] Approximate path by vertices, segments is the count of approximation segments for each Bézier curve. Does not yield any vertices for empty paths, where only a start point is present! Approximation of Multi-Path objects is possible, but gaps are indistinguishable from line segments. clockwise() -> Path Returns new Path in clockwise orientation. Raises TypeError – can’t detect orientation of a Multi-Path object clone() -> Path Returns a new copy of Path with shared immutable data. close() -> None Close path by adding a line segment from the end point to the start point. close_sub_path() -> None Close last sub-path by adding a line segment from the end point to the start point of the last sub-path. Behaves like close() for Single-Path instances. New in version 0.17. control_vertices() -> List[Vec3] Yields all path control vertices in consecutive order. counter_clockwise() -> Path Returns new Path in counter-clockwise orientation. Raises TypeError – can’t detect orientation of a Multi-Path object curve3_to(location: Union[Sequence[float], Vec2, Vec3], ctrl: Union[Sequence[float], Vec2, Vec3]) -> None Add a quadratic Bèzier-curve from actual path end point to location, ctrl is the control point for the quadratic Bèzier-curve. curve4_to(location: Union[Sequence[float], Vec2, Vec3], ctrl1: Union[Sequence[float], Vec2, Vec3], ctrl2: Union[Sequence[float], Vec2, Vec3]) -> None Add a cubic Bèzier-curve from actual path end point to location, ctrl1 and ctrl2 are the control points for the cubic Bèzier-curve. extend_multi_path(path: Path) -> None Extend the path by another path. The source path is automatically a Multi-Path object, even if the previous end point matches the start point of the appended path. Ignores paths without any commands (empty paths). New in version 0.17. flattening(distance: float, segments: int = 16) -> Iterator[Vec3] Approximate path by vertices and use adaptive recursive flattening to approximate Bèzier curves. The argument segments is the minimum count of approximation segments for each curve, if the distance from the center of the approximation segment to the curve is bigger than distance the segment will be subdivided. Does not yield any vertices for empty paths, where only a start point is present! Flattening of Multi-Path objects is possible, but gaps are indistinguishable from line segments. Parameters • distance – maximum distance from the center of the curve to the center of the line segment between two approximation points to determine if a segment should be subdivided. • segments – minimum segment count per Bézier curve has_clockwise_orientation() -> bool Returns True if 2D path has clockwise orientation, ignores z-axis of all control vertices. Raises TypeError – can’t detect orientation of a Multi-Path object line_to(location: Union[Sequence[float], Vec2, Vec3]) -> None Add a line from actual path end point to location. move_to(location: Union[Sequence[float], Vec2, Vec3]) -> None Start a new sub-path at location. This creates a gap between the current end-point and the start-point of the new sub-path. This converts the instance into a Multi-Path object. If the move_to() command is the first command, the start point of the path will be reset to location. New in version 0.17. reversed() -> Path Returns a new Path with reversed segments and control vertices. sub_paths() -> Iterator[Path] Yield sub-path as Single-Path objects. It is safe to call sub_paths() on any path-type: Single-Path, Multi-Path and Empty-Path. New in version 0.17. transform(m: Matrix44) -> Path Returns a new transformed path. Parameters m – transformation matrix of type Matrix44 Disassemble New in version 0.16. This module provide tools for the recursive decomposition of nested block reference structures into a flat stream of DXF entities and converting DXF entities into geometric primitives of Path and MeshBuilder objects encapsulated into intermediate Primitive classes. Changed in version 0.17: The Hatch entity is no special case anymore and has regular support by the make_primitive() function. WARNING: Do not expect advanced vectorization capabilities: Text entities like TEXT, ATTRIB, ATTDEF and MTEXT get only a rough border box representation. The text2path add-on can convert text into paths. VIEWPORT, IMAGE and WIPEOUT are represented by their clipping path. Unsupported entities: all ACIS based entities, XREF, UNDERLAY, ACAD_TABLE, RAY, XLINE. Unsupported entities will be ignored. Text Boundary Calculation Text boundary calculations are based on monospaced (fixed-pitch, fixed-width, non-proportional) font metrics, which do not provide a good accuracy for text height calculation and much less accuracy for text width calculation. It is possible to improve this results by using the font support from the optional Matplotlib package. Install Matplotlib from command line: C:\> pip3 install matplotlib The Matplotlib font support will improve the results for TEXT, ATTRIB and ATTDEF. The MTEXT entity has many advanced features which would require a full “Rich Text Format” rendering and that is far beyond the goals and capabilities of this library, therefore the boundary box for MTEXT will never be as accurate as in a dedicated CAD application. Using the Matplotlib font support adds runtime overhead, therefore it is possible to deactivate the Matplotlib font support by setting the global option: options.use_matplotlib_font_support = False Flatten Complex DXF Entities ezdxf.disassemble.recursive_decompose(entities: Iterable[DXFEntity]) -> Iterable[DXFEntity] Recursive decomposition of the given DXF entity collection into a flat DXF entity stream. All block references (INSERT) and entities which provide a virtual_entities() method will be disassembled into simple DXF sub-entities, therefore the returned entity stream does not contain any INSERT entity. Point entities will not be disassembled into DXF sub-entities, as defined by the current point style $PDMODE. These entity types include sub-entities and will be decomposed into simple DXF entities: • INSERT • DIMENSION • LEADER • MLEADER • MLINE Decomposition of XREF, UNDERLAY and ACAD_TABLE entities is not supported. Entity Deconstruction These functions disassemble DXF entities into simple geometric objects like meshes, paths or vertices. The Primitive is a simplified intermediate class to use a common interface on various DXF entities. ezdxf.disassemble.make_primitive(entity: DXFEntity, max_flattening_distance=None) -> Primitive Factory to create path/mesh primitives. The max_flattening_distance defines the max distance between the approximation line and the original curve. Use max_flattening_distance to override the default value. Returns an empty primitive for unsupported entities. The empty state of a primitive can be checked by the property is_empty. The path and the mesh attributes of an empty primitive are None and the vertices() method yields no vertices. Changed in version 0.17: regular support for the Hatch entity. ezdxf.disassemble.to_primitives(entities: Iterable[DXFEntity], max_flattening_distance: Optional[float] = None) -> Iterable[Primitive] Yields all DXF entities as path or mesh primitives. Yields unsupported entities as empty primitives, see make_primitive(). Parameters • entities – iterable of DXF entities • max_flattening_distance – override the default value ezdxf.disassemble.to_meshes(primitives: Iterable[Primitive]) -> Iterable[MeshBuilder] Yields all MeshBuilder objects from the given primitives. Ignores primitives without a defined mesh. ezdxf.disassemble.to_paths(primitives: Iterable[Primitive]) -> Iterable[Path] Yields all Path objects from the given primitives. Ignores primitives without a defined path. ezdxf.disassemble.to_vertices(primitives: Iterable[Primitive]) -> Iterable[Vec3] Yields all vertices from the given primitives. Paths will be flattened to create the associated vertices. See also to_control_vertices() to collect only the control vertices from the paths without flattening. ezdxf.disassemble.to_control_vertices(primitives: Iterable[Primitive]) -> Iterable[Vec3] Yields all path control vertices and all mesh vertices from the given primitives. Like to_vertices(), but without flattening. class ezdxf.disassemble.Primitive Interface class for path/mesh primitives. entity Reference to the source DXF entity of this primitive. max_flattening_distance The max_flattening_distance attribute defines the max distance in drawing units between the approximation line and the original curve. Set the value by direct attribute access. (float) default = 0.01 property path: Optional[ezdxf.path.path.Path] Path representation or None, idiom to check if is a path representation (could be empty): if primitive.path is not None: process(primitive.path) property mesh: Optional[ezdxf.render.mesh.MeshBuilder] MeshBuilder representation or None, idiom to check if is a mesh representation (could be empty): if primitive.mesh is not None: process(primitive.mesh) property is_empty: bool Returns True if represents an empty primitive which do not yield any vertices. abstract vertices() -> Iterable[Vec3] Yields all vertices of the path/mesh representation as Vec3 objects. bbox(fast=False) -> BoundingBox Returns the BoundingBox of the path/mesh representation. Returns the precise bounding box for the path representation if fast is False, otherwise the bounding box for Bézier curves is based on their control points. New in version 0.18. Bounding Box New in version 0.16. The ezdxf.bbox module provide tools to calculate bounding boxes for many DXF entities, but not for all. The bounding box calculation is based on the ezdxf.disassemble module and therefore has the same limitation. WARNING: If accurate boundary boxes for text entities are important for you, read this first: Text Boundary Calculation. TL;DR: Boundary boxes for text entities are not accurate! Unsupported DXF entities: • All ACIS based types like BODY, 3DSOLID or REGION • External references (XREF) and UNDERLAY object • RAY and XRAY, extend into infinite • ACAD_TABLE, no basic support - only preserved by ezdxf Unsupported entities are silently ignored, filtering of these DXF types is not necessary. The base type for bounding boxes is the BoundingBox class from the module ezdxf.math. The entities iterable as input can be the whole modelspace, an entity query or any iterable container of DXF entities. The Calculation of bounding boxes of curves is done by flattening the curve by a default flattening distance of 0.01. Set argument flatten to 0 to speedup the bounding box calculation by accepting less precision for curved objects by using only the control vertices. The optional caching object Cache has to be instantiated by the user, this is only useful if the same entities will be processed multiple times. Example usage with caching: from ezdxf import bbox msp = doc.modelspace() cache = bbox.Cache() # get overall bounding box first_bbox = bbox.extents(msp, cache=cache) # bounding box of all LINE entities second_bbox = bbox.extend(msp.query("LINE"), cache=cache) Functions ezdxf.bbox.extents(entities: Iterable[DXFEntity], *, fast=False, cache: Cache = None, **kwargs) -> BoundingBox Returns a single bounding box for all given entities. If argument fast is True the calculation of Bézier curves is based on their control points, this may return a slightly larger bounding box. The fast mode also uses a simpler and mostly inaccurate text size calculation instead of the more precise but very slow calculation by matplotlib. HINT: The fast mode is not much faster for non-text based entities, so using the slower default mode is not a big disadvantage if a more precise text size calculation is important. Changed in version 0.18: added fast mode, replaced argument flatten by argument fast ezdxf.bbox.multi_flat(entities: Iterable[DXFEntity], *, fast=False, cache: Cache = None, **kwargs) -> Iterable[BoundingBox] Yields a bounding box for each of the given entities. If argument fast is True the calculation of Bézier curves is based on their control points, this may return a slightly larger bounding box. Changed in version 0.18: replaced argument flatten by argument fast ezdxf.bbox.multi_recursive(entities: Iterable[DXFEntity], *, fast=False, cache: Cache = None, **kwargs) -> Iterable[BoundingBox] Yields all bounding boxes for the given entities or all bounding boxes for their sub entities. If an entity (INSERT) has sub entities, only the bounding boxes of these sub entities will be yielded, not the bounding box of the entity (INSERT) itself. If argument fast is True the calculation of Bézier curves is based on their control points, this may return a slightly larger bounding box. Changed in version 0.18: replaced argument flatten by argument fast Caching Strategies Because ezdxf is not a CAD application, ezdxf does not manage data structures which are optimized for a usage by a CAD kernel. This means that the content of complex entities like block references or leaders has to be created on demand by DXF primitives on the fly. These temporarily created entities are called virtual entities and have no handle and are not stored in the entity database. All this is required to calculate the bounding box of complex entities, and it is therefore a very time consuming task. By using a Cache object it is possible to speedup this calculations, but this is not a magically feature, it requires an understanding of what is happening under the hood to achieve any performance gains. For a single bounding box calculation, without any reuse of entities it makes no sense of using a Cache object, e.g. calculation of the modelspace extents: from pathlib import Path import ezdxf from ezdxf import bbox CADKitSamples = Path(ezdxf.EZDXF_TEST_FILES) / 'CADKitSamples' doc = ezdxf.readfile(CADKitSamples / 'A_000217.dxf') cache = bbox.Cache() ext = bbox.extents(doc.modelspace(), cache) print(cache) 1226 cached objects and not a single cache hit: Cache(n=1226, hits=0, misses=3273) The result for using UUIDs to cache virtual entities is not better: Cache(n=2206, hits=0, misses=3273) Same count of hits and misses, but now the cache also references ~1000 virtual entities, which block your memory until the cache is deleted, luckily this is a small DXF file (~838 kB). Bounding box calculations for multiple entity queries, which have overlapping entity results, using a Cache object may speedup the calculation: doc = ezdxf.readfile(CADKitSamples / 'A_000217.dxf.dxf') msp = doc.modelspace() cache = bbox.Cache(uuid=False) ext = bbox.extents(msp, cache) print(cache) # process modelspace again ext = bbox.extents(msp, cache) print(cache) Processing the same data again leads some hits: 1st run: Cache(n=1226, hits=0, misses=3273) 2nd run: Cache(n=1226, hits=1224, misses=3309) Using uuid=True leads not to more hits, but more cache entries: 1st run: Cache(n=2206, hits=0, misses=3273) 2nd run: Cache(n=2206, hits=1224, misses=3309) Creating stable virtual entities by disassembling the entities at first leads to more hits: from ezdxf import disassemble entities = list(disassemble.recursive_decompose(msp)) cache = bbox.Cache(uuid=False) bbox.extents(entities, cache) print(cache) bbox.extents(entities, cache) print(cache) First without UUID for stable virtual entities: 1st run: Cache(n=1037, hits=0, misses=4074) 2nd run: Cache(n=1037, hits=1037, misses=6078) Using UUID for stable virtual entities leads to more hits: 1st run: Cache(n=2019, hits=0, misses=4074) 2nd run: Cache(n=2019, hits=2018, misses=4116) But caching virtual entities needs also more memory. In conclusion: Using a cache is only useful, if you often process nearly the same data; only then can an increase in performance be expected. Cache Class class ezdxf.bbox.Cache(uuid=False) Caching object for ezdxf.math.BoundingBox objects. Parameters uuid – use UUIDs for virtual entities has_data True if the cache contains any bounding boxes hits misses invalidate(entities: Iterable[DXFEntity]) -> None Invalidate cache entries for the given DXF entities. If entities are changed by the user, it is possible to invalidate individual entities. Use with care - discarding the whole cache is the safer workflow. Ignores entities which are not stored in cache. Upright New in version 0.17. The functions in this module can help to convert an inverted OCS defined by an extrusion vector (0, 0, -1) into a WCS aligned OCS defined by an extrusion vector (0, 0, 1). This simplifies 2D entity processing for ezdxf users and creates DXF output for 3rd party DXF libraries which ignore the existence of the OCS. Supported DXF entities: • CIRCLE • ARC • ELLIPSE (WCS entity, flips only the extrusion vector) • SOLID • TRACE • LWPOLYLINE • POLYLINE (only 2D entities) • HATCH • MPOLYGON • INSERT (block references) WARNING: The WCS representation of OCS entities with flipped extrusion vector is not 100% identical to the source entity, curve orientation and vertex order may change, see additional explanation below. A mirrored text represented by an extrusion vector (0, 0, -1) cannot represented by an extrusion vector (0, 0, 1), therefore this CANNOT work for text entities or entities including text: TEXT, ATTRIB, ATTDEF, MTEXT, DIMENSION, LEADER, MLEADER Usage The functions can be applied to any DXF entity without expecting errors or exceptions if the DXF entity is not supported or the extrusion vector differs from (0, 0, -1). This also means you can apply the functions multiple times to the same entities without any problems. A common case would be to upright all entities of the model space: import ezdxf from ezdxf.upright import upright_all doc = ezdxf.readfile("your.dxf") msp = doc.modelspace() upright_all(msp) # doing it again is no problem but also has no further effects upright_all(msp) Another use case is exploding block references (INSERT) which may include reflections (= scaling by negative factors) that can lead to inverted extrusion vectors. for block_ref in msp.query("INSERT"): entities = block_ref.explode() # -> EntityQuery object upright_all(entities) Functions ezdxf.upright.upright(entity: DXFGraphic) -> None Flips an inverted OCS defined by extrusion vector (0, 0, -1) into a WCS aligned OCS defined by extrusion vector (0, 0, 1). DXF entities with other extrusion vectors and unsupported DXF entities will be silently ignored. For more information about the limitations read the documentation of the ezdxf.upright module. ezdxf.upright.upright_all(entities: Iterable[DXFGraphic]) -> None Call function upright() for all DXF entities in iterable entities: upright_all(doc.modelspace()) Additional Explanation This example shows why the entities with an inverted OCS, extrusion vector is (0, 0, -1), are not exact the same as with an WCS aligned OCS, extrusion vector is (0, 0, 1). NOTE: The ARC entity represents the curve always in counter-clockwise orientation around the extrusion vector. import ezdxf from ezdxf.upright import upright from ezdxf.math import Matrix44 doc = ezdxf.new() msp = doc.modelspace() arc = msp.add_arc( (5, 0), radius=5, start_angle=-90, end_angle=90, dxfattribs={"color": ezdxf.const.RED}, ) # draw lines to the start- and end point of the ARC msp.add_line((0, 0), arc.start_point, dxfattribs={"color": ezdxf.const.GREEN}) msp.add_line((0, 0), arc.end_point, dxfattribs={"color": ezdxf.const.BLUE}) # copy arc mirrored_arc = arc.copy() msp.add_entity(mirrored_arc) # mirror copy mirrored_arc.transform(Matrix44.scale(-1, 1, 1)) # This creates an inverted extrusion vector: assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1)) # draw lines to the start- and end point of the mirrored ARC msp.add_line((0, 0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN}) msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE}) Result without applying the upright() function - true mirroring: [image] ... # This creates an inverted extrusion vector: assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1)) start_point_inv = mirrored_arc.start_point end_point_inv = mirrored_arc.end_point upright(mirrored_arc) # OCS is aligned with WCS: assert mirrored_arc.dxf.extrusion.isclose((0, 0, 1)) # start- and end points are swapped after applying upright() assert mirrored_arc.start_point.isclose(end_point_inv) assert mirrored_arc.end_point.isclose(start_point_inv) # draw lines to the start- and end point of the mirrored ARC msp.add_line((0, 0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN}) msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE}) Result after applying the upright() function - false mirroring: [image] To avoid this issue the ARC entity would have to represent the curve in clockwise orientation around the extrusion vector (0, 0, 1), which is not possible! NOTE: The shape of the mirrored arcs is the same for both extrusion vectors, but the start- and the end points are swapped (reversed vertex order)! Reorder Tools to reorder DXF entities by handle or a special sort handle mapping. Such reorder mappings are stored only in layouts as Modelspace, Paperspace or BlockLayout, and can be retrieved by the method get_redraw_order(). Each entry in the handle mapping replaces the actual entity handle, where the “0” handle has a special meaning, this handle always shows up at last in ascending ordering. ezdxf.reorder.ascending(entities: Iterable[DXFGraphic], mapping: Union[Dict, Iterable[Tuple[str, str]]] = None) -> Iterable[DXFGraphic] Yields entities in ascending handle order. The sort-handle doesn’t have to be the entity handle, every entity handle in mapping will be replaced by the given sort-handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle) or a dict (entity_handle, sort_handle). Entities with equal sort-handles show up in source entities order. Parameters • entities – iterable of DXFGraphic objects • mapping – iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict. ezdxf.reorder.descending(entities: Iterable[DXFGraphic], mapping: Union[Dict, Iterable[Tuple[str, str]]] = None) -> Iterable[DXFGraphic] Yields entities in descending handle order. The sort-handle doesn’t have to be the entity handle, every entity handle in mapping will be replaced by the given sort-handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle) or a dict (entity_handle, sort_handle). Entities with equal sort-handles show up in reversed source entities order. Parameters • entities – iterable of DXFGraphic objects • mapping – iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict. Custom Data Custom XDATA The classes XDataUserList and XDataUserDict manage custom user data stored in the XDATA section of a DXF entity. For more information about XDATA see reference section: Extended Data (XDATA) These classes store only a limited set of data types with fixed group codes and the types are checked by isinstance() so a Vec3 object can not be replaced by a (x, y, z)-tuple: ┌───────────┬──────────────────────────────────┐ │Group Code │ Data Type │ ├───────────┼──────────────────────────────────┤ │1000 │ str, limited to 255 characters, │ │ │ line breaks "\n" and "\r" are │ │ │ not allowed │ ├───────────┼──────────────────────────────────┤ │1010 │ Vec3 │ ├───────────┼──────────────────────────────────┤ │1040 │ float │ ├───────────┼──────────────────────────────────┤ │1071 │ 32-bit int, restricted by the │ │ │ DXF standard not by Python! │ └───────────┴──────────────────────────────────┘ Strings are limited to 255 characters, line breaks "\n" and "\r" are not allowed. This classes assume a certain XDATA structure and therefore can not manage arbitrary XDATA! This classes do not create the required AppID table entry, only the default AppID “EZDXF” exist by default. Setup a new AppID in the AppID table: doc.appids.add("MYAPP"). For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files. SEE ALSO: • Tutorial: Storing Custom Data in DXF Files • Example at github • XDATA reference: Extended Data (XDATA) • XDATA management class: XData XDataUserList class ezdxf.entities.xdata.XDataUserList Manage user data as a named list-like object in XDATA. Multiple user lists with different names can be stored in a single XData instance for a single AppID. Recommended usage by context manager entity(): with XDataUserList.entity(entity, name="MyList", appid="MYAPP") as ul: ul.append("The value of PI") # str "\n" and "\r" are not allowed ul.append(3.141592) # float ul.append(1) # int ul.append(Vec3(1, 2, 3)) # Vec3 # invalid data type raises DXFTypeError ul.append((1, 2, 3)) # tuple instead of Vec3 # retrieve a single value s = ul[0] # store whole content into a Python list data = list(ul) Implements the MutableSequence interface. xdata The underlying XData instance. __init__(xdata: Optional[XData] = None, name='DefaultList', appid='EZDXF') Setup a XDATA user list name for the given appid. The data is stored in the given xdata object, or in a new created XData instance if None. Changes of the content has to be committed at the end to be stored in the underlying xdata object. Parameters • xdata (XData) – underlying XData instance, if None a new one will be created • name (str) – name of the user list • appid (str) – application specific AppID __str__() Return str(self). __len__() -> int Returns len(self). __getitem__(item) Get self[item]. __setitem__(item, value) Set self[item] to value. __delitem__(item) Delete self[item]. classmethod entity(entity: DXFEntity, name='DefaultList', appid='EZDXF') -> Iterator[XDataUserList] Context manager to manage a XDATA list name for a given DXF entity. Appends the user list to the existing XData instance or creates new XData instance. Parameters • entity (DXFEntity) – target DXF entity for the XDATA • name (str) – name of the user list • appid (str) – application specific AppID commit() -> None Store all changes to the underlying XData instance. This call is not required if using the entity() context manager. Raises • DXFValueError – invalid chars "\n" or "\r" in a string • DXFTypeError – invalid data type XDataUserDict class ezdxf.entities.xdata.XDataUserDict Manage user data as a named dict-like object in XDATA. Multiple user dicts with different names can be stored in a single XData instance for a single AppID. The keys have to be strings. Recommended usage by context manager entity(): with XDataUserDict.entity(entity, name="MyDict", appid="MYAPP") as ud: ud["comment"] = "The value of PI" # str "\n" and "\r" are not allowed ud["pi"] = 3.141592 # float ud["number"] = 1 # int ud["vertex"] = Vec3(1, 2, 3) # Vec3 # invalid data type raises DXFTypeError ud["vertex"] = (1, 2, 3) # tuple instead of Vec3 # retrieve single values s = ud["comment"] pi = ud.get("pi", 3.141592) # store whole content into a Python dict data = dict(ud) Implements the MutableMapping interface. The data is stored in XDATA like a XDataUserList by (key, value) pairs, therefore a XDataUserDict can also be loaded as XDataUserList. It is not possible to distinguish a XDataUserDict from a XDataUserList except by the name of the data structure. xdata The underlying XData instance. __init__(xdata: Optional[XData] = None, name='DefaultDict', appid='EZDXF') Setup a XDATA user dict name for the given appid. The data is stored in the given xdata object, or in a new created XData instance if None. Changes of the content has to be committed at the end to be stored in the underlying xdata object. Parameters • xdata (XData) – underlying XData instance, if None a new one will be created • name (str) – name of the user list • appid (str) – application specific AppID __str__() Return str(self). __len__() Returns len(self). __getitem__(key) Get self[key]. __setitem__(key, item) Set self[key] to value, key has to be a string. Raises DXFTypeError – key is not a string __delitem__(key) Delete self[key]. discard(key) Delete self[key], without raising a KeyError if key does not exist. __iter__() Implement iter(self). classmethod entity(entity: DXFEntity, name='DefaultDict', appid='EZDXF') -> Iterator[XDataUserDict] Context manager to manage a XDATA dict name for a given DXF entity. Appends the user dict to the existing XData instance or creates new XData instance. Parameters • entity (DXFEntity) – target DXF entity for the XDATA • name (str) – name of the user list • appid (str) – application specific AppID commit() -> None Store all changes to the underlying XData instance. This call is not required if using the entity() context manager. Raises • DXFValueError – invalid chars "\n" or "\r" in a string • DXFTypeError – invalid data type Custom XRecord The UserRecord and BinaryRecord classes help to store custom data in DXF files in XRecord objects a simple and safe way. This way requires DXF version R2000 or later, for DXF version R12 the only way to store custom data is Extended Data (XDATA). The UserRecord stores Python types and nested container types: int, float, str, Vec2, Vec3, list and dict. Requirements for Python structures: • The top level structure has to be a list. • Strings has to have max. 2049 characters and can not contain line breaks "\\n" or "\\r". • Dict keys have to be simple Python types: int, float, str. DXF Tag layout for Python types and structures stored in the XRecord object: Only for the UserRecord the first tag is (2, user record name). ┌──────┬──────────────────────────────────┐ │Type │ DXF Tag(s) │ ├──────┼──────────────────────────────────┤ │str │ (1, value) string with less than │ │ │ 2050 chars and including no line │ │ │ breaks │ ├──────┼──────────────────────────────────┤ │int │ (90, value) int 32-bit, │ │ │ restricted by the DXF standard │ │ │ not by Python! │ ├──────┼──────────────────────────────────┤ │float │ (40, value) “C” double │ ├──────┼──────────────────────────────────┤ │Vec2 │ (10, x), (20, y) │ ├──────┼──────────────────────────────────┤ │Vec3 │ (10, x) (20, y) (30, z) │ ├──────┼──────────────────────────────────┤ │list │ starts with (2, “[”) and ends │ │ │ with (2, “]”) │ ├──────┼──────────────────────────────────┤ │dict │ starts with (2, “{”) and ends │ │ │ with (2, “}”) │ └──────┴──────────────────────────────────┘ The BinaryRecord stores arbitrary binary data as BLOB. Storage size limits of XRECORD according the DXF reference: “This object is similar in concept to XDATA but is not limited by size or order.” For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files. SEE ALSO: • Tutorial: Storing Custom Data in DXF Files • Example at github • ezdxf.entities.XRecord UserRecord class ezdxf.urecord.UserRecord xrecord The underlying XRecord instance name The name of the UserRecord, an arbitrary string with less than 2050 chars and including no line breaks. data The Python data. The top level structure has to be a list (MutableSequence). Inside this container the following Python types are supported: str, int, float, Vec2, Vec3, list, dict Nested data structures are supported list or/and dict in list or dict. Dict keys have to be simple Python types: int, float, str. property handle: Optional[str] DXF handle of the underlying XRecord instance. __init__(xrecord: XRecord = None, *, name: str = 'UserRecord', doc: Drawing = None) Setup a UserRecord with the given name. The data is stored in the given xrecord object, or in a new created XRecord instance if None. If doc is not None the new xrecord is added to the OBJECTS section of the DXF document. Changes of the content has to be committed at the end to be stored in the underlying xrecord object. Parameters • xrecord (XRecord) – underlying XRecord instance, if None a new one will be created • name (str) – name of the user list • doc (Drawing) – DXF document or None __str__() Return str(self). commit() -> XRecord Store data in the underlying XRecord instance. This call is not required if using the class by the with statement. Raises • DXFValueError – invalid chars "\n" or "\r" in a string • DXFTypeError – invalid data type BinaryRecord class ezdxf.urecord.BinaryRecord xrecord The underlying XRecord instance data The binary data as bytes, bytearray or memoryview. property handle: Optional[str] DXF handle of the underlying XRecord instance. __init__(xrecord: XRecord = None, *, doc: Drawing = None) Setup a BinaryRecord. The data is stored in the given xrecord object, or in a new created XRecord instance if None. If doc is not None the new xrecord is added to the OBJECTS section of the DXF document. Changes of the content has to be committed at the end to be stored in the underlying xrecord object. Parameters • xrecord (XRecord) – underlying XRecord instance, if None a new one will be created • doc (Drawing) – DXF document or None __str__() -> str Return str(self). commit() -> XRecord Store binary data in the underlying XRecord instance. This call is not required if using the class by the with statement. Tools Functions DXF Unicode Decoder The DXF format uses a special form of unicode encoding: “\U+xxxx”. To avoid a speed penalty such encoded characters are not decoded automatically by the regular loading function:func:ezdxf.readfile, only the recover module does the decoding automatically, because this loading mode is already slow. This kind of encoding is most likely used only in older DXF versions, because since DXF R2007 the whole DXF file is encoded in utf8 and a special unicode encoding is not necessary. The ezdxf.has_dxf_unicode() and ezdxf.decode_dxf_unicode() are new support functions to decode unicode characters “\U+xxxx” manually. ezdxf.has_dxf_unicode(s: str) -> bool Detect if string s contains encoded DXF unicode characters “\U+xxxx”. ezdxf.decode_dxf_unicode(s: str) -> str Decode DXF unicode characters “\U+xxxx” in string s. Tools Some handy tool functions used internally by ezdxf. ezdxf.tools.juliandate(date: datetime) -> float ezdxf.tools.calendardate(juliandate: float) -> datetime ezdxf.tools.set_flag_state(flags: int, flag: int, state: bool = True) -> int Set/clear binary flag in data flags. Parameters • flags – data value • flag – flag to set/clear • state – True for setting, False for clearing ezdxf.tools.guid() -> str Returns a general unique ID, based on uuid.uuid4(). This function creates a GUID for the header variables $VERSIONGUID and $FINGERPRINTGUID, which matches the AutoCAD pattern {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}. ezdxf.tools.bytes_to_hexstr(data: bytes) -> str Returns data bytes as plain hex string. ezdxf.tools.suppress_zeros(s: str, leading: bool = False, trailing: bool = True) Suppress trailing and/or leading 0 of string s. Parameters • s – data string • leading – suppress leading 0 • trailing – suppress trailing 0 ezdxf.tools.normalize_text_angle(angle: float, fix_upside_down=True) -> float Normalizes text angle to the range from 0 to 360 degrees and fixes upside down text angles. Parameters • angle – text angle in degrees • fix_upside_down – rotate upside down text angle about 180 degree SAT Format “Encryption” ezdxf.tools.crypt.encode(text_lines: Iterable[str]) -> Iterable[str] Encode the Standard ACIS Text (SAT) format by AutoCAD “encryption” algorithm. ezdxf.tools.crypt.decode(text_lines: Iterable[str]) -> Iterable[str] Decode the Standard ACIS Text (SAT) format “encrypted” by AutoCAD. GfxAttribs New in version 0.18. The ezdxf.gfxattribs module provides the GfxAttribs class to create valid attribute dictionaries for the most often used DXF attributes supported by all graphical DXF entities. The advantage of using this class is auto-completion support by IDEs and an instant validation of the attribute values. import ezdxf from ezdxf.gfxattribs import GfxAttribs doc = ezdxf.new() msp = doc.modelspace() attribs = GfxAttribs(layer="MyLayer", color=ezdxf.colors.RED) line = msp.add_line((0, 0), (1, 0), dxfattribs=attribs) circle = msp.add_circle((0, 0), radius=1.0, dxfattribs=attribs) # Update DXF attributes of existing entities: attribs = GfxAttribs(layer="MyLayer2", color=ezdxf.colors.BLUE) # Convert GfxAttribs() to dict(), but this method cannot reset # attributes to the default values like setting layer to "0". line.update_dxf_attribs(dict(attribs)) # Using GfxAttribs.asdict(default_values=True), can reset attributes to the # default values like setting layer to "0", except for true_color and # transparency, which do not have default values, their absence is the # default value. circle.update_dxf_attribs(attribs.asdict(default_values=True)) # Remove true_color and transparency by assigning None attribs.transparency = None # reset to transparency by layer! attribs.rgb = None Validation features: • layer - string which can not contain certain characters: <>/\":;?*=` • color - AutoCAD Color Index (ACI) value as integer in the range from 0 to 257 • rgb - true color value as (red, green, blue) tuple, all channel values as integer values in the range from 0 to 255 • linetype - string which can not contain certain characters: <>/\":;?*=`, does not check if the linetype exists • lineweight - integer value in the range from 0 to 211, see Lineweights for valid values • transparency - float value in the range from 0.0 to 1.0 and -1.0 for transparency by block • ltscale - float value > 0.0 class ezdxf.gfxattribs.GfxAttribs(*, layer: str = '0', color: int = 256, rgb: Optional[Tuple[int, int, int]] = None, linetype: str = 'ByLayer', lineweight: int = - 1, transparency: Optional[float] = None, ltscale: float = 1.0) Represents often used DXF attributes of graphical entities. New in version 0.18. Parameters • layer (str) – layer name as string • color (int) – AutoCAD Color Index (ACI) color value as integer • rgb – RGB true color (red, green, blue) tuple, each channel value in the range from 0 to 255, None for not set • linetype (str) – linetype name, does not check if the linetype exist! • lineweight (int) – see Lineweights documentation for valid values • transparency (float) – transparency value in the range from 0.0 to 1.0, where 0.0 is opaque and 1.0 if fully transparent, -1.0 for transparency by block, None for transparency by layer • ltscale (float) – linetype scaling value > 0.0, default value is 1.0 Raises DXFValueError – invalid attribute value property layer: str layer name property color: int AutoCAD Color Index (ACI) color value property rgb: Optional[Tuple[int, int, int]] true color value as (red, green, blue) tuple, None for not set property linetype: str linetype name property lineweight: int property transparency: Optional[float] transparency value from 0.0 for opaque to 1.0 is fully transparent, -1.0 is for transparency by block and None if for transparency by layer property ltscale: float linetype scaling factor __str__() -> str Return str(self). __repr__() -> str Return repr(self). __iter__() -> Iterator[Tuple[str, Any]] Returns iter(self). asdict(default_values=False) -> Dict[str, Any] Returns the DXF attributes as dict, returns also the default values if argument default_values is True. The true_color and transparency attributes do not have default values, the absence of these attributes is the default value. items(default_values=False) -> List[Tuple[str, Any]] Returns the DXF attributes as list of name, value pairs, returns also the default values if argument default_values is True. The true_color and transparency attributes do not have default values, the absence of these attributes is the default value. classmethod load_from_header(doc: Drawing) -> GfxAttribs Load default DXF attributes from the HEADER section. There is no default true color value and the default transparency is not stored in the HEADER section. Loads following header variables: • $CLAYER - current layer name • $CECOLOR - current ACI color • $CELTYPE - current linetype name • $CELWEIGHT - current lineweight • $CELTSCALE - current linetype scaling factor write_to_header(doc: Drawing) -> None Write DXF attributes as default values to the HEADER section. Writes following header variables: • $CLAYER - current layer name, if a layer table entry exist in doc • $CECOLOR - current ACI color • $CELTYPE - current linetype name, if a linetype table entry exist in doc • $CELWEIGHT - current lineweight • $CELTSCALE - current linetype scaling factor classmethod from_entity(entity: DXFEntity) -> GfxAttribs Get the graphical attributes of an entity as GfxAttribs object. Text Tools MTextEditor class ezdxf.tools.text.MTextEditor(text: str = '') The MTextEditor is a helper class to build MTEXT content strings with support for inline codes to change color, font or paragraph properties. The result is always accessible by the text attribute or the magic __str__() function as str(MTextEditor("text")). All text building methods return self to implement a floating interface: e = MTextEditor("This example ").color("red").append("switches color to red.") mtext = msp.add_mtext(str(e)) The initial text height, color, text style and so on is determined by the DXF attributes of the MText entity. WARNING: The MTextEditor assembles just the inline code, which has to be parsed and rendered by the target CAD application, ezdxf has no influence to that result. Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not work across different CAD applications and keep the formatting in a logic manner like, do not change paragraph properties in the middle of a paragraph. There is no official documentation for the inline codes! Parameters text – init value of the MTEXT content string. text The MTEXT content as a simple string. append(text: str) -> MTextEditor Append text. __iadd__(text: str) -> MTextEditor Append text: e = MTextEditor("First paragraph.\P") e += "Second paragraph.\P") __str__() -> str Returns the MTEXT content attribute text. clear() Reset the content to an empty string. font(name: str, bold: bool = False, italic: bool = False) -> MTextEditor Set the text font by the font family name. Changing the font height should be done by the height() or the scale_height() method. The font family name is the name shown in font selection widgets in desktop applications: “Arial”, “Times New Roman”, “Comic Sans MS”. Switching the codepage is not supported. Parameters • name – font family name • bold – flag • italic – flag height(height: float) -> MTextEditor Set the absolute text height in drawing units. scale_height(factor: float) -> MTextEditor Scale the text height by a factor. This scaling will accumulate, which means starting at height 2.5 and scaling by 2 and again by 3 will set the text height to 2.5 x 2 x 3 = 15. The current text height is not stored in the MTextEditor, you have to track the text height by yourself! The initial text height is stored in the MText entity as DXF attribute char_height. width_factor(factor: float) -> MTextEditor Set the absolute text width factor. char_tracking_factor(factor: float) -> MTextEditor Set the absolute character tracking factor. oblique(angle: int) -> MTextEditor Set the text oblique angle in degrees, vertical is 0, a value of 15 will lean the text 15 degree to the right. color(name: str) -> MTextEditor Set the text color by color name: “red”, “yellow”, “green”, “cyan”, “blue”, “magenta” or “white”. aci(aci: int) -> MTextEditor Set the text color by AutoCAD Color Index (ACI) in range [0, 256]. rgb(rgb: Tuple[int, int, int]) -> MTextEditor Set the text color as RGB value. underline(text: str) -> MTextEditor Append text with a line below the text. overline(text: str) -> MTextEditor Append text with a line above the text. strike_through(text: str) -> MTextEditor Append text with a line through the text. group(text: str) -> MTextEditor Group text, all properties changed inside a group are reverted at the end of the group. AutoCAD supports grouping up to 8 levels. stack(upr: str, lwr: str, t: str = '^') -> MTextEditor Append stacked text upr over lwr, argument t defines the kind of stacking, the space ” ” after the “^” will be added automatically to avoid caret decoding: "^": vertical stacked without divider line, e.g. \SA^ B: A B "/": vertical stacked with divider line, e.g. \SX/Y: X - Y "#": diagonal stacked, with slanting divider line, e.g. \S1#4: 1/4 paragraph(props: ParagraphProperties) -> MTextEditor Set paragraph properties by a ParagraphProperties object. bullet_list(indent: float, bullets: Iterable[str], content: Iterable[str]) -> MTextEditor Build bulleted lists by utilizing paragraph indentation and a tabulator stop. Any string can be used as bullet. Indentation is a multiple of the initial MTEXT char height (see also docs about ParagraphProperties), which means indentation in drawing units is MText.dxf.char_height x indent. Useful UTF bullets: • “bull” U+2022 = • (Alt Numpad 7) • “circle” U+25CB = ○ (Alt Numpad 9) For numbered lists just use numbers as bullets: MTextEditor.bullet_list( indent=2, bullets=["1.", "2."], content=["first", "second"], ) Parameters • indent – content indentation as multiple of the initial MTEXT char height • bullets – iterable of bullet strings, e.g. ["-"] * 3, for 3 dashes as bullet strings • content – iterable of list item strings, one string per list item, list items should not contain new line or new paragraph commands. Constants stored in the MTextEditor class: ┌─────────────────┬────────┐ │NEW_LINE │ '\P' │ ├─────────────────┼────────┤ │NEW_PARAGRAPH │ '\P' │ ├─────────────────┼────────┤ │NEW_COLUMN │ '\N │ ├─────────────────┼────────┤ │UNDERLINE_START │ '\L' │ ├─────────────────┼────────┤ │UNDERLINE_STOP │ '\l' │ ├─────────────────┼────────┤ │OVERSTRIKE_START │ '\O' │ ├─────────────────┼────────┤ │OVERSTRIKE_STOP │ '\o' │ ├─────────────────┼────────┤ │STRIKE_START │ '\K' │ ├─────────────────┼────────┤ │STRIKE_STOP │ '\k' │ ├─────────────────┼────────┤ │ALIGN_BOTTOM │ '\A0;' │ ├─────────────────┼────────┤ │ALIGN_MIDDLE │ '\A1;' │ ├─────────────────┼────────┤ │ALIGN_TOP │ '\A2;' │ ├─────────────────┼────────┤ │NBSP │ '\~' │ ├─────────────────┼────────┤ │TAB │ '^I' │ └─────────────────┴────────┘ class ezdxf.tools.text.ParagraphProperties(indent=0, left=0, right=0, align=DEFAULT, tab_stops=[]) Stores all known MTEXT paragraph properties in a NamedTuple. Indentations and tab stops are multiples of the default text height MText.dxf.char_height. E.g. char_height is 0.25 and indent is 4, the real indentation is 4 x 0.25 = 1 drawing unit. The default tabulator stops are 4, 8, 12, … if no tabulator stops are explicit defined. Parameters • indent (float) – left indentation of the first line, relative to left, which means an indent of 0 has always the same indentation as left • left (float) – left indentation of the paragraph except for the first line • right (float) – left indentation of the paragraph • align – MTextParagraphAlignment enum • tab_stops – tuple of tabulator stops, as float or as str, float values are left aligned tab stops, strings with prefix "c" are center aligned tab stops and strings with prefix "r" are right aligned tab stops tostring() -> str Returns the MTEXT paragraph properties as MTEXT inline code e.g. "\pxi-2,l2;". class ezdxf.lldxf.const.MTextParagraphAlignment DEFAULT LEFT RIGHT CENTER JUSTIFIED DISTRIBUTED Single Line Text class ezdxf.tools.text.TextLine(text: str, font: AbstractFont) Helper class which represents a single line text entity (e.g. Text). Parameters • text – content string • font – ezdxf font definition like MonospaceFont or MatplotlibFont property width: float Returns the final (stretched) text width. property height: float Returns the final (stretched) text height. stretch(alignment: TextEntityAlignment, p1: Vec3, p2: Vec3) -> None Set stretch factors for FIT and ALIGNED alignments to fit the text between p1 and p2, only the distance between these points is important. Other given alignment values are ignore. font_measurements() -> FontMeasurements Returns the scaled font measurements. baseline_vertices(insert: Union[Sequence[float], Vec2, Vec3], halign: int = 0, valign: int = 0, angle: float = 0, scale: Tuple[float, float] = (1, 1)) -> List[‐ Vec3] Returns the left and the right baseline vertex of the text line. Parameters • insert – insertion location • halign – horizontal alignment left=0, center=1, right=2 • valign – vertical alignment baseline=0, bottom=1, middle=2, top=3 • angle – text rotation in radians • scale – scale in x- and y-axis as 2-tuple of float corner_vertices(insert: Union[Sequence[float], Vec2, Vec3], halign: int = 0, valign: int = 0, angle: float = 0, scale: Tuple[float, float] = (1, 1), oblique: float = 0) -> List[Vec3] Returns the corner vertices of the text line in the order bottom left, bottom right, top right, top left. Parameters • insert – insertion location • halign – horizontal alignment left=0, center=1, right=2 • valign – vertical alignment baseline=0, bottom=1, middle=2, top=3 • angle – text rotation in radians • scale – scale in x- and y-axis as 2-tuple of float • oblique – shear angle (slanting) in x-direction in radians static transform_2d(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]], insert: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), shift: Tuple[float, float] = (0, 0), rotation: float = 0, scale: Tuple[float, float] = (1, 1), oblique: float = 0) -> List[Vec3] Transform any vertices from the text line located at the base location at (0, 0) and alignment LEFT. Parameters • vertices – iterable of vertices • insert – insertion location • shift – (shift-x, shift-y) as 2-tuple of float • rotation – text rotation in radians • scale – (scale-x, scale-y) as 2-tuple of float • oblique – shear angle (slanting) in x-direction in radians Functions ezdxf.tools.text.caret_decode(text: str) -> str DXF stores some special characters using caret notation. This function decodes this notation to normalise the representation of special characters in the string. see: https://en.wikipedia.org/wiki/Caret_notation ezdxf.tools.text.estimate_mtext_content_extents(content: str, font: AbstractFont, column_width: float = 0.0, line_spacing_factor: float = 1.0) -> Tuple[float, float] Estimate the width and height of the MText content string. The result is very inaccurate if inline codes are used or line wrapping at the column border is involved! Column breaks \N will be ignored. This function uses the optional Matplotlib package if available. Parameters • content – the MText content string • font – font abstraction based on ezdxf.tools.fonts.AbstractFont • column_width – MText.dxf.width or 0.0 for an unrestricted column width • line_spacing_factor – MText.dxf.line_spacing_factor Returns Tuple[width, height] ezdxf.tools.text.estimate_mtext_extents(mtext: MText) -> Tuple[float, float] Estimate the width and height of a single column MText entity. This function is faster than the mtext_size() function, but the result is very inaccurate if inline codes are used or line wrapping at the column border is involved! This function uses the optional Matplotlib package if available. Returns Tuple[width, height] ezdxf.tools.text.fast_plain_mtext(text: str, split=False) -> Union[List[str], str] Returns the plain MTEXT content as a single string or a list of strings if split is True. Replaces \P by \n and removes other controls chars and inline codes. This function is more than 4x faster than plain_mtext(), but does not remove single letter inline commands with arguments without a terminating semicolon like this "\C1red text". NOTE: Well behaved CAD applications and libraries always create inline codes for commands with arguments with a terminating semicolon like this "\C1;red text"! Parameters • text – MTEXT content string • split – split content at line endings \P ezdxf.tools.text.is_text_vertical_stacked(text: DXFEntity) -> bool Returns True if the associated text Textstyle is vertical stacked. ezdxf.tools.text.is_upside_down_text_angle(angle: float, tol: float = 3.0) -> bool Returns True if the given text angle in degrees causes an upside down text in the WCS. The strict flip range is 90° < angle < 270°, the tolerance angle tol extends this range to: 90+tol < angle < 270-tol. The angle is normalized to [0, 360). Parameters • angle – text angle in degrees • tol – tolerance range in which text flipping will be avoided New in version 0.18. ezdxf.tools.text.leading(cap_height: float, line_spacing: float = 1.0) -> float Returns the distance from baseline to baseline. Parameters • cap_height – cap height of the line • line_spacing – line spacing factor as percentage of 3-on-5 spacing ezdxf.tools.text.plain_mtext(text: str, split=False, tabsize: int = 4) -> Union[List[str], str] Returns the plain MTEXT content as a single string or a list of strings if split is True. Replaces \P by \n and removes other controls chars and inline codes. This function is much slower than fast_plain_mtext(), but removes all inline codes. Parameters • text – MTEXT content string • split – split content at line endings \P • tabsize – count of replacement spaces for tabulators ^I ezdxf.tools.text.plain_text(text: str) -> str Returns the plain text for Text, Attrib and Attdef content. ezdxf.tools.text.safe_string(s: Optional[str], max_len: int = 255) -> str Returns a string with line breaks \n replaced by \P and the length limited to max_len. ezdxf.tools.text.text_wrap(text: str, box_width: Optional[float], get_text_width: Callable[[str], float]) -> List[str] Wrap text at \n and given box_width. This tool was developed for usage with the MTEXT entity. This isn’t the most straightforward word wrapping algorithm, but it aims to match the behavior of AutoCAD. Parameters • text – text to wrap, included \n are handled as manual line breaks • box_width – wrapping length, None to just wrap at \n • get_text_width – callable which returns the width of the given string ezdxf.tools.text.upright_text_angle(angle: float, tol: float = 3.0) -> float Returns a readable (upright) text angle in the range angle <= 90+tol or angle >= 270-tol. The angle is normalized to [0, 360). Parameters • angle – text angle in degrees • tol – tolerance range in which text flipping will be avoided New in version 0.18. Text Size Tools class ezdxf.tools.text_size.TextSize A frozen dataclass as return type for the text_size() function. width The text width in drawing units (float). cap_height The font cap-height in drawing units (float). total_height The font total-height = cap-height + descender-height in drawing units (float). ezdxf.tools.text_size.text_size(text: Text) -> TextSize Returns the measured text width, the font cap-height and the font total-height for a Text entity. This function uses the optional Matplotlib package if available to measure the final rendering width and font-height for the Text entity as close as possible. This function does not measure the real char height! Without access to the Matplotlib package the MonospaceFont is used and the measurements are very inaccurate. See the text2path add-on for more tools to work with the text path objects created by the Matplotlib package. class ezdxf.tools.text_size.MTextSize A frozen dataclass as return type for the mtext_size() function. total_width The total width in drawing units (float) total_height The total height in drawing units (float), same as max(column_heights). column_width The width of a single column in drawing units (float) gutter_width The space between columns in drawing units (float) column_heights A tuple of columns heights (float) in drawing units. Contains at least one column height and the column height is 0 for an empty column. column_count The count of columns (int). ezdxf.tools.text_size.mtext_size(mtext: MText, tool: Optional[MTextSizeDetector] = None) -> MTextSize Returns the total-width, -height and columns information for a MText entity. This function uses the optional Matplotlib package if available to do font measurements and the internal text layout engine to determine the final rendering size for the MText entity as close as possible. Without access to the Matplotlib package the MonospaceFont is used and the measurements are very inaccurate. Attention: The required full layout calculation is slow! The first call to this function with Matplotlib support is very slow, because Matplotlib lookup all available fonts on the system. To speedup the calculation and accepting inaccurate results you can disable the Matplotlib support manually: ezdxf.option.use_matplotlib = False ezdxf.tools.text_size.estimate_mtext_extents(mtext: MText) -> Tuple[float, float] Estimate the width and height of a single column MText entity. This function is faster than the mtext_size() function, but the result is very inaccurate if inline codes are used or line wrapping at the column border is involved! This function uses the optional Matplotlib package if available. Returns Tuple[width, height] Fonts The module ezdxf.tools.fonts manages the internal usage of fonts and has no relation how the DXF formats manages text styles. SEE ALSO: The Textstyle entity, the DXF way to define fonts. The tools in this module provide abstractions to get font measurements with and without the optional Matplotlib package. For a proper text rendering the font measurements are required. Ezdxf has a lean approach to package dependencies, therefore the rendering results without support from the optional Matplotlib package are not very good. HINT: If Matplotlib does not find an installed font and rebuilding the matplotlib font cache does not help, deleting the cache file ~/.matplotlib/fontlist-v330.json may help. Font Classes ezdxf.tools.fonts.make_font(ttf_path: str, cap_height: float, width_factor: float = 1.0) -> AbstractFont Factory function to create a font abstraction. Creates a MatplotlibFont if the Matplotlib font support is available and enabled or else a MonospaceFont. Parameters • ttf_path – raw font file name as stored in the Textstyle entity • cap_height – desired cap height in drawing units. • width_factor – horizontal text stretch factor class ezdxf.tools.fonts.AbstractFont(measurements: FontMeasurements) The ezdxf font abstraction. measurement The FontMeasurements data. abstract text_width(text: str) -> float abstract space_width() -> float class ezdxf.tools.fonts.MonospaceFont(cap_height: float, width_factor: float = 1.0, baseline: float = 0, descender_factor: float = 0.333, x_height_factor: float = 0.666) Defines a monospaced font without knowing the real font properties. Each letter has the same cap- and descender height and the same width. This font abstraction is used if no Matplotlib font support is available. Use the make_font() factory function to create a font abstraction. text_width(text: str) -> float Returns the text width in drawing units for the given text based on a simple monospaced font calculation. space_width() -> float Returns the width of a “space” char. class ezdxf.tools.fonts.MatplotlibFont(ttf_path: str, cap_height: float = 1.0, width_factor: float = 1.0) This class provides proper font measurement support by using the optional Matplotlib font support. Use the make_font() factory function to create a font abstraction. text_width(text: str) -> float Returns the text width in drawing units for the given text string. Text rendering and width calculation is done by the Matplotlib TextPath class. space_width() -> float Returns the width of a “space” char. Font Anatomy • A Visual Guide to the Anatomy of Typography: https://visme.co/blog/type-anatomy/ • Anatomy of a Character: https://www.fonts.com/content/learning/fontology/level-1/type-anatomy/anatomy Font Properties The default way of DXF to store fonts in the Textstyle entity by using the raw TTF file name is not the way how most render backends select fonts. The render backends and web technologies select the fonts by their properties. This list shows the Matplotlib properties: family List of font names in decreasing order of priority. The items may include a generic font family name, either “serif”, “sans-serif”, “cursive”, “fantasy”, or “monospace”. style “normal” (“regular”), “italic” or “oblique” stretch A numeric value in the range 0-1000 or one of “ultra-condensed”, “extra-condensed”, “condensed”, “semi-condensed”, “normal”, “semi-expanded”, “expanded”, “extra-expanded” or “ultra-expanded” weight A numeric value in the range 0-1000 or one of “ultralight”, “light”, “normal”, “regular”, “book”, “medium”, “roman”, “semibold”, “demibold”, “demi”, “bold”, “heavy”, “extra bold”, “black”. This way the backend can choose a similar font if the original font is not available. SEE ALSO: • Matplotlib: https://matplotlib.org/stable/api/font_manager_api.html • PyQt: https://doc.qt.io/archives/qtforpython-5.12/PySide2/QtGui/QFont.html • W3C: https://www.w3.org/TR/2018/REC-css-fonts-3-20180920/ class ezdxf.tools.fonts.FontFace(ttf, family, style, stretch, weight) This is the equivalent to the Matplotlib FontProperties class. ttf Raw font file name as string, e.g. “arial.ttf” family Family name as string, the default value is “sans-serif” style Font style as string, the default value is “normal” stretch Font stretch as string, the default value is “normal” weight Font weight as string, the default value is “normal” property is_italic: bool Returns True if font face is italic property is_oblique: bool Returns True if font face is oblique property is_bold: bool Returns True if font face weight > 400 class ezdxf.tools.fonts.FontMeasurements See Font Anatomy for more information. baseline cap_height x_height descender_height scale(factor: float = 1.0) -> FontMeasurements scale_from_baseline(desired_cap_height: float) -> FontMeasurements shift(distance: float = 0.0) -> FontMeasurements property cap_top: float property x_top: float property bottom: float property total_height: float Font Caching Ezdxf uses Matplotlib to manage fonts and caches the collected information. The default installation of ezdxf provides a basic set of font properties. It is possible to create your own font cache specific for your system: see ezdxf.options.font_cache_directory The font cache is loaded automatically at startup, if not disabled by setting config variable auto_load_fonts in [core] section to False : see Environment Variables ezdxf.tools.fonts.get_font_face(ttf_path: str, map_shx=True) -> FontFace Get cached font face definition by TTF file name e.g. “Arial.ttf”. This function translates a DXF font definition by the raw TTF font file name into a FontFace object. Fonts which are not available on the current system gets a default font face. Parameters • ttf_path – raw font file name as stored in the Textstyle entity • map_shx – maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt_____.ttf” ezdxf.tools.fonts.get_entity_font_face(entity: DXFEntity, doc=None) -> FontFace Returns the FontFace defined by the associated text style. Returns the default font face if the entity does not have or support the DXF attribute “style”. Supports the extended font information stored in Textstyle table entries. Pass a DXF document as argument doc to resolve text styles for virtual entities which are not assigned to a DXF document. The argument doc always overrides the DXF document to which the entity is assigned to. ezdxf.tools.fonts.get_font_measurements(ttf_path: str, map_shx=True) -> FontMeasurements Get cached font measurements by TTF file name e.g. “Arial.ttf”. Parameters • ttf_path – raw font file name as stored in the Textstyle entity • map_shx – maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt_____.ttf” ezdxf.tools.fonts.build_system_font_cache(*, path=None, rebuild=True) -> None Build system font cache and save it to directory path if given. Set rebuild to False to just add new fonts. Requires the Matplotlib package! A rebuild has to be done only after a new ezdxf installation, or new fonts were added to your system (which you want to use), or an update of ezdxf if you don’t use your own external font cache directory. See also: ezdxf.options.font_cache_directory ezdxf.tools.fonts.load(path=None, reload=False) Load all caches from given path or from default location, defined by ezdxf.options.font_cache_directory or the default cache from the ezdxf.tools folder. This function is called automatically at startup if not disabled by environment variable EZDXF_AUTO_LOAD_FONTS. ezdxf.tools.fonts.save(path=None) Save all caches to given path or to default location, defined by options.font_cache_directory or into the ezdxf.tools folder. ACIS Tools New in version 0.18. The ezdxf.acis sub-package provides some ACIS data management tools. The main goals of this tools are: 1. load and parse simple and known ACIS data structures 2. create and export simple and known ACIS data structures It is NOT a goal to load and edit arbitrary existing ACIS structures. Don’t even try it! These tools cannot replace the official ACIS SDK due to the complexity of the data structures and the absence of an ACIS kernel. Without access to the full documentation it is very cumbersome to reverse-engineer entities and their properties, therefore the analysis of the ACIS data structures is limited to the use as embedded data in DXF and DWG files. The ezdxf library does not provide an ACIS kernel and there are no plans for implementing one because this is far beyond my capabilities, but it is possible to extract geometries made up only by flat polygonal faces (polyhedron) from ACIS data. Exporting polyhedrons as ACIS data and loading this DXF file by Autodesk products or BricsCAD works for SAT data for DXF R2000-R2010 and for SAB data for DXF R2013-R2018. IMPORTANT: Always import from the public interface module ezdxf.acis.api, the internal package and module structure may change in the future and imports from other modules than api will break. Functions ezdxf.acis.api.load_dxf(entity: DXFEntity) -> List[Body] Load the ACIS bodies from the given DXF entity. This is the recommended way to load ACIS data. The DXF entity has to be an ACIS based entity and inherit from ezdxf.entities.Body. The entity has to be bound to a valid DXF document and the DXF version of the document has to be DXF R2000 or newer. Raises • DXFTypeError – invalid DXF entity type • DXFValueError – invalid DXF document • DXFVersionError – invalid DXF version WARNING: Only a limited count of ACIS entities is supported, all unsupported entities are loaded as NONE_ENTITY and their data is lost. Exporting such NONE_ENTITIES will raise an ExportError exception. To emphasize that again: It is not possible to load and re-export arbitrary ACIS data! Example: import ezdxf from ezdxf.acis import api as acis doc = ezdxf.readfile("your.dxf") msp = doc.modelspace() for e in msp.query("3DSOLID"): bodies = acis.load_dxf(e) ... ezdxf.acis.api.export_dxf(entity: DXFEntity, bodies: Sequence[Body]) Store the ACIS bodies in the given DXF entity. This is the recommended way to set ACIS data of DXF entities. The DXF entity has to be an ACIS based entity and inherit from ezdxf.entities.Body. The entity has to be bound to a valid DXF document and the DXF version of the document has to be DXF R2000 or newer. Raises • DXFTypeError – invalid DXF entity type • DXFValueError – invalid DXF document • DXFVersionError – invalid DXF version Example: import ezdxf from ezdxf.render import forms from ezdxf.acis import api as acis doc = ezdxf.new("R2000") msp = doc.modelspace() # create an ACIS body from a simple cube-mesh body = acis.body_from_mesh(forms.cube()) solid3d = msp.add_3dsolid() acis.export_dxf(solid3d, [body]) doc.saveas("cube.dxf") ezdxf.acis.api.load(data: Union[str, Sequence[str], bytes, bytearray]) -> List[Body] Returns a list of Body entities from SAT or SAB data. Accepts SAT data as a single string or a sequence of strings and SAB data as bytes or bytearray. ezdxf.acis.api.export_sat(bodies: Sequence[Body], version: int = 700) -> List[str] Export one or more Body entities as text based SAT data. ACIS version 700 is sufficient for DXF versions R2000, R2004, R2007 and R2010, later DXF versions require SAB data. Raises • ExportError – ACIS structures contain unsupported entities • InvalidLinkStructure – corrupt link structure ezdxf.acis.api.export_sab(bodies: Sequence[Body], version: int = 21800) -> bytes Export one or more Body entities as binary encoded SAB data. ACIS version 21800 is sufficient for DXF versions R2013 and R2018, earlier DXF versions require SAT data. Raises • ExportError – ACIS structures contain unsupported entities • InvalidLinkStructure – corrupt link structure ezdxf.acis.api.mesh_from_body(body: Body, merge_lumps=True) -> List[MeshTransformer] Returns a list of MeshTransformer instances from the given ACIS Body entity. The list contains multiple meshes if merge_lumps is False or just a single mesh if merge_lumps is True. The ACIS format stores the faces in counter-clockwise orientation where the face-normal points outwards (away) from the solid body (material). NOTE: This function returns meshes build up only from flat polygonal Face entities, for a tessellation of more complex ACIS entities (spline surfaces, tori, cones, …) is an ACIS kernel required which ezdxf does not provide. Parameters • body – ACIS entity of type Body • merge_lumps – returns all Lump entities from a body as a single mesh if True otherwise each Lump entity is a separated mesh Raises TypeError – given body entity has invalid type The following images show the limitations of the mesh_from_body() function. The first image shows the source 3DSOLID entities with subtraction of entities with flat and curved faces: [image] Example script to extracts all flat polygonal faces as meshes: import ezdxf from ezdxf.acis import api as acis doc = ezdxf.readfile("3dsolids.dxf") msp = doc.modelspace() doc_out = ezdxf.new() msp_out = doc_out.modelspace() for e in msp.query("3DSOLID"): for body in acis.load_dxf(data): for mesh in acis.mesh_from_body(body): mesh.render_mesh(msp_out) doc_out.saveas("meshes.dxf") The second image shows the flat faces extracted from the 3DSOLID entities and exported as Mesh entities: [image] As you can see all faces which do not have straight lines as boundaries are lost. ezdxf.acis.api.body_from_mesh(mesh: MeshBuilder, precision: int = 6) -> Body Returns a ACIS Body entity from a MeshBuilder instance. This entity can be assigned to a Solid3d DXF entity as SAT or SAB data according to the version your DXF document uses (SAT for DXF R2000 to R2010 and SAB for DXF R2013 and later). If the mesh contains multiple separated meshes, each mesh will be a separated Lump node. If each mesh should get its own Body entity, separate the meshes beforehand by the method separate_meshes. A closed mesh creates a solid body and an open mesh creates an open (hollow) shell. The detection if the mesh is open or closed is based on the edges of the mesh: if all edges of mesh have two adjacent faces the mesh is closed. The current implementation applies automatically a vertex optimization, which merges coincident vertices into a single vertex. Exceptions class ezdxf.acis.api.AcisException Base exception of the ezdxf.acis package. class ezdxf.acis.api.ParsingError Exception raised when loading invalid or unknown ACIS structures. class ezdxf.acis.api.ExportError Exception raised when exporting invalid or unknown ACIS structures. class ezdxf.acis.api.InvalidLinkStructure Exception raised when the internal link structure is damaged. Entities A document (sat.pdf) about the basic ACIS 7.0 file format is floating in the internet. This section contains the additional information about the entities, I got from analyzing the SAT data extracted from DXF files exported by BricsCAD. This documentation ignores the differences to the ACIS format prior to version 7.0 and all this differences are handled internally. Writing support for ACIS version < 7.0 is not required because all CAD applications should be able to process version 7.0, even if embedded in a very old DXF R2000 format (tested with Autodesk TrueView, BricsCAD and Nemetschek Allplan). The first goal is to document the entities which are required to represent a geometry as flat polygonal faces (polyhedron), which can be converted into a MeshBuilder object. Topology Entities: • Body • Lump • Shell • Face • Loop • Coedge • Edge • Vertex Geometry Entities: • Transform • Surface • Plane • Curve • StraightCurve • Point ezdxf.acis.entities.NONE_REF Special sentinel entity which supports the type attribute and the is_none property. Represents all unset entities. Use this idiom on any entity type to check if an entity is unset: if entity.is_none: ... AcisEntity class ezdxf.acis.entities.AcisEntity Base class for all ACIS entities. type Name of the type as str. id Unique id as int or -1 if not set. attributes Reference to the first Attribute entity (not supported). is_none True for unset entities represented by the NONE_REF instance. Transform class ezdxf.acis.entities.Transform(AcisEntity) Represents an affine transformation operation which transform the body to the final location, size and rotation. matrix Transformation matrix of type ezdxf.math.Matrix44. Body class ezdxf.acis.entities.Body(AcisEntity) Represents a solid geometry, which can consist of multiple Lump entities. pattern Reference to the Pattern entity. lump Reference to the first Lump entity wire Reference to the first Wire entity transform Reference to the Transform entity (optional) lumps() -> List[Lump] Returns all linked Lump entities as a list. append_lump(lump: Lump) -> None Append a Lump entity as last lump. Pattern class ezdxf.acis.entities.Pattern(AcisEntity) Not implemented. Lump class ezdxf.acis.entities.Lump(AcisEntity) The lump represents a connected entity and there can be multiple lumps in a Body. Multiple lumps are linked together by the next_lump attribute which points to the next lump entity the last lump has a NONE_REF as next lump. The body attribute references to the parent Body entity. next_lump Reference to the next Lump entity, the last lump references NONE_REF. shell Reference to the Shell entity. body Reference to the parent Body entity. shells() -> List[Shell] Returns all linked Shell entities as a list. append_shell(shell: Shell) -> None Append a Shell entity as last shell. Wire class ezdxf.acis.entities.Wire(AcisEntity) Not implemented. Shell class ezdxf.acis.entities.Shell(AcisEntity) A shell defines the boundary of a solid object or a void (subtraction object). A shell references a list of Face and Wire entities. All linked Shell entities are disconnected. next_shell Reference to the next Shell entity, the last shell references NONE_REF. subshell Reference to the first Subshell entity. face Reference to the first Face entity. wire Reference to the first Wire entity. lump Reference to the parent Lump entity. faces() -> List[Face] Returns all linked Face entities as a list. append_face(face: Face) -> None Append a Face entity as last face. Subshell class ezdxf.acis.entities.Subshell(AcisEntity) Not implemented. Face class ezdxf.acis.entities.Face(AcisEntity) A face is the building block for Shell entities. The boundary of a face is represented by one or more Loop entities. The spatial geometry of the face is defined by the surface object, which is a bounded or unbounded parametric 3d surface (plane, ellipsoid, spline-surface, …). next_face Reference to the next Face entity, the last face references NONE_REF. loop Reference to the first Loop entity. shell Reference to the parent Shell entity. subshell Reference to the parent Subshell entity. surface Reference to the parametric Surface geometry. sense Boolean value of direction of the face normal with respect to the Surface entity: • True: “reversed” direction of the face normal • False: “forward” for same direction of the face normal double_sided Boolean value which indicates the sides of the face: • True: the face is part of a hollow object and has two sides. • False: the face is part of a solid object and has only one side which points away from the “material”. containment Unknown meaning. If double_sided is True: • True is “in” • False is “out” loops() -> List[Loop] Returns all linked Loop entities as a list. append_loop(loop: Loop) -> None Append a Loop entity as last loop. Loop class ezdxf.acis.entities.Loop(AcisEntity) A loop represents connected coedges which are building the boundaries of a Face, there can be multiple loops for a single face e.g. faces can contain holes. The coedge attribute references the first Coedge of the loop, the additional coedges are linked to this first Coedge. In closed loops the coedges are organized as a circular list, in open loops the last coedge references the NONE_REF entity as next_coedge and the first coedge references the NONE_REF as prev_coedge. next_loop Reference to the next Loop entity, the last loop references NONE_REF. coedge Reference to the first Coedge entity. face Reference to the parent Face entity. coedges() -> List[Coedge] Returns all linked Coedge entities as a list. set_coedges(coedges: List[Coedge], close=True) -> None Set all coedges of a loop at once. Coedge class ezdxf.acis.entities.Coedge(AcisEntity) The coedges are a double linked list where next_coedge points to the next Coedge and prev_coedge to the previous Coedge. The partner_coedge attribute references the first partner Coedge of an adjacent Face, the partner edges are organized as a circular list. In a manifold closed surface each Face is connected to one partner face by an Coedge. In a non-manifold surface a face can have more than one partner face. next_coedge References the next Coedge, reference the NONE_REF if it is the last coedge in an open Loop. prev_coedge References the previous Coedge, reference the NONE_REF if it is the first coedge in an open Loop. partner_coedge References the partner Coedge of an adjacent Face entity. The partner coedges are organized in a circular list. edge References the Edge entity. loop References the parent Loop entity. pcurve References the PCurve entity. Edge class ezdxf.acis.entities.Edge(AcisEntity) The Edge entity represents the physical edge of an object. Its geometry is defined by the bounded portion of a parametric space curve. This bounds are stored as object-space Vertex entities. start_vertex The start Vertex of the space-curve in object coordinates, if NONE_REF the curve is unbounded in this direction. start_param The parametric starting bound for the parametric curve. Evaluating the curve for this parameter should return the coordinates of the start_vertex. end_vertex The end Vertex of the space-curve in object coordinates, if NONE_REF the curve is unbounded in this direction. end_param The parametric end bound for the parametric curve. coedge Parent Coedge of this edge. curve The parametric space-curve which defines this edge. The curve can be the NULL_REF while both Vertex entities are the same vertex. In this case the Edge represents an single point like the apex of a cone. sense Boolean value which indicates the direction of the edge: • True: the edge has the “reversed” direction as the underlying curve • False: the edge has the same direction as the underlying curve (“forward”) convexity Unknown meaning, always the string “unknown”. Vertex class ezdxf.acis.entities.Vertex(AcisEntity) Represents a vertex of an Edge entity and references a Point entity. point The spatial location in object-space as Point entity. edge Parent Edge of this vertex. The vertex can be referenced by multiple edges, anyone of them can be the parent of the vertex. Surface class ezdxf.acis.entities.Surface(AcisEntity) Abstract base class for all parametric surfaces. The parameterization of any Surface maps a 2D rectangle (u, v parameters) into the spatial object-space (x, y, z). u_bounds Tuple of (start bound, end bound) parameters as two floats which define the bounds of the parametric surface in the u-direction, one or both values can be math.inf which indicates an unbounded state of the surface in that direction. v_bounds Tuple of (start bound, end bound) parameters as two floats which define the bounds of the parametric surface in the v-direction, one or both values can be math.inf which indicates an unbounded state of the surface in that direction. abstract evaluate(u: float, v: float) -> Vec3 Returns the spatial location at the parametric surface for the given parameters u and v. Plane class ezdxf.acis.entities.Plane(Surface) Defines a flat plan as parametric surface. origin Location vector of the origin of the flat plane as Vec3. normal Normal vector of the plane as Vec3. Has to be an unit-vector! u_dir Direction vector of the plane in u-direction as Vec3. Has to be an unit-vector! v_dir Direction vector of the plane in v-direction as Vec3. Has to be an unit-vector! reverse_v Boolean value which indicates the orientation of the coordinate system: • True: left-handed system, the v-direction is reversed and the normal vector is v_dir cross u_dir. • False: right-handed system and the normal vector is u_dir cross v_dir. Curve class ezdxf.acis.entities.Curve(AcisEntity) Abstract base class for all parametric curves. The parameterization of any Curve maps a 1D line (the parameter) into the spatial object-space (x, y, z). bounds Tuple of (start bound, end bound) parameters as two floats which define the bounds of the parametric curve, one or both values can be math.inf which indicates an unbounded state of the curve in that direction. abstract evaluate(param: float) -> Vec3 Returns the spatial location at the parametric curve for the given parameter. StraightCurve class ezdxf.acis.entities.StraightCurve(Curve) Defines a straight line as parametric curve. origin Location vector of the origin of the straight line as Vec3. direction Direction vector the straight line as Vec3. Has to be an unit-vector! PCurve class ezdxf.acis.entities.PCurve(AcisEntity) Not implemented. Point class ezdxf.acis.entities.Point(AcisEntity) Represents a point in the 3D object-space. location Cartesian coordinates as Vec3. Global Options Global Options Object The global ezdxf options are stored in the object ezdxf.options. Recommended usage of the global options object: import ezdxf value = ezdxf.options.attribute The options object uses the Standard Python class ConfigParser to manage the configuration. Shortcut attributes like test_files are simple properties and most shortcuts are read only marked by (Read only), read and writeable attributes are marked by (Read/Write). To change options, especially the read only attributes, you have to edit the config file with a text editor, or set options by the set() method and write the current configuration into a config file. Config Files New in version 0.16.5. The default config files are loaded from the user home directory as “~/.config/ezdxf/ezdxf.ini”, and the current working directory as “./ezdxf.ini”. A custom config file can be specified by the environment variable EZDXF_CONFIG_FILE. Ezdxf follows the XDG Base Directory specification if the environment variable XDG_CONFIG_HOME is set. The config file loading order: 1. user home directory: “~/.config/ezdxf/ezdxf.ini” 2. current working directory: “./ezdxf.ini” 3. config file specified by EZDXF_CONFIG_FILE A configuration file that is loaded later does not replace the previously loaded ones, only the existing options in the newly loaded file are added to the configuration and can overwrite existing options. Configuration files are regular INI files, managed by the standard Python ConfigParser class. File Structure: [core] default_dimension_text_style = OpenSansCondensed-Light test_files = D:\Source\dxftest font_cache_directory = load_proxy_graphics = true store_proxy_graphics = true log_unprocessed_tags = false filter_invalid_xdata_group_codes = true write_fixed_meta_data_for_testing = false disable_c_ext = false [browse-command] text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num} Modify and Save Changes This code shows how to get and set values of the underlying ConfigParser object, but use the shortcut attributes if available: # Set options, value has to ba a str, use "true"/"false" for boolean values ezdxf.options.set(section, key, value) # Get option as string value = ezdxf.options.get(section, key, default="") # Special getter for boolean, int and float value = ezdxf.options.get_bool(section, key, default=False) value = ezdxf.options.get_int(section, key, default=0) value = ezdxf.options.get_float(section, key, default=0.0) If you set options, they are not stored automatically in a config file, you have to write back the config file manually: # write back the default user config file "ezdxf.ini" in the # user home directory ezdxf.options.write_home_config() # write back to the default config file "ezdxf.ini" in the # current working directory ezdxf.options.write_file() # write back to a specific config file ezdxf.options.write_file("my_config.ini") # which has to be loaded manually at startup ezdxf.options.read_file("my_config.ini") This example shows how to change the test_files path and save the changes into a custom config file “my_config.ini”: import ezdxf test_files = Path("~/my-dxf-test-files").expand_user() ezdxf.options.set( ezdxf.options.CORE, # section "test_files", # key "~/my-dxf-test-files", # value ) ezdxf.options.write_file("my_config.ini") Use a Custom Config File You can specify a config file by the environment variable EZDXF_CONFIG_FILE, which is loaded after the default config files. C:\> set EZDXF_CONFIG_FILE=D:\user\path\custom.ini Custom config files are not loaded automatically like the default config files. This example shows how to load the previous created custom config file “my_config.ini” from the current working directory: import ezdxf ezdxf.options.read("my_config.ini") That is all and because this is the last loaded config file, it overrides all default config files and the config file specified by EZDXF_CONFIG_FILE. Functions ezdxf.options.set(section: str, key: str, value: str) Set option key in section to values as str. ezdxf.options.get(section: str, key: str, default: str = '') -> str Get option key in section as string. ezdxf.options.get_bool(section: str, key: str, default: bool = False) -> bool Get option key in section as bool. ezdxf.options.get_int(section: str, key: str, default: int = 0) -> int Get option key in section as int. ezdxf.options.get_float(section: str, key: str, default: float = 0.0) -> flot Get option key in section as float. ezdxf.options.write(fp: TextIO) Write configuration into given file object fp, the file object must be a writeable text file with “utf8” encoding. ezdxf.options.write_file(filename: str = 'ezdxf.ini') Write current configuration into file filename, default is “ezdxf.ini” in the current working directory. ezdxf.options.write_home_config() Write configuration into file “~/.config/ezdxf/ezdxf.ini”, $XDG_CONFIG_HOME is supported if set. ezdxf.options.read_file(filename: str) Append content from config file filename, but does not reset the configuration. ezdxf.options.print() Print configuration to stdout. ezdxf.options.reset() Reset options to factory default values. ezdxf.options.delete_default_config_files() Delete the default config files “ezdxf.ini” in the current working and in the user home directory “~/.config/ezdxf”, $XDG_CONFIG_HOME is supported if set. ezdxf.options.preserve_proxy_graphics(state=True) Enable/disable proxy graphic load/store support by setting the options load_proxy_graphics and store_proxy_graphics to state. ezdxf.options.loaded_config_files Read only property of loaded config files as tuple for Path objects. Core Options For all core options the section name is core. Default Dimension Text Style The default dimension text style is used by the DIMENSION renderer of ezdxf, if the specified text style exist in the STYLE table. To use any of the default style of ezdxf you have to setup the styles at the creation of the DXF document: ezdxf.new(setup=True), or setup the ezdxf default styles for a loaded DXF document: import ezdxf from ezdxf.tool.standard import setup_drawing doc = ezdxf.readfile("your.dxf") setup_drawing(doc) Config file key: default_dimension_text_style Shortcut attribute: ezdxf.options.default_dimension_text_style (Read/Write) Get/Set default text style for DIMENSION rendering, default value is OpenSansCondensed-Light. Font Cache Directory Ezdxf has a bundled font cache to have faster access to font metrics. This font cache includes only fonts installed on the developing workstation. To add the fonts of your computer to this cache, you have to create your own external font cache. This has to be done only once after ezdxf was installed, or to add new installed fonts to the cache, and this requires the Matplotlib package. This example shows, how to create an external font cache in the recommended directory of the XDG Base Directory specification: "~/.cache/ezdxf". import ezdxf from ezdxf.tools import fonts # xdg_path() returns "$XDG_CACHE_HOME/ezdxf" or "~/.cache/ezdxf" if # $XDG_CACHE_HOME is not set font_cache_dir = ezdxf.options.xdg_path("XDG_CACHE_HOME", ".cache") fonts.build_system_font_cache(path=font_cache_dir) ezdxf.options.font_cache_directory = font_cache_dir # Save changes to the default config file "~/.config/ezdxf/ezdxf.ini" # to load the font cache always from the new location. ezdxf.options.write_home_config() Config file key: font_cache_directory Shortcut attribute: ezdxf.options.font_cache_directory (Read/Write) Get/set the font cache directory, if the directory is an empty string, the bundled font cache is used. Expands “~” construct automatically. Load Proxy Graphic Proxy graphics are not essential for DXF files, but they can provide a simple graphical representation for complex entities, but extra memory is needed to store this information. You can save some memory by not loading the proxy graphic, but the proxy graphic is lost if you write back the DXF file. The current version of ezdxf uses this proxy graphic to render MLEADER entities by the drawing add-on. Config file key: load_proxy_graphics Shortcut attribute: ezdxf.options.load_proxy_graphics (Read/Write) Load proxy graphics if True, default is True. Store Proxy Graphic Prevent exporting proxy graphics if set to False. Config file key: store_proxy_graphics Shortcut attribute: ezdxf.options.store_proxy_graphics (Read/Write) Export proxy graphics if True, default is True. Support Directories Search directories for support files like .ctb or .stb files. Config file key: support_dirs Shortcut attribute: ezdxf.options.support_dirs (Read/Write) Search directories as list of strings. Debugging Options For all debugging options the section name is core. Test Files Path to test files. Some of the CADKit test files are used by the integration tests, these files should be located in the ezdxf.options.test_files_path / "CADKitSamples" folder. Config file key: test_files Shortcut attributes: ezdxf.options.test_files (Read only) Returns the path to the ezdxf test files as str, expands “~” construct automatically. ezdxf.options.test_files_path (Read only) Path to test files as pathlib.Path object. Filter Invalid XDATA Group Codes Only a very limited set of group codes is valid in the XDATA section and AutoCAD is very picky about that. Ezdxf removes invalid XDATA group codes if this option is set to True, but this needs processing time, which is wasted if you get your DXF files from trusted sources like AutoCAD or BricsCAD. Config file key: filter_invalid_xdata_group_codes ezdxf.options.filter_invalid_xdata_group_codes (Read only) Filter invalid XDATA group codes, default value is True. Log Unprocessed Tags Logs unprocessed DXF tags, this helps to find new and undocumented DXF features. Config file key: log_unprocessed_tags ezdxf.options.log_unprocessed_tags (Read/Write) Log unprocessed DXF tags for debugging, default value is False. Write Fixed Meta Data for Testing Write the DXF files with fixed meta data to test your DXF files by a diff-like command, this is necessary to get always the same meta data like the saving time stored in the HEADER section. This may not work across different ezdxf versions! Config file key: write_fixed_meta_data_for_testing ezdxf.options.write_fixed_meta_data_for_testing (Read/Write) Enable this option to always create same meta data for testing scenarios, e.g. to use a diff-like tool to compare DXF documents, default is False. Disable C-Extension It is possible to deactivate the optional C-extensions if there are any issues with the C-extensions. This has to be done in a default config file or by environment variable before the first import of ezdxf. For pypy3 the C-extensions are always disabled, because the JIT compiled Python code is much faster. IMPORTANT: This option works only in the default config files, user config files which are loaded by ezdxf.options.read_file() cannot disable the C-Extensions, because at this point the setup process of ezdxf is already finished! Config file key: disable_c_ext ezdxf.options.disable_c_ext (Read only) This option disables the C-extensions if True. This can only be done before the first import of ezdxf by using a config file or the environment variable EZDXF_DISABLE_C_EXT. Use C-Extensions ezdxf.options.use_c_ext (Read only) Shows the actual state of C-extensions usage. Use Matplotlib This option can deactivate Matplotlib support for testing. This option is not stored in the ConfigParser object and is therefore not supported by config files! Only attribute access is supported: ezdxf.options.use_matplotlib (Read/Write) Activate/deactivate Matplotlib support (e.g. for testing) if Matplotlib is installed, else use_matplotlib is always False. Environment Variables Some feature can be controlled by environment variables. Command line example for disabling the optional C-extensions on Windows: C:\> set EZDXF_DISABLE_C_EXT=1 IMPORTANT: If you change any environment variable, you have to restart the Python interpreter! EZDXF_DISABLE_C_EXT Set environment variable EZDXF_DISABLE_C_EXT to 1 or True to disable the usage of the C-extensions. EZDXF_TEST_FILES Path to the ezdxf test files required by some tests, for instance the CADKit sample files should be located in the EZDXF_TEST_FILES/CADKitSamples folder. See also option ezdxf.options.test_files. EZDXF_CONFIG_FILE Specifies a user config file which will be loaded automatically after the default config files at the first import of ezdxf. Miscellaneous Zoom Layouts New in version 0.16. These functions mimic the ZOOM commands in CAD applications. Zooming means resetting the current viewport limits to new values. The coordinates for the functions center() and window() are drawing units for the model space and paper space units for paper space layouts. The modelspace units in Drawing.units are ignored. The extents detection for the functions entities() and extents() is done by the ezdxf.bbox module. Read the associated documentation to understand the limitations of the ezdxf.bbox module. Tl;dr The extents detection is slow and not accurate. Because the ZOOM operations in CAD applications are not that precise, then zoom functions of this module uses the fast bounding box calculation mode of the bbox module, which means the argument flatten is always False for extents() function calls. The region displayed by CAD applications also depends on the aspect ratio of the application window, which is not available to ezdxf, therefore the viewport size is just an educated guess of an aspect ratio of 2:1 (16:9 minus top toolbars and the bottom status bar). WARNING: All zoom functions replace the current viewport configuration by a single window configuration. Example to reset the main CAD viewport of the model space to the extents of its entities: import ezdxf from ezdxf import zoom doc = ezdxf.new() msp = doc.modelspace() ... # add your DXF entities zoom.extents(msp) doc.saveas("your.dxf") ezdxf.zoom.center(layout: Layout, point: Union[Sequence[float], Vec2, Vec3], size: Union[Sequence[float], Vec2, Vec3]) Resets the active viewport center of layout to the given point, argument size defines the width and height of the viewport. Replaces the current viewport configuration by a single window configuration. ezdxf.zoom.objects(layout: Layout, entities: Iterable[DXFEntity], factor: float = 1) Resets the active viewport limits of layout to the extents of the given entities. Only entities in the given layout are taken into account. The argument factor scales the viewport limits. Replaces the current viewport configuration by a single window configuration. ezdxf.zoom.extents(layout: Layout, factor: float = 1) Resets the active viewport limits of layout to the extents of all entities in this layout. The argument factor scales the viewport limits. Replaces the current viewport configuration by a single window configuration. ezdxf.zoom.window(layout: Layout, p1: Union[Sequence[float], Vec2, Vec3], p2: Union[Sequence[float], Vec2, Vec3]) Resets the active viewport limits of layout to the lower left corner p1 and the upper right corner p2. Replaces the current viewport configuration by a single window configuration. Load DXF Comments ezdxf.comments.from_stream(stream: TextIO, codes: Set[int] = None) -> Iterable[DXFTag] Yields comment tags from text stream as DXFTag objects. Parameters • stream – input text stream • codes – set of group codes to yield additional DXF tags e.g. {5, 0} to also yield handle and structure tags ezdxf.comments.from_file(filename: str, codes: Set[int] = None) -> Iterable[DXFTag] Yields comment tags from file filename as DXFTag objects. Parameters • filename – filename as string • codes – yields also additional tags with specified group codes e.g. {5, 0} to also yield handle and structure tags
LAUNCHER
The command line script ezdxf launches various sub-commands: ┌────────────┬──────────────────────────────────┐ │pp │ DXF pretty printer, replacement │ │ │ for the previous dxfpp command │ ├────────────┼──────────────────────────────────┤ │audit │ Audit and repair DXF files │ ├────────────┼──────────────────────────────────┤ │draw │ Draw and convert DXF files by │ │ │ the Matplotlib backend │ ├────────────┼──────────────────────────────────┤ │view │ PyQt DXF file viewer │ ├────────────┼──────────────────────────────────┤ │pillow │ Draw and convert DXF files by │ │ │ the Pillow backend │ ├────────────┼──────────────────────────────────┤ │browse │ PyQt DXF structure browser for │ │ │ DXF debugging and curious people │ ├────────────┼──────────────────────────────────┤ │browse-acis │ PyQt ACIS entity content browser │ │ │ for SAT/SAB debugging │ ├────────────┼──────────────────────────────────┤ │strip │ Strip comments and │ │ │ THUMBNAILIMAGE section from DXF │ │ │ files │ ├────────────┼──────────────────────────────────┤ │config │ Manage config files │ ├────────────┼──────────────────────────────────┤ │info │ Show information and optional │ │ │ stats of DXF files as loaded by │ │ │ ezdxf │ └────────────┴──────────────────────────────────┘ The help option -h is supported by the main script and all sub-commands: C:\> ezdxf -h usage: ezdxf [-h] [-V] [-v] [--config CONFIG] [--log LOG] {pp,audit,draw,view,browse,browse-acis,strip,config} ... Command launcher for the Python package "ezdxf": https://pypi.org/project/ezdxf/ positional arguments: {pp,audit,draw,view,browse,strip} pp pretty print DXF files as HTML file audit audit and repair DXF files draw draw and convert DXF files by Matplotlib view view DXF files by the PyQt viewer pillow draw and convert DXF files by Pillow browse browse DXF file structure browse-acis browse ACIS structures in DXF files strip strip comments from DXF files config manage config files info show information and optional stats of DXF files loaded by ezdxf, this may not represent the original content of the file, use the browse command to see the original content optional arguments: -h, --help show this help message and exit -V, --version show version and exit -v, --verbose give more output --config CONFIG path to a config file --log LOG path to a verbose appending log NOTE: The ezdxf script is the only executable script installed on the user system. Pretty Printer Pretty print the DXF text content as HTML file and open the file in the default web browser: C:\> ezdxf pp -o gear.dxf [image] Print help: C:\> ezdxf pp -h usage: ezdxf pp [-h] [-o] [-r] [-x] [-l] [-s SECTIONS] FILE [FILE ...] positional arguments: FILE DXF files pretty print optional arguments: -h, --help show this help message and exit -o, --open open generated HTML file by the default web browser -r, --raw raw mode, no DXF structure interpretation -x, --nocompile don't compile points coordinates into single tags (only in raw mode) -l, --legacy legacy mode, reorder DXF point coordinates -s SECTIONS, --sections SECTIONS choose sections to include and their order, h=HEADER, c=CLASSES, t=TABLES, b=BLOCKS, e=ENTITIES, o=OBJECTS Auditor Audit and recover the DXF file “gear.dxf” and save the recovered version as “gear.rec.dxf”: C:\> ezdxf audit -s gear.dxf auditing file: gear.dxf No errors found. Saved recovered file as: gear.rec.dxf Print help: C:\> ezdxf audit -h usage: ezdxf audit [-h] [-s] FILE [FILE ...] positional arguments: FILE audit DXF files optional arguments: -h, --help show this help message and exit -s, --save save recovered files with extension ".rec.dxf" Draw Convert the DXF file “gear.dxf” into a SVG file by the Matplotlib backend: C:\> ezdxf draw -o gear.svg gear.dxf The “gear.svg” created by the Matplotlib backend: [image] Show all output formats supported by the Matplotlib backend on your system. This output may vary: C:\> ezdxf draw --formats eps: Encapsulated Postscript jpg: Joint Photographic Experts Group jpeg: Joint Photographic Experts Group pdf: Portable Document Format pgf: PGF code for LaTeX png: Portable Network Graphics ps: Postscript raw: Raw RGBA bitmap rgba: Raw RGBA bitmap svg: Scalable Vector Graphics svgz: Scalable Vector Graphics tif: Tagged Image File Format tiff: Tagged Image File Format Print help: C:\> ezdxf draw -h usage: ezdxf draw [-h] [--formats] [-l LAYOUT] [--all-layers-visible] [--all-entities-visible] [-o OUT] [--dpi DPI] [-v] [FILE] positional arguments: FILE DXF file to view or convert optional arguments: -h, --help show this help message and exit --formats show all supported export formats and exit -l LAYOUT, --layout LAYOUT select the layout to draw, default is "Model" --all-layers-visible draw all layers including the ones marked as invisible --all-entities-visible draw all entities including the ones marked as invisible (some entities are individually marked as invisible even if the layer is visible) -o OUT, --out OUT output filename for export --dpi DPI target render resolution, default is 300 -v, --verbose give more output View View the DXF file “gear.dxf” by the PyQt backend: C:\> ezdxf view gear.dxf [image] Print help: C:\> ezdxf view -h usage: ezdxf view [-h] [-l LAYOUT] [--lwscale LWSCALE] [FILE] positional arguments: FILE DXF file to view optional arguments: -h, --help show this help message and exit -l LAYOUT, --layout LAYOUT select the layout to draw, default is "Model" --lwscale LWSCALE set custom line weight scaling, default is 0 to disable line weights at all Pillow New in version 0.18.1. Convert the DXF file “gear.dxf” into a PNG file by the Pillow backend: C:\> ezdxf pillow -o gear.png gear.dxf Advantage over the Draw command is the speed and much less memory usage, disadvantage is the lower text rendering quality. The speed advantages is lost for the text modes OUTLINE and FILLED, because the text-path rendering is done by Matplotlib, but the advantage of the lower memory consumption remains. Print help: C:\> ezdxf pillow -h usage: ezdxf pillow [-h] [-o OUT] [-l LAYOUT] [-i IMAGE_SIZE] [-b BACKGROUND] [-r OVERSAMPLING] [-m MARGIN] [-t {0,1,2,3}] [--dpi DPI] [-v] [FILE] positional arguments: FILE DXF file to draw options: -h, --help show this help message and exit -o OUT, --out OUT output filename, the filename extension defines the image format (.png, .jpg, .tif, .bmp, ...) -l LAYOUT, --layout LAYOUT name of the layout to draw, default is "Model" -i IMAGE_SIZE, --image_size IMAGE_SIZE image size in pixels as "width,height", default is "1920,1080", supports also "x" as delimiter like "1920x1080". A single integer is used for both directions e.g. "2000" defines an image size of 2000x2000. The image is centered for the smaller DXF drawing extent. -b BACKGROUND, --background BACKGROUND override background color in hex format "RRGGBB" or "RRGGBBAA", e.g. use "FFFFFF00" to get a white transparent background and a black foreground color (ACI=7), because a light background gets a black foreground color or vice versa "00000000" for a black transparent background and a white foreground color. -r OVERSAMPLING, --oversampling OVERSAMPLING oversampling factor, default is 2, use 0 or 1 to disable oversampling -m MARGIN, --margin MARGIN minimal margin around the image in pixels, default is 10 -t {0,1,2,3}, --text-mode {0,1,2,3} text mode: 0=ignore, 1=placeholder, 2=outline, 3=filled, default is 2 --dpi DPI output resolution in pixels/inch which is significant for the linewidth, default is 300 -v, --verbose give more output Browse Browse the internal structure of a DXF file like a file system: C:\> ezdxf browse gear.dxf [image] C:\> ezdxf browse -h usage: ezdxf browse [-h] [-l LINE] [-g HANDLE] [FILE] positional arguments: FILE DXF file to browse optional arguments: -h, --help show this help message and exit -l LINE, --line LINE go to line number -g HANDLE, --handle HANDLE go to entity by HANDLE, HANDLE has to be a hex value without any prefix like 'fefe' The browse command stores options in the config file, e.g. for the Notepad++ on Windows: [browse-command] text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num} icon_size = 32 text_editor is a simple format string: text_editor.format(filename="test.dxf", num=100) Quote commands including spaces and always quote the filename argument! For xed on Linux Mint use (note: absolute path to executable): [browse-command] text_editor = /usr/bin/xed "{filename}" +{num} icon_size = 32 For gedit on Linux use (untested): [browse-command] text_editor = /use/bin/gedit +{num} "{filename}" icon_size = 32 The browse command opens a DXF structure browser to investigate the internals of a DXF file without interpreting the content. The functionality of the DXF browser is similar to the DXF Pretty Printer (pp command), but without the disadvantage of creating giant HTML files. The intended usage is debugging invalid DXF files, which can not be loaded by the ezdxf.readfile() or the ezdxf.recover.readfile() functions. Line Numbers The low level tag loader ignores DXF comments (group code 999). If there are comments in the DXF file the line numbers displayed in the DXF browser are not synchronized, use the strip command beforehand to remove all comments from the DXF file in order to keep the line numbers synchronized. GUI Features The tree view on the left shows the outline of the DXF file. The number in round brackets on the right side of each item shows the count of structure entities within the structure layer, the value in angle brackets on the left side is the entity handle. The right list view shows the entity content as DXF tags. Structure tags (data type <ctrl>) are shown in blue, a double click on a reference handle (datatype <ref>) jumps to the referenced entity, reference handles of non-existent targets are shown in red. Clicking on the first structure tag in the list opens the DXF reference provided by Autodesk in the standard web browser. Auto Reload The browser automatically displays a dialog for reloading DXF files if they have been modified by an external application. Menus and Shortcuts • File Menu • Open DXF file… Ctrl+O • Reload DXF file Ctrl+R • Open in Text Editor Ctrl+T, open the DXF file in the associated text editor at the current location • Export DXF Entity… Ctrl+E, export the current DXF entity shown in the list view as text file • Copy selected DXF Tags to Clipboard Ctrl+C, copy the current selected DXF tags into the clipboard • Copy DXF Entity to Clipboard Ctrl+Shift+C, copy all DXF tags of the current DXF entity shown in the list view into the clipboard • Quit Ctrl+Q • Navigate Menu • Go to Handle… Ctrl+G • Go to Line… Ctrl+L • Find Text… Ctrl+F, opens the find text dialog • Next Entity Ctrl+Right, go to the next entity in the DXF structure • Previous Entity Ctrl+Right, go to the previous entity in the DXF structure • Show Entity in TreeView Ctrl+Down, expand the left tree view to the currently displayed entity in the list view - this does not happen automatically for performance reasons • Entity History Back Alt+Left • Entity History Forward Alt+Right • Go to HEADERS Section Shift+H • Go to BLOCKS Section Shift+B • Go to ENTITIES Section Shift+E • Go to OBJECTS Section Shift+O • Bookmarks Menu • Store Bookmark… Ctrl+Shift+B, store current location as named bookmark • Go to Bookmark… Ctrl+B, go to stored location Browse-ACIS Show and export the SAT or SAB content of ACIS entities: C:\> ezdxf browse-acis 3dsolid.dxf [image] The DXF format stores modern solid geometry as SAT data for DXF R2000 - R2010 and as SAB data for DXF R2013 and later. This command shows the content of this entities and also let you export the raw data for further processing. Entity View The entity view is a read-only text editor, it is possible to select and copy parts of the text into the clipboard. All ACIS content entities get an id assigned automatically, this way the data is more readable, by default AutoCAD and BricsCAD do not use ids for ACIS entities. The id is shown as decimal number in parenthesis after the entity name. The ~ is a shortcut for a null-pointer. C:\>ezdxf browse-acis -h usage: ezdxf browse-acis [-h] [-g HANDLE] [FILE] positional arguments: FILE DXF file to browse options: -h, --help show this help message and exit -g HANDLE, --handle HANDLE go to entity by HANDLE, HANDLE has to be a hex value without any prefix like 'fefe' Menus and Shortcuts • File Menu • Open DXF file… Ctrl+O • Reload DXF file Ctrl+R • Export Current Entity View… Ctrl+E, Export the parsed content of the entity view as text file • Export Raw SAT/SAB Data… Ctrl+W, export the raw SAT data as text file and the raw SAB data as a binary file for further processing • Quit Ctrl+Q Strip Strip comment tags (group code 999) from ASCII DXF files and can remove the THUMBNAILIMAGE section. Binary DXF files are not supported. C:\> ezdxf strip -h usage: ezdxf strip [-h] [-b] [-v] FILE [FILE ...] positional arguments: FILE DXF file to process, wildcards "*" and "?" are supported optional arguments: -h, --help show this help message and exit -b, --backup make a backup copy with extension ".bak" from the DXF file, overwrites existing backup files -t, --thumbnail strip THUMBNAILIMAGE section -v, --verbose give more output Config Manage config files. C:\> ezdxf config -h usage: ezdxf config [-h] [-p] [-w FILE] [--home] [--reset] optional arguments: -h, --help show this help message and exit -p, --print print configuration -w FILE, --write FILE write configuration --home create config file 'ezdxf.ini' in the user home directory '~/.config/ezdxf', $XDG_CONFIG_HOME is supported if set --reset factory reset, delete default config files 'ezdxf.ini' Info Show information and optional stats of DXF files as loaded by ezdxf, this may not represent the original content of the file, use the browse command to see the original content. The upgrade is necessary for very old DXF versions prior to R12 and for the “special” versions R13 and R14. The -s option shows some statistics about the DXF content like entity count or table count. Use the -v option show more of everything. C:\> ezdxf info -h usage: ezdxf info [-h] [-v] [-s] FILE [FILE ...] positional arguments: FILE DXF file to process, wildcards "*" and "?" are supported options: -h, --help show this help message and exit -v, --verbose give more output -s, --stats show content stats This is the verbose output for an old DXF R10 file and shows that the loading process created some required structures which do not exist in DXF R10 files, like the BLOCK_RECORD table or the OBJECTS section: C:\> ezdxf info -v -s test_R10.dxf Filename: "test_R10.dxf" Loaded content was upgraded from DXF Version AC1006 (R10) Release: R12 DXF Version: AC1009 Maintenance Version: <undefined> Codepage: ANSI_1252 Encoding: cp1252 Unit system: Imperial Modelspace units: Unitless $LASTSAVEDBY: <undefined> $HANDSEED: 0 $FINGERPRINTGUID: {9EADDC7C-5982-4C68-B770-8A62378C2B90} $VERSIONGUID: {49336E63-D99B-45EC-803C-4D2BD03A7DE0} $USERI1=0 $USERI2=0 $USERI3=0 $USERI4=0 $USERI5=0 $USERR1=0.0 $USERR2=0.0 $USERR3=0.0 $USERR4=0.0 $USERR5=0.0 File was not created by ezdxf >= 0.16.4 File was not written by ezdxf >= 0.16.4 Content stats: LAYER table entries: 18 0 Defpoints LYR_00 LYR_01 LYR_02 LYR_03 LYR_04 LYR_05 LYR_06 LYR_07 LYR_08 LYR_09 LYR_10 LYR_11 LYR_12 LYR_13 LYR_14 LYR_15 LTYPE table entries: 13 BORDER ByBlock ByLayer CENTER CONTINUOUS CUTTING DASHDOT DASHED DIVIDE DOT HIDDEN PHANTOM STITCH STYLE table entries: 1 STANDARD DIMSTYLE table entries: 1 Standard APPID table entries: 1 ACAD UCS table entries: 0 VIEW table entries: 0 VPORT table entries: 1 *Active BLOCK_RECORD table entries: 2 *Model_Space *Paper_Space Entities in modelspace: 78 ARC (2) CIRCLE (2) LINE (74) Entities in OBJECTS section: 20 ACDBDICTIONARYWDFLT (1) ACDBPLACEHOLDER (1) DICTIONARY (11) LAYOUT (2) MATERIAL (3) MLEADERSTYLE (1) MLINESTYLE (1) Show Version & Configuration Show the ezdxf version and configuration: C:\> ezdxf -Vv ezdxf v0.16.5b0 @ d:\source\ezdxf.git\src\ezdxf Python version: 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21) [MSC v.1929 64 bit (AMD64)] using C-extensions: yes using Matplotlib: yes Configuration: [core] default_dimension_text_style = OpenSansCondensed-Light test_files = D:\Source\dxftest font_cache_directory = load_proxy_graphics = true store_proxy_graphics = true log_unprocessed_tags = false filter_invalid_xdata_group_codes = true write_fixed_meta_data_for_testing = false disable_c_ext = false [browse-command] text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num} Environment Variables: EZDXF_DISABLE_C_EXT= EZDXF_TEST_FILES=D:\Source\dxftest EZDXF_CONFIG_FILE= Existing Configuration Files: C:\Users\manfred\.config\ezdxf\ezdxf.ini SEE ALSO: Documentation of the ezdxf.options module and the Environment Variables.
RENDERING
The ezdxf.render subpackage provides helpful utilities to create complex forms. • create complex meshes as Mesh entity. • render complex curves like bezier curves, euler spirals or splines as Polyline entity • vertex generators for simple and complex forms like circle, ellipse or euler spiral Content Spline class ezdxf.render.Spline(points: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, segments: int = 100) This class can be used to render B-splines into DXF R12 files as approximated Polyline entities. The advantage of this class over the R12Spline class is, that this is a real 3D curve, which means that the B-spline vertices do have to be located in a flat plane, and no UCS class is needed to place the curve in 3D space. SEE ALSO: The newer BSpline class provides the advanced vertex interpolation method flattening(). __init__(points: Optional[Iterable[Union[Sequence[float], Vec2, Vec3]]] = None, segments: int = 100) Parameters • points – spline definition points • segments – count of line segments for approximation, vertex count is segments + 1 subdivide(segments: int = 4) -> None Calculate overall segment count, where segments is the sub-segment count, segments = 4, means 4 line segments between two definition points e.g. 4 definition points and 4 segments = 12 overall segments, useful for fit point rendering. Parameters segments – sub-segments count between two definition points render_as_fit_points(layout: BaseLayout, degree: int = 3, method: str = 'chord', dxfattribs: dict = None) -> None Render a B-spline as 2D/3D Polyline, where the definition points are fit points. • 2D spline vertices uses: add_polyline2d() • 3D spline vertices uses: add_polyline3d() Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • method – “uniform”, “distance”/”chord”, “centripetal”/”sqrt_chord” or “arc” calculation method for parameter t • dxfattribs – DXF attributes for Polyline render_open_bspline(layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) -> None Render an open uniform B-spline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_uniform_bspline(layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) -> None Render a uniform B-spline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_closed_bspline(layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) -> None Render a closed uniform B-spline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_open_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs: dict = None) -> None Render a rational open uniform BSpline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • weights – list of weights, requires a weight value (float) for each definition point. • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_uniform_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs: dict = None) -> None Render a rational uniform B-spline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • weights – list of weights, requires a weight value (float) for each definition point. • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline render_closed_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs: dict = None) -> None Render a rational B-spline as 3D Polyline. Definition points are control points. Parameters • layout – BaseLayout object • weights – list of weights, requires a weight value (float) for each definition point. • degree – degree of B-spline (order = degree + 1) • dxfattribs – DXF attributes for Polyline R12Spline class ezdxf.render.R12Spline(control_points: Iterable[Union[Sequence[float], Vec2, Vec3]], degree: int = 2, closed: bool = True) DXF R12 supports 2D B-splines, but Autodesk do not document the usage in the DXF Reference. The base entity for splines in DXF R12 is the POLYLINE entity. The spline itself is always in a plane, but as any 2D entity, the spline can be transformed into the 3D object by elevation and extrusion (OCS, UCS). This way it was possible to store the spline parameters in the DXF R12 file, to allow CAD applications to modify the spline parameters and rerender the B-spline afterward again as polyline approximation. Therefore the result is not better than an approximation by the Spline class, it is also just a POLYLINE entity, but maybe someone need exact this tool in the future. __init__(control_points: Iterable[Union[Sequence[float], Vec2, Vec3]], degree: int = 2, closed: bool = True) Parameters • control_points – B-spline control frame vertices • degree – degree of B-spline, only 2 and 3 is supported • closed – True for closed curve render(layout: BaseLayout, segments: int = 40, ucs: UCS = None, dxfattribs: dict = None) -> Polyline Renders the B-spline into layout as 2D Polyline entity. Use an UCS to place the 2D spline in the 3D space, see approximate() for more information. Parameters • layout – BaseLayout object • segments – count of line segments for approximation, vertex count is segments + 1 • ucs – UCS definition, control points in ucs coordinates. • dxfattribs – DXF attributes for Polyline approximate(segments: int = 40, ucs: Optional[UCS] = None) -> List[Union[Sequence[float], Vec2, Vec3]] Approximate the B-spline by a polyline with segments line segments. If ucs is not None, ucs defines an UCS, to transformed the curve into OCS. The control points are placed xy-plane of the UCS, don’t use z-axis coordinates, if so make sure all control points are in a plane parallel to the OCS base plane (UCS xy-plane), else the result is unpredictable and depends on the CAD application used to open the DXF file - it may crash. Parameters • segments – count of line segments for approximation, vertex count is segments + 1 • ucs – UCS definition, control points in ucs coordinates Returns list of vertices in OCS as Vec3 objects Bezier class ezdxf.render.Bezier Render a bezier curve as 2D/3D Polyline. The Bezier class is implemented with multiple segments, each segment is an optimized 4 point bezier curve, the 4 control points of the curve are: the start point (1) and the end point (4), point (2) is start point + start vector and point (3) is end point + end vector. Each segment has its own approximation count. SEE ALSO: The new ezdxf.path package provides many advanced construction tools based on the Path class. start(point: Union[Sequence[float], Vec2, Vec3], tangent: Union[Sequence[float], Vec2, Vec3]) -> None Set start point and start tangent. Parameters • point – start point • tangent – start tangent as vector, example: (5, 0, 0) means a horizontal tangent with a length of 5 drawing units append(point: Union[Sequence[float], Vec2, Vec3], tangent1: Union[Sequence[float], Vec2, Vec3], tangent2: Optional[Union[Sequence[float], Vec2, Vec3]] = None, segments: int = 20) Append a control point with two control tangents. Parameters • point – control point • tangent1 – first tangent as vector “left” of the control point • tangent2 – second tangent as vector “right” of the control point, if omitted tangent2 = -tangent1 • segments – count of line segments for the polyline approximation, count of line segments from the previous control point to the appended control point. render(layout: BaseLayout, force3d: bool = False, dxfattribs: dict = None) -> None Render bezier curve as 2D/3D Polyline. Parameters • layout – BaseLayout object • force3d – force 3D polyline rendering • dxfattribs – DXF attributes for Polyline EulerSpiral class ezdxf.render.EulerSpiral(curvature: float = 1) Render an euler spiral as a 3D Polyline or a Spline entity. This is a parametric curve, which always starts at the origin (0, 0). __init__(curvature: float = 1) Parameters curvature – Radius of curvature render_polyline(layout: BaseLayout, length: float = 1, segments: int = 100, matrix: Matrix44 = None, dxfattribs: dict = None) Render curve as Polyline. Parameters • layout – BaseLayout object • length – length measured along the spiral curve from its initial position • segments – count of line segments to use, vertex count is segments + 1 • matrix – transformation matrix as Matrix44 • dxfattribs – DXF attributes for Polyline Returns Polyline render_spline(layout: BaseLayout, length: float = 1, fit_points: int = 10, degree: int = 3, matrix: Matrix44 = None, dxfattribs: dict = None) Render curve as Spline. Parameters • layout – BaseLayout object • length – length measured along the spiral curve from its initial position • fit_points – count of spline fit points to use • degree – degree of B-spline • matrix – transformation matrix as Matrix44 • dxfattribs – DXF attributes for Spline Returns Spline Random Paths Random path generators for testing purpose. ezdxf.render.random_2d_path(steps: int = 100, max_step_size: float = 1.0, max_heading: float = 1.5707963267948966, retarget: int = 20) -> Iterable[Vec2] Returns a random 2D path as iterable of Vec2 objects. Parameters • steps – count of vertices to generate • max_step_size – max step size • max_heading – limit heading angle change per step to ± max_heading/2 in radians • retarget – specifies steps before changing global walking target ezdxf.render.random_3d_path(steps: int = 100, max_step_size: float = 1.0, max_heading: float = 1.5707963267948966, max_pitch: float = 0.39269908169872414, retarget: int = 20) -> Iterable[Vec3] Returns a random 3D path as iterable of Vec3 objects. Parameters • steps – count of vertices to generate • max_step_size – max step size • max_heading – limit heading angle change per step to ± max_heading/2, rotation about the z-axis in radians • max_pitch – limit pitch angle change per step to ± max_pitch/2, rotation about the x-axis in radians • retarget – specifies steps before changing global walking target Forms This module provides functions to create 2D and 3D forms as vertices or mesh objects. 2D Forms • box() • circle() • ellipse() • euler_spiral() • gear() • ngon() • square() • star() • turtle() 3D Forms • cone_2p() • cone() • cube() • cylinder() • cylinder_2p() • helix() • sphere() • torus() 3D Form Builder • extrude() • extrude_twist_scale() • from_profiles_linear() • from_profiles_spline() • rotation_form() • sweep() • sweep_profile() 2D Forms Basic 2D shapes as iterable of Vec3. ezdxf.render.forms.box(sx: float = 1.0, sy: float = 1.0, center=False) -> Tuple[Vec3, Vec3, Vec3, Vec3] Returns 4 vertices for a box with a width of sx by and a height of sy. The center of the box in (0, 0) if center is True otherwise the lower left corner is (0, 0), upper right corner is (sx, sy). Changed in version 0.18: added argument center ezdxf.render.forms.circle(count: int, radius: float = 1, elevation: float = 0, close: bool = False) -> Iterable[Vec3] Create polygon vertices for a circle with the given radius and approximated by count vertices, elevation is the z-axis for all vertices. Parameters • count – count of polygon vertices • radius – circle radius • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices in counter-clockwise orientation as Vec3 objects ezdxf.render.forms.ellipse(count: int, rx: float = 1, ry: float = 1, start_param: float = 0, end_param: float = 6.283185307179586, elevation: float = 0) -> Iterable[Vec3] Create polygon vertices for an ellipse with given rx as x-axis radius and ry as y-axis radius approximated by count vertices, elevation is the z-axis for all vertices. The ellipse goes from start_param to end_param in counter clockwise orientation. Parameters • count – count of polygon vertices • rx – ellipse x-axis radius • ry – ellipse y-axis radius • start_param – start of ellipse in range [0, 2π] • end_param – end of ellipse in range [0, 2π] • elevation – z-axis for all vertices Returns vertices in counter clockwise orientation as Vec3 objects ezdxf.render.forms.euler_spiral(count: int, length: float = 1, curvature: float = 1, elevation: float = 0) -> Iterable[Vec3] Create polygon vertices for an euler spiral of a given length and radius of curvature. This is a parametric curve, which always starts at the origin (0, 0). Parameters • count – count of polygon vertices • length – length of curve in drawing units • curvature – radius of curvature • elevation – z-axis for all vertices Returns vertices as Vec3 objects ezdxf.render.forms.gear(count: int, top_width: float, bottom_width: float, height: float, outside_radius: float, elevation: float = 0, close: bool = False) -> Iterable[Vec3] Returns the corner vertices of a gear shape (cogwheel). WARNING: This function does not create correct gears for mechanical engineering! Parameters • count – teeth count >= 3 • top_width – teeth width at outside radius • bottom_width – teeth width at base radius • height – teeth height; base radius = outside radius - height • outside_radius – outside radius • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices in counter clockwise orientation as Vec3 objects ezdxf.render.forms.ngon(count: int, length: Optional[float] = None, radius: Optional[float] = None, rotation: float = 0.0, elevation: float = 0.0, close: bool = False) -> Iterable[Vec3] Returns the corner vertices of a regular polygon. The polygon size is determined by the edge length or the circum radius argument. If both are given length has the higher priority. Parameters • count – count of polygon corners >= 3 • length – length of polygon side • radius – circum radius • rotation – rotation angle in radians • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices as Vec3 objects ezdxf.render.forms.square(size: float = 1.0, center=False) -> Tuple[Vec3, Vec3, Vec3, Vec3] Returns 4 vertices for a square with a side length of the given size. The center of the square in (0, 0) if center is True otherwise the lower left corner is (0, 0), upper right corner is (size, size). Changed in version 0.18: added argument center ezdxf.render.forms.star(count: int, r1: float, r2: float, rotation: float = 0.0, elevation: float = 0.0, close: bool = False) -> Iterable[Vec3] Returns the corner vertices for a star shape. The shape has count spikes, r1 defines the radius of the “outer” vertices and r2 defines the radius of the “inner” vertices, but this does not mean that r1 has to be greater than r2. Parameters • count – spike count >= 3 • r1 – radius 1 • r2 – radius 2 • rotation – rotation angle in radians • elevation – z-axis for all vertices • close – yields first vertex also as last vertex if True. Returns vertices as Vec3 objects ezdxf.render.forms.turtle(commands: str, start=Vec2(0.0, 0.0), angle: float = 0) -> Iterator[Vec2] Returns the 2D vertices of a polyline created by turtle-graphic like commands: • <length> - go <length> units forward in current direction and yield vertex • r<angle> - turn right <angle> in degrees, a missing angle is 90 deg • l<angle> - turn left <angle> in degrees, a missing angle is 90 deg • @<x>,<y> - go relative <x>,<y> and yield vertex The command string "10 l 10 l 10" returns the 4 corner vertices of a square with a side length of 10 drawing units. Parameters • commands – command string, commands are separated by spaces • start – starting point, default is (0, 0) • angle – starting direction, default is 0 deg 3D Forms Create 3D forms as MeshTransformer objects. ezdxf.render.forms.cube(center: bool = True) -> MeshTransformer Create a cube as MeshTransformer object. Parameters center – ‘mass’ center of cube, (0, 0, 0) if True, else first corner at (0, 0, 0) Returns: MeshTransformer ezdxf.render.forms.cone(count: int = 16, radius: float = 1.0, apex: Union[Sequence[float], Vec2, Vec3] = (0, 0, 1), *, caps=True) -> MeshTransformer Create a cone as MeshTransformer object, the base center is fixed in the origin (0, 0, 0). Parameters • count – edge count of basis_vector • radius – radius of basis_vector • apex – tip of the cone • caps – add a bottom face as ngon if True ezdxf.render.forms.cone_2p(count: int = 16, radius: float = 1.0, base_center=(0, 0, 0), apex=(0, 0, 1), *, caps=True) -> MeshTransformer Create a cone as MeshTransformer object from two points, base_center is the center of the base circle and apex as the tip of the cone. Parameters • count – edge count of basis_vector • radius – radius of basis_vector • base_center – center point of base circle • apex – tip of the cone • caps – add a bottom face as ngon if True ezdxf.render.forms.cylinder(count: int = 16, radius: float = 1.0, top_radius: Optional[float] = None, top_center: Union[Sequence[float], Vec2, Vec3] = (0, 0, 1), *, caps=True) -> MeshTransformer Create a cylinder as MeshTransformer object, the base center is fixed in the origin (0, 0, 0). Parameters • count – profiles edge count • radius – radius for bottom profile • top_radius – radius for top profile, if None top_radius == radius • top_center – location vector for the center of the top profile • caps – close hull with top- and bottom faces (ngons) ezdxf.render.forms.cylinder_2p(count: int = 16, radius: float = 1, base_center=(0, 0, 0), top_center=(0, 0, 1), caps=True) -> MeshTransformer Create a cylinder as MeshTransformer object from two points, base_center is the center of the base circle and, top_center the center of the top circle. Parameters • count – profiles edge count • radius – radius for bottom profile • base_center – center of base circle • top_center – center of top circle • caps – close hull with top- and bottom faces (ngons) Returns: MeshTransformer ezdxf.render.forms.helix(radius: float, pitch: float, turns: float, resolution: int = 16, ccw=True) -> Iterator[Vec3] Yields the vertices of a helix. The center of the helix is always (0, 0), a positive pitch value creates a helix along the +z-axis, a negative value along the -z-axis. Parameters • radius – helix radius • pitch – the height of one complete helix turn • turns – count of turns • resolution – vertices per turn • ccw – creates a counter-clockwise turning (right-handed) helix if True New in version 0.18. ezdxf.render.forms.sphere(count: int = 16, stacks: int = 8, radius: float = 1, *, quads=True) -> MeshTransformer Create a sphere as MeshTransformer object, the center of the sphere is always at (0, 0, 0). Parameters • count – longitudinal slices • stacks – latitude slices • radius – radius of sphere • quads – use quadrilaterals as faces if True else triangles ezdxf.render.forms.torus(major_count: int = 16, minor_count: int = 8, major_radius=1.0, minor_radius=0.1, start_angle: float = 0.0, end_angle: float = 6.283185307179586, *, caps=True) -> MeshTransformer Create a torus as MeshTransformer object, the center of the torus is always at (0, 0, 0). The major_radius has to be bigger than the minor_radius. Parameters • major_count – count of circles • minor_count – count of circle vertices • major_radius – radius of the circle center • minor_radius – radius of circle • start_angle – start angle of torus in radians • end_angle – end angle of torus in radians • caps – close hull with start- and end faces (ngons) if the torus is open New in version 0.18. 3D Form Builder ezdxf.render.forms.extrude(profile: Iterable[Union[Sequence[float], Vec2, Vec3]], path: Iterable[Union[Sequence[float], Vec2, Vec3]], close=True, caps=False) -> MeshTransformer Extrude a profile polygon along a path polyline, the vertices of profile should be in counter-clockwise order. The sweeping profile will not be rotated at extrusion! Parameters • profile – sweeping profile as list of (x, y, z) tuples in counter-clockwise order • path – extrusion path as list of (x, y, z) tuples • close – close profile polygon if True • caps – close hull with top- and bottom faces (ngons) Returns: MeshTransformer Changed in version 0.18: added parameter caps to close hull with top- and bottom faces ezdxf.render.forms.extrude_twist_scale(profile: Iterable[Union[Sequence[float], Vec2, Vec3]], path: Iterable[Union[Sequence[float], Vec2, Vec3]], *, twist: float = 0.0, scale: float = 1.0, step_size: float = 1.0, close=True, caps=False, quads=True) -> MeshTransformer Extrude a profile polygon along a path polyline, the vertices of profile should be in counter-clockwise order. This implementation can scale and twist the sweeping profile along the extrusion path. The path segment points are fix points, the max_step_size is used to create intermediate profiles between this fix points. The max_step_size is adapted for each segment to create equally spaced distances. The twist angle is the rotation angle in radians and the scale argument defines the scale factor of the final profile. The twist angle and scaling factor of the intermediate profiles will be linear interpolated between the start and end values. Parameters • profile – sweeping profile as list of (x, y, z) tuples in counter-clockwise order • path – extrusion path as list of (x, y, z) tuples • twist – rotate sweeping profile up to the given end rotation angle in radians • scale – scale sweeping profile gradually from 1.0 to given value • step_size – rough distance between automatically created intermediate profiles, the step size is adapted to the distances between the path segment points, a value od 0.0 disables creating intermediate profiles • close – close profile polygon if True • caps – close hull with top- and bottom faces (ngons) • quads – use quads for “sweeping” faces if True else triangles, the top and bottom faces are always ngons New in version 0.18. Returns: MeshTransformer ezdxf.render.forms.from_profiles_linear(profiles: Sequence[Sequence[Vec3]], *, close=True, quads=True, caps=False) -> MeshTransformer Returns a MeshTransformer instance from linear connected profiles. Parameters • profiles – list of profiles • close – close profile polygon if True • quads – use quadrilaterals as connection faces if True else triangles • caps – close hull with top- and bottom faces (ngons) ezdxf.render.forms.from_profiles_spline(profiles: Sequence[Sequence[Vec3]], subdivide: int = 4, *, close=True, quads=True, caps=False) -> MeshTransformer Returns a MeshTransformer instance by spline interpolation between given profiles. Requires at least 4 profiles. A subdivide value of 4, means, create 4 face loops between two profiles, without interpolation two profiles create one face loop. Parameters • profiles – list of profiles • subdivide – count of face loops • close – close profile polygon if True • quads – use quadrilaterals as connection faces if True else triangles • caps – close hull with top- and bottom faces (ngons) ezdxf.render.forms.rotation_form(count: int, profile: Iterable[Union[Sequence[float], Vec2, Vec3]], angle: float = 6.283185307179586, axis: Union[Sequence[float], Vec2, Vec3] = (1, 0, 0), *, caps=False) -> MeshTransformer Returns a MeshTransformer instance created by rotating a profile around an axis. Parameters • count – count of rotated profiles • profile – profile to rotate as list of vertices • angle – rotation angle in radians • axis – rotation axis • caps – close hull with start- and end faces (ngons) Changed in version 0.18: added arguments caps and triangulation ezdxf.render.forms.sweep(profile: Iterable[Union[Sequence[float], Vec2, Vec3]], sweeping_path: Iterable[Union[Sequence[float], Vec2, Vec3]], *, close=True, quads=True, caps=True) -> MeshTransformer Returns the mesh from sweeping a profile along a 3D path, where the sweeping path defines the final location in the WCS. The profile is defined in a reference system. The origin of this reference system will be moved along the sweeping path where the z-axis of the reference system is pointing into the moving direction. Returns the mesh as ezdxf.render.MeshTransformer object. Parameters • profile – sweeping profile defined in the reference system as iterable of (x, y, z) coordinates in counter-clockwise order • sweeping_path – the sweeping path defined in the WCS as iterable of (x, y, z) coordinates • close – close sweeping profile if True • quads – use quadrilaterals as connection faces if True else triangles • caps – close hull with top- and bottom faces (ngons) New in version 0.18. ezdxf.render.forms.sweep_profile(profile: Iterable[Union[Sequence[float], Vec2, Vec3]], sweeping_path: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> List[Sequence[Vec3]] Returns the intermediate profiles of sweeping a profile along a 3D path where the sweeping path defines the final location in the WCS. The profile is defined in a reference system. The origin of this reference system will be moved along the sweeping path where the z-axis of the reference system is pointing into the moving direction. Returns the start-, end- and all intermediate profiles along the sweeping path. New in version 0.18. MeshBuilder The MeshBuilder classes are helper tools to manage meshes buildup by vertices and faces. The vertices are stored in a vertices list as Vec3 instances. The faces are stored as a sequence of vertex indices which is the location of the vertex in the vertex list. A single MeshBuilder class can contain multiple separated meshes at the same time. The method MeshBuilder.render_mesh() renders the content as a single DXF Mesh entity, which supports ngons, ngons are polygons with more than 4 vertices. This entity requires at least DXF R2000. The method MeshBuilder.render_polyface() renders the content as a single DXF Polyface entity, which supports only triangles and quadrilaterals. This entity is supported by DXF R12. The method MeshBuilder.render_3dfaces() renders each face of the mesh as a single DXF Face3d entity, which supports only triangles and quadrilaterals. This entity is supported by DXF R12. The MeshTransformer class is often used as an interface object to transfer mesh data between functions and moduls, like for the mesh exchange add-on meshex. The basic MeshBuilder class does not support transformations. class ezdxf.render.MeshBuilder vertices List of vertices as Vec3 or (x, y, z) tuple faces List of faces as list of vertex indices, where a vertex index is the index of the vertex in the vertices list. A face requires at least three vertices, Mesh supports ngons, so the count of vertices is not limited. add_face(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> None Add a face as vertices list to the mesh. A face requires at least 3 vertices, each vertex is a (x, y, z) tuple or Vec3 object. The new vertex indices are stored as face in the faces list. Parameters vertices – list of at least 3 vertices [(x1, y1, z1), (x2, y2, z2), (x3, y3, y3), ...] add_mesh(vertices: Optional[List[Vec3]] = None, faces: Optional[List[Sequence[int]]] = None, mesh=None) -> None Add another mesh to this mesh. A mesh can be a MeshBuilder, MeshVertexMerger or Mesh object or requires the attributes vertices and faces. Parameters • vertices – list of vertices, a vertex is a (x, y, z) tuple or Vec3 object • faces – list of faces, a face is a list of vertex indices • mesh – another mesh entity add_vertices(vertices: Iterable[Union[Sequence[float], Vec2, Vec3]]) -> Sequence[int] Add new vertices to the mesh, each vertex is a (x, y, z) tuple or a Vec3 object, returns the indices of the vertices added to the vertices list. e.g. adding 4 vertices to an empty mesh, returns the indices (0, 1, 2, 3), adding additional 4 vertices returns the indices (4, 5, 6, 7). Parameters vertices – list of vertices, vertex as (x, y, z) tuple or Vec3 objects Returns indices of the vertices added to the vertices list Return type tuple bbox() -> BoundingBox Returns the BoundingBox of the mesh. New in version 0.18. copy() Returns a copy of mesh. diagnose() -> MeshDiagnose Returns the MeshDiagnose object for this mesh. New in version 0.18. face_normals() -> Iterator[Vec3] Yields all face normals, yields the NULLVEC instance for degenerated faces. New in version 0.18. face_orientation_detector(reference: int = 0) -> FaceOrientationDetector Returns a FaceOrientationDetector or short fod instance. The forward orientation is defined by the reference face which is 0 by default. The fod can check if all faces are reachable from the reference face and if all faces have the same orientation. The fod can be reused to unify the face orientation of the mesh. faces_as_vertices() -> Iterator[List[Vec3]] Yields all faces as list of vertices. flip_normals() -> None Flips the normals of all faces by reversing the vertex order inplace. New in version 0.18. classmethod from_builder(other: MeshBuilder) Create new mesh from other mesh builder, faster than from_mesh() but supports only MeshBuilder and inherited classes. classmethod from_mesh(other: Union[MeshBuilder, Mesh]) -> T Create new mesh from other mesh as class method. Parameters other – mesh of type MeshBuilder and inherited or DXF Mesh entity or any object providing attributes vertices, edges and faces. classmethod from_polyface(other: Union[Polymesh, Polyface]) -> T Create new mesh from a Polyface or Polymesh object. get_face_vertices(index: int) -> Sequence[Vec3] Returns the face index as sequence of Vec3 objects. New in version 0.18. get_face_normal(index: int) -> Vec3 Returns the normal vector of the face index as Vec3, returns the NULLVEC instance for degenerated faces. New in version 0.18. merge_coplanar_faces(passes: int = 1) -> MeshTransformer Returns a new MeshBuilder object with merged adjacent coplanar faces. The faces have to share at least two vertices and have to have the same clockwise or counter-clockwise vertex order. The current implementation is not very capable! New in version 0.18. mesh_tessellation(max_vertex_count: int = 4) -> MeshTransformer Returns a new MeshTransformer instance, where each face has no more vertices than the given max_vertex_count. The fast mode uses a shortcut for faces with less than 6 vertices which may not work for concave faces! New in version 0.18. normalize_faces() -> None Removes duplicated vertex indices from faces and stores all faces as open faces, where the last vertex is not coincident with the first vertex. New in version 0.18. open_faces() -> Iterator[Sequence[int]] Yields all faces as sequence of integers where the first vertex is not coincident with the last vertex. New in version 0.18. optimize_vertices(precision: int = 6) -> MeshTransformer Returns a new mesh with optimized vertices. Coincident vertices are merged together and all faces are open faces (first vertex != last vertex). Uses internally the MeshVertexMerger class to merge vertices. New in version 0.18. render_3dfaces(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 = None, ucs: UCS = None) Render mesh as Face3d entities into layout. Parameters • layout – BaseLayout object • dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7} • matrix – transformation matrix of type Matrix44 • ucs – transform vertices by UCS to WCS Changed in version 0.18: Uses the tessellation() method to process ngons with more the 4 vertices which can handle concave faces. render_mesh(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 = None, ucs: UCS = None) Render mesh as Mesh entity into layout. Parameters • layout – BaseLayout object • dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7} • matrix – transformation matrix of type Matrix44 • ucs – transform vertices by UCS to WCS render_normals(layout: GenericLayoutType, length: float = 1, relative=True, dxfattribs=None) Render face normals as Line entities into layout, useful to check orientation of mesh faces. Parameters • layout – BaseLayout object • length – visual length of normal, use length < 0 to point normals in opposite direction • relative – scale length relative to face size if True • dxfattribs – dict of DXF attributes e.g. {'layer': 'normals', 'color': 6} render_polyface(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 = None, ucs: UCS = None) Render mesh as Polyface entity into layout. Parameters • layout – BaseLayout object • dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7} • matrix – transformation matrix of type Matrix44 • ucs – transform vertices by UCS to WCS Changed in version 0.18: Uses the tessellation() method to process ngons with more the 4 vertices which can handle concave faces. separate_meshes() -> List[MeshTransformer] A single MeshBuilder instance can store multiple separated meshes. This function returns this separated meshes as multiple MeshTransformer instances. New in version 0.18. subdivide(level: int = 1, quads=True) -> MeshTransformer Returns a new MeshTransformer object with all faces subdivided. Parameters • level – subdivide levels from 1 to max of 5 • quads – create quad faces if True else create triangles subdivide_ngons(max_vertex_count=4) -> Iterator[Sequence[Vec3]] Yields all faces as sequence of Vec3 instances, where all ngons which have more than max_vertex_count vertices gets subdivided. In contrast to the tessellation() method, creates this method a new vertex in the centroid of the face. This can create a more regular tessellation but only works reliable for convex faces! New in version 0.18. tessellation(max_vertex_count: int = 4) -> Iterator[Sequence[Vec3]] Yields all faces as sequence of Vec3 instances, each face has no more vertices than the given max_vertex_count. This method uses the “ear clipping” algorithm which works with concave faces too and does not create any additional vertices. New in version 0.18. unify_face_normals(*, fod: Optional[FaceOrientationDetector] = None) -> MeshTransformer Returns a new MeshTransformer object with unified face normal vectors of all faces. The forward direction (not necessarily outwards) is defined by the face-normals of the majority of the faces. This function can not process non-manifold meshes (more than two faces are connected by a single edge) or multiple disconnected meshes in a single MeshBuilder object. It is possible to pass in an existing FaceOrientationDetector instance as argument fod. Raises • NonManifoldError – non-manifold mesh • MultipleMeshesError – the MeshBuilder object contains multiple disconnected meshes New in version 0.18. unify_face_normals_by_reference(reference: int = 0, *, force_outwards=False, fod: Optional[FaceOrientationDetector] = None) -> MeshTransformer Returns a new MeshTransformer object with unified face normal vectors of all faces. The forward direction (not necessarily outwards) is defined by the reference face, which is the first face of the mesh by default. This function can not process non-manifold meshes (more than two faces are connected by a single edge) or multiple disconnected meshes in a single MeshBuilder object. The outward direction of all face normals can be forced by stetting the argument force_outwards to True but this works only for closed surfaces, and it’s time-consuming! It is not possible to check for a closed surface as long the face normal vectors are not unified. But it can be done afterward by the attribute MeshDiagnose.is_closed_surface() to see if the result is trustworthy. It is possible to pass in an existing FaceOrientationDetector instance as argument fod. Parameters • reference – index of the reference face • force_outwards – forces face-normals to point outwards, this works only for closed surfaces, and it’s time-consuming! • fod – FaceOrientationDetector instance Raises ValueError – non-manifold mesh or the MeshBuilder object contains multiple disconnected meshes New in version 0.18. MeshTransformer Same functionality as MeshBuilder but supports inplace transformation. class ezdxf.render.MeshTransformer Subclass of MeshBuilder transform(matrix: Matrix44) Transform mesh inplace by applying the transformation matrix. Parameters matrix – 4x4 transformation matrix as Matrix44 object translate(dx: Union[float, Sequence[float], Vec2, Vec3] = 0, dy: float = 0, dz: float = 0) Translate mesh inplace. Parameters • dx – translation in x-axis or translation vector • dy – translation in y-axis • dz – translation in z-axis scale(sx: float = 1, sy: float = 1, sz: float = 1) Scale mesh inplace. Parameters • sx – scale factor for x-axis • sy – scale factor for y-axis • sz – scale factor for z-axis scale_uniform(s: float) Scale mesh uniform inplace. Parameters s – scale factor for x-, y- and z-axis rotate_x(angle: float) Rotate mesh around x-axis about angle inplace. Parameters angle – rotation angle in radians rotate_y(angle: float) Rotate mesh around y-axis about angle inplace. Parameters angle – rotation angle in radians rotate_z(angle: float) Rotate mesh around z-axis about angle inplace. Parameters angle – rotation angle in radians rotate_axis(axis: Union[Sequence[float], Vec2, Vec3], angle: float) Rotate mesh around an arbitrary axis located in the origin (0, 0, 0) about angle. Parameters • axis – rotation axis as Vec3 • angle – rotation angle in radians MeshVertexMerger Same functionality as MeshBuilder, but created meshes with unique vertices and no doublets, but MeshVertexMerger needs extra memory for bookkeeping and also does not support transformations. The location of the merged vertices is the location of the first vertex with the same key. This class is intended as intermediate object to create compact meshes and convert them to MeshTransformer objects to apply transformations: mesh = MeshVertexMerger() # create your mesh mesh.add_face(...) # convert mesh to MeshTransformer object return MeshTransformer.from_builder(mesh) class ezdxf.render.MeshVertexMerger(precision: int = 6) Subclass of MeshBuilder Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping. MeshVertexMerger creates a key for every vertex by rounding its components by the Python round() function and a given precision value. Each vertex with the same key gets the same vertex index, which is the index of first vertex with this key, so all vertices with the same key will be located at the location of this first vertex. If you want an average location of all vertices with the same key use the MeshAverageVertexMerger class. Parameters precision – floating point precision for vertex rounding MeshAverageVertexMerger This is an extended version of MeshVertexMerger. The location of the merged vertices is the average location of all vertices with the same key, this needs extra memory and runtime in comparison to MeshVertexMerger and this class also does not support transformations. class ezdxf.render.MeshAverageVertexMerger(precision: int = 6) Subclass of MeshBuilder Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping and runtime for calculation of average vertex location. MeshAverageVertexMerger creates a key for every vertex by rounding its components by the Python round() function and a given precision value. Each vertex with the same key gets the same vertex index, which is the index of first vertex with this key, the difference to the MeshVertexMerger class is the calculation of the average location for all vertices with the same key, this needs extra memory to keep track of the count of vertices for each key and extra runtime for updating the vertex location each time a vertex with an existing key is added. Parameters precision – floating point precision for vertex rounding class ezdxf.render.mesh.EdgeStat(count: int, balance: int) Named tuple of edge statistics. count how often the edge (a, b) is used in faces as (a, b) or (b, a) balance count of edges (a, b) - count of edges (b, a) and should be 0 in “healthy” closed surfaces, if the balance is not 0, maybe doubled coincident faces exist or faces may have mixed clockwise and counter-clockwise vertex orders MeshBuilder Helper Classes class ezdxf.render.MeshDiagnose Diagnose tool which can be used to analyze and detect errors of MeshBuilder objects like topology errors for closed surfaces. The object contains cached values, which do not get updated if the source mesh will be changed! NOTE: There exist no tools in ezdxf to repair broken surfaces, but you can use the ezdxf.addons.meshex addon to exchange meshes with the open source tool MeshLab. Create an instance of this tool by the MeshBuilder.diagnose() method. New in version 0.18. property bbox: ezdxf.math.bbox.BoundingBox Returns the BoundingBox of the mesh. (cached data) property edge_stats: Dict[Tuple[int, int], ezdxf.render.mesh.EdgeStat] Returns the edge statistics as a dict. The dict-key is the edge as tuple of two vertex indices (a, b) where a is always smaller than b. The dict-value is an EdgeStat tuple of edge count and edge balance, see EdgeStat for the definition of edge count and edge balance. (cached data) property euler_characteristic: int Returns the Euler characteristic: https://en.wikipedia.org/wiki/Euler_characteristic This number is always 2 for convex polyhedra. property face_normals: Sequence[ezdxf.math._vector.Vec3] Returns all face normal vectors as sequence. The NULLVEC instance is used as normal vector for degenerated faces. (cached data) property faces: Sequence[Sequence[int]] Sequence of faces as Sequence[int] property is_closed_surface: bool Returns True if the mesh has a closed surface. This method does not require a unified face orientation. If multiple separated meshes are present the state is only True if all meshes have a closed surface. (cached data) Returns False for non-manifold meshes. property is_edge_balance_broken: bool Returns True if the edge balance is broken, this indicates a topology error for closed surfaces. A non-broken edge balance reflects that each edge connects two faces, where the edge is clockwise oriented in the first face and counter-clockwise oriented in the second face. A broken edge balance indicates possible topology errors like mixed face vertex orientations or a non-manifold mesh where an edge connects more than two faces. (cached data) property is_manifold: bool Returns True if all edges have an edge count < 3. (cached data) A non-manifold mesh has edges with 3 or more connected faces. property n_edges: int Returns the unique edge count. (cached data) property n_faces: int Returns the face count. property n_vertices: int Returns the vertex count. property vertices: Sequence[ezdxf.math._vector.Vec3] Sequence of mesh vertices as Vec3 instances centroid() -> Vec3 Returns the centroid of all vertices. (center of mass) estimate_face_normals_direction() -> float Returns the estimated face-normals direction as float value in the range [-1.0, 1.0] for a closed surface. This heuristic works well for simple convex hulls but struggles with more complex structures like a torus (doughnut). A counter-clockwise (ccw) vertex arrangement for outward pointing faces is assumed but a clockwise (cw) arrangement works too but the return values are reversed. The closer the value to 1.0 (-1.0 for cw) the more likely all normals pointing outwards from the surface. The closer the value to -1.0 (1.0 for cw) the more likely all normals pointing inwards from the surface. There are no exact confidence values if all faces pointing outwards, here some examples for surfaces created by ezdxf.render.forms functions: • cube() returns 1.0 • cylinder() returns 0.9992 • sphere() returns 0.9994 • cone() returns 0.9162 • cylinder() with all hull faces pointing outwards but caps pointing inwards returns 0.7785 but the property is_edge_balance_broken returns True which indicates the mixed vertex orientation • and the estimation of 0.0469 for a torus() is barely usable has_non_planar_faces() -> bool Returns True if any face is non-planar. surface_area() -> float Returns the surface area. total_edge_count() -> int Returns the total edge count of all faces, shared edges are counted separately for each face. In closed surfaces this count should be 2x the unique edge count n_edges. (cached data) unique_edges() -> Iterable[Tuple[int, int]] Yields the unique edges of the mesh as int 2-tuples. (cached data) volume() -> float Returns the volume of a closed surface or 0 otherwise. WARNING: The face vertices have to be in counter-clockwise order, this requirement is not checked by this method. The result is not correct for multiple separated meshes in a single MeshBuilder object!!! class ezdxf.render.FaceOrientationDetector(mesh: MeshBuilder, reference: int = 0) Helper class for face orientation and face normal vector detection. Use the method MeshBuilder.face_orientation_detector() to create an instance. The face orientation detector classifies the faces of a mesh by their forward or backward orientation. The forward orientation is defined by a reference face, which is the first face of the mesh by default and this orientation is not necessarily outwards. This class has some overlapping features with MeshDiagnose but it has a longer setup time and needs more memory than MeshDiagnose. Parameters • mesh – source mesh as MeshBuilder object • reference – index of the reference face New in version 0.18. is_manifold True if all edges have an edge count < 3. A non-manifold mesh has edges with 3 or more connected faces. property all_reachable: bool Returns True if all faces are reachable from the reference face same as property is_single_mesh. property count: Tuple[int, int] Returns the count of forward and backward oriented faces. property backward_faces: Iterator[Sequence[int]] Yields all backward oriented faces. property forward_faces: Iterator[Sequence[int]] Yields all forward oriented faces. property has_uniform_face_normals: bool Returns True if all reachable faces are forward oriented according to the reference face. property is_closed_surface: bool Returns True if the mesh has a closed surface. This method does not require a unified face orientation. If multiple separated meshes are present the state is only True if all meshes have a closed surface. Returns False for non-manifold meshes. property is_single_mesh: bool Returns True if only a single mesh is present same as property all_reachable. classify_faces(reference: int = 0) -> None Detect the forward and backward oriented faces. The forward and backward orientation has to be defined by a reference face. is_reference_face_pointing_outwards() -> bool Returns True if the normal vector of the reference face is pointing outwards. This works only for meshes with unified faces which represent a closed surfaces, and it’s a time-consuming calculation! Trace This module provides tools to create banded lines like LWPOLYLINE with width information. Path rendering as quadrilaterals: Trace, Solid or Face3d. class ezdxf.render.trace.TraceBuilder Sequence of 2D banded lines like polylines with start- and end width or curves with start- and end width. NOTE: Accepts 3D input, but z-axis is ignored. The TraceBuilder is a 2D only object and uses only the OCS coordinates! abs_tol Absolute tolerance for floating point comparisons append(trace: AbstractTrace) -> None Append a new trace. close() Close multi traces by merging first and last trace, if linear traces. faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]] Yields all faces as 4-tuples of Vec2 objects in OCS. faces_wcs(ocs: OCS, elevation: float) -> Iterable[Sequence[Vec3]] Yields all faces as 4-tuples of Vec3 objects in WCS. virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing = None) -> Iterable[Quadrilateral] Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs. If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically added to the entity database of that document. NOTE: The TraceBuilder is a 2D only object and uses only the OCS coordinates! Parameters • dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE” • dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities • doc – associated document classmethod from_polyline(polyline: DXFGraphic, segments: int = 64) -> TraceBuilder Create a complete trace from a LWPOLYLINE or a 2D POLYLINE entity, the trace consist of multiple sub-traces if bulge values are present. Uses only the OCS coordinates! Parameters • polyline – LWPolyline or 2D Polyline • segments – count of segments for bulge approximation, given count is for a full circle, partial arcs have proportional less segments, but at least 3 __len__() __getitem__() class ezdxf.render.trace.LinearTrace Linear 2D banded lines like polylines with start- and end width. Accepts 3D input, but z-axis is ignored. abs_tol Absolute tolerance for floating point comparisons is_started True if at least one station exist. add_station(point: Union[Sequence[float], Vec2, Vec3], start_width: float, end_width: Optional[float] = None) -> None Add a trace station (like a vertex) at location point, start_width is the width of the next segment starting at this station, end_width is the end width of the next segment. Adding the last location again, replaces the actual last location e.g. adding lines (a, b), (b, c), creates only 3 stations (a, b, c), this is very important to connect to/from splines. Parameters • point – 2D location (vertex), z-axis of 3D vertices is ignored. • start_width – start width of next segment • end_width – end width of next segment faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]] Yields all faces as 4-tuples of Vec2 objects. First and last miter is 90 degrees if the path is not closed, otherwise the intersection of first and last segment is taken into account, a closed path has to have explicit the same last and first vertex. virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing = None) -> Iterable[Quadrilateral] Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs. If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically added to the entity database of that document. Parameters • dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE” • dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities • doc – associated document class ezdxf.render.trace.CurvedTrace 2D banded curves like arcs or splines with start- and end width. Represents always only one curved entity and all miter of curve segments are perpendicular to curve tangents. Accepts 3D input, but z-axis is ignored. faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]] Yields all faces as 4-tuples of Vec2 objects. virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing = None) -> Iterable[Quadrilateral] Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs. If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically added to the entity database of that document. Parameters • dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE” • dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities • doc – associated document classmethod from_arc(arc: ConstructionArc, start_width: float, end_width: float, segments: int = 64) -> CurvedTrace Create curved trace from an arc. Parameters • arc – ConstructionArc object • start_width – start width • end_width – end width • segments – count of segments for full circle (360 degree) approximation, partial arcs have proportional less segments, but at least 3 Raises ValueError – if arc.radius <= 0 classmethod from_spline(spline: BSpline, start_width: float, end_width: float, segments: int) -> CurvedTrace Create curved trace from a B-spline. Parameters • spline – BSpline object • start_width – start width • end_width – end width • segments – count of segments for approximation Point Rendering Helper function to render Point entities as DXF primitives. ezdxf.render.point.virtual_entities(point: Point, pdsize: float = 1, pdmode: int = 0) -> List[DXFGraphic] Yields point graphic as DXF primitives LINE and CIRCLE entities. The dimensionless point is rendered as zero-length line! Check for this condition: e.dxftype() == 'LINE' and e.dxf.start.isclose(e.dxf.end) if the rendering engine can’t handle zero-length lines. Parameters • point – DXF POINT entity • pdsize – point size in drawing units • pdmode – point styling mode, see Point class New in version 0.15. SEE ALSO: Go to ezdxf.entities.Point class documentation for more information about POINT styling modes. MultiLeaderBuilder These are helper classes to build MultiLeader entities in an easy way. The MultiLeader entity supports two kinds of content, for each exist a specialized builder class: • MultiLeaderMTextBuilder for MText content • MultiLeaderBlockBuilder for Block content The usual steps of the building process are: 1. create entity by a factory method • add_multileader_mtext() • add_multileader_block() 2. set the content • MultiLeaderMTextBuilder.set_content() • MultiLeaderBlockBuilder.set_content() • MultiLeaderBlockBuilder.set_attribute() 3. set properties • MultiLeaderBuilder.set_arrow_properties() • MultiLeaderBuilder.set_connection_properties() • MultiLeaderBuilder.set_connection_types() • MultiLeaderBuilder.set_leader_properties() • MultiLeaderBuilder.set_mleader_style() • MultiLeaderBuilder.set_overall_scaling() 4. add one or more leader lines • MultiLeaderBuilder.add_leader_line() 5. finalize building process • MultiLeaderBuilder.build() The Tutorial for MultiLeader shows how to use these helper classes in more detail. New in version 0.18. class ezdxf.render.MultiLeaderBuilder Abstract base class to build MultiLeader entities. property context: ezdxf.entities.mleader.MLeaderContext Returns the context entity MLeaderContext. property multileader: ezdxf.entities.mleader.MultiLeader Returns the MultiLeader entity. add_leader_line(side: ConnectionSide, vertices: Iterable[Vec2]) -> None Add leader as iterable of vertices in render UCS coordinates (WCS by default). NOTE: Vertical (top, bottom) and horizontal attachment sides (left, right) can not be mixed in a single entity - this is a limitation of the MULTILEADER entity. Parameters • side – connection side where to attach the leader line • vertices – leader vertices build(insert: Vec2, rotation: float = 0.0, ucs: Optional[UCS] = None) -> None Compute the required geometry data. The construction plane is the xy-plane of the given render UCS. Parameters • insert – insert location for the content in render UCS coordinates • rotation – content rotation angle around the render UCS z-axis in degrees • ucs – the render UCS, default is the WCS set_arrow_properties(name: str = '', size: float = 0.0) Set leader arrow properties all leader lines have the same arrow type. The MULTILEADER entity is able to support multiple arrows, but this seems to be unsupported by CAD applications and is therefore also not supported by the builder classes. set_connection_properties(landing_gap: float = 0.0, dogleg_length: float = 0.0) Set the properties how to connect the leader line to the content. The landing gap is the space between the content and the start of the leader line. The “dogleg” is the first line segment of the leader in the “horizontal” direction of the content. set_connection_types(left=HorizontalConnection.by_style, right=HorizontalConnection.by_style, top=VerticalConnection.by_style, bottom=VerticalConnection.by_style) Set the connection type for each connection side. set_leader_properties(color: Union[int, Tuple[int, int, int]] = 0, linetype: str = 'BYBLOCK', lineweight: int = - 2, leader_type=LeaderType.straight_lines) Set leader line properties. Parameters • color – line color as AutoCAD Color Index (ACI) or RGB tuple • linetype – as name string, e.g. “BYLAYER” • lineweight – as integer value, see: Lineweights • leader_type – straight lines of spline type set_mleader_style(style: MLeaderStyle) Reset base properties by MLeaderStyle properties. This also resets the content! set_overall_scaling(scale: float) Set the overall scaling factor for the whole entity, except for the leader line vertices! Parameters scale – scaling factor > 0.0 MultiLeaderMTextBuilder Specialization of MultiLeaderBuilder to build MultiLeader with MTEXT content. class ezdxf.render.MultiLeaderMTextBuilder set_content(content: str, color: Optional[Union[int, Tuple[int, int, int]]] = None, char_height: float = 0.0, alignment: TextAlignment = TextAlignment.left, style: Optional[str] = None) Set MTEXT content. Parameters • content – MTEXT content as string • color – block color as AutoCAD Color Index (ACI) or RGB tuple • char_height – initial char height in drawing units • alignment – TextAlignment - left, center, right • style – name of Textstyle as string quick_leader(content: str, target: Vec2, segment1: Vec2, segment2: Optional[Vec2] = None, connection_type: Union[HorizontalConnection, VerticalConnection] = HorizontalConnection.middle_of_top_line, ucs: Optional[UCS] = None) -> None Creates a quick MTEXT leader. The target point defines where the leader points to. The segment1 is the first segment of the leader line relative to the target point, segment2 is an optional second line segment relative to the first line segment. The connection_type defines the type of connection (horizontal or vertical) and the MTEXT alignment (left, center or right). Horizontal connections are always left or right aligned, vertical connections are always center aligned. Parameters • content – MTEXT content string • target – leader target point as Vec2 • segment1 – first leader line segment as relative distance to insert • segment2 – optional second leader line segment as relative distance to first line segment • connection_type – one of HorizontalConnection or VerticalConnection • ucs – the rendering UCS, default is the WCS MultiLeaderBlockBuilder Specialization of MultiLeaderBuilder to build MultiLeader with BLOCK content. class ezdxf.render.MultiLeaderBlockBuilder property block_layout: BlockLayout Returns the block layout. property extents: ezdxf.math.bbox.BoundingBox Returns the bounding box of the block. set_content(name: str, color: Union[int, Tuple[int, int, int]] = 0, scale: float = 1.0, alignment=BlockAlignment.center_extents) Set BLOCK content. Parameters • name – the block name as string • color – block color as AutoCAD Color Index (ACI) or RGB tuple • scale – the block scaling, not to be confused with overall scaling • alignment – the block insertion point or the center of extents set_attribute(tag: str, text: str, width: float = 1.0) Add BLOCK attributes based on an ATTDEF entity in the block definition. All properties of the new created ATTRIB entity are defined by the template ATTDEF entity including the location. Parameters • tag – attribute tag name • text – attribute content string • width – width factor Enums class ezdxf.render.LeaderType(value) The leader type. none straight_lines splines class ezdxf.render.ConnectionSide(value) The leader connection side. Vertical (top, bottom) and horizontal attachment sides (left, right) can not be mixed in a single entity - this is a limitation of the MULTILEADER entity. left right top bottom class ezdxf.render.HorizontalConnection(value) The horizontal leader connection type. by_style top_of_top_line middle_of_top_line middle_of_text middle_of_bottom_line bottom_of_bottom_line bottom_of_bottom_line_underline bottom_of_top_line_underline bottom_of_top_line bottom_of_top_line_underline_all class ezdxf.render.VerticalConnection(value) The vertical leader connection type. by_style center center_overline class ezdxf.render.TextAlignment(value) The MText alignment type. left center right class ezdxf.render.BlockAlignment(value) The Block alignment type. center_extents insertion_point Arrows This module provides support for the AutoCAD standard arrow heads used in DIMENSION, LEADER and MULTILEADER entities. Library user don’t have to use the ARROWS objects directly, but should know the arrow names stored in it as attributes. The arrow names should be accessed that way: import ezdxf arrow = ezdxf.ARROWS.closed_filled ezdxf.render.arrows.ARROWS Single instance of _Arrows to work with. class ezdxf.render.arrows._Arrows Management object for standard arrows. __acad__ Set of AutoCAD standard arrow names. __ezdxf__ Set of arrow names special to ezdxf. architectural_tick [image] closed_filled [image] dot [image] dot_small [image] dot_blank [image] origin_indicator [image] origin_indicator_2 [image] open [image] right_angle [image] open_30 [image] closed [image] dot_smallblank [image] none [image] oblique [image] box_filled [image] box [image] closed_blank [image] datum_triangle_filled [image] datum_triangle [image] integral [image] ez_arrow [image] ez_arrow_blank [image] ez_arrow_filled [image] is_acad_arrow(item: str) -> bool Returns True if item is a standard AutoCAD arrow. is_ezdxf_arrow(item: str) -> bool Returns True if item is a special ezdxf arrow. insert_arrow(layout: GenericLayoutType, name: str, insert: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), size: float = 1.0, rotation: float = 0, *, dxfattribs=None) -> Vec2 Insert arrow as block reference into layout. render_arrow(layout: GenericLayoutType, name: str, insert: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), size: float = 1.0, rotation: float = 0, *, dxfattribs=None) -> Vec2 Render arrow as basic DXF entities into layout. virtual_entities(name: str, insert: Union[Sequence[float], Vec2, Vec3] = Vec3(0.0, 0.0, 0.0), size: float = 0.625, rotation: float = 0, *, dxfattribs=None) -> Iterator[DXFGraphic] Returns all arrow components as virtual DXF entities. Hatching New in version 0.18.1. This module provides rendering support for hatch patterns as used in Hatch and MPolygon entities. High Level Functions ezdxf.render.hatching.hatch_entity(polygon: DXFPolygon, filter_text_boxes=True) -> Iterator[Tuple[Vec3, Vec3]] Yields the hatch pattern of the given HATCH or MPOLYGON entity as 3D lines. Each line is a pair of Vec3 instances as start- and end vertex, points are represented as lines of zero length, which means the start vertex is equal to the end vertex. The function yields nothing if polygon has a solid- or gradient filling or does not have a usable pattern assigned. Parameters • polygon – Hatch or MPolygon entity • filter_text_boxes – ignore text boxes if True ezdxf.render.hatching.hatch_polygons(baseline: HatchBaseLine, polygons: Sequence[Sequence[Vec2]], terminate: Optional[Callable[[], bool]] = None) -> Iterator[‐ Line] Yields all pattern lines for all hatch lines generated by the given HatchBaseLine, intersecting the given 2D polygons as Line instances. The polygons should represent a single entity with or without holes, the order of the polygons and their winding orientation (cw or ccw) is not important. Entities which do not intersect or overlap should be handled separately! Each polygon is a sequence of Vec2 instances, they are treated as closed polygons even if the last vertex is not equal to the first vertex. The hole detection is done by a simple inside/outside counting algorithm and far from perfect, but is able to handle ordinary polygons well. The terminate function WILL BE CALLED PERIODICALLY AND should return True to terminate execution. This can be used to implement a timeout, which can be required if using a very small hatching distance, especially if you get the data from untrusted sources. Parameters • baseline – HatchBaseLine • polygons – multiple sequences of Vec2 instances of a single entity, the order of exterior- and hole paths and the winding orientation (cw or ccw) of paths is not important • terminate – callback function which is called periodically and should return True to terminate the hatching function ezdxf.render.hatching.hatch_paths(baseline: HatchBaseLine, paths: Sequence[Path], terminate: Optional[Callable[[], bool]] = None) -> Iterator[Line] Yields all pattern lines for all hatch lines generated by the given HatchBaseLine, intersecting the given 2D Path instances as Line instances. The paths are handled as projected into the xy-plane the z-axis of path vertices will be ignored if present. Same as the hatch_polygons() function, but for Path instances instead of polygons build of vertices. This function does not flatten the paths into vertices, instead the real intersections of the Bézier curves and the hatch lines are calculated. For more information see the docs of the hatch_polygons() function. Parameters • baseline – HatchBaseLine • paths – sequence of Path instances of a single entity, the order of exterior- and hole paths and the winding orientation (cw or ccw) of the paths is not important • terminate – callback function which is called periodically and should return True to terminate the hatching function Classes class ezdxf.render.hatching.HatchBaseLine(origin: Vec2, direction: Vec2, offset: Vec2, line_pattern: Optional[List[float]] = None) A hatch baseline defines the source line for hatching a geometry. A complete hatch pattern of a DXF entity can consist of one or more hatch baselines. Parameters • origin – the origin of the hatch line as Vec2 instance • direction – the hatch line direction as Vec2 instance, must not (0, 0) • offset – the offset of the hatch line origin to the next or to the previous hatch line • line_pattern – line pattern as sequence of floats, see also PatternRenderer Raises • HatchLineDirectionError – hatch baseline has no direction, (0, 0) vector • DenseHatchingLinesError – hatching lines are too narrow hatch_line(distance: float) -> HatchLine Returns the HatchLine at the given signed distance. pattern_renderer(distance: float) -> PatternRenderer Returns the PatternRenderer for the given signed distance. signed_distance(point: Vec2) -> float Returns the signed normal distance of the given point from this hatch baseline. class ezdxf.render.hatching.HatchLine(origin: Vec2, direction: Vec2, distance: float) Represents a single hatch line. Parameters • origin – the origin of the hatch line as Vec2 instance • direction – the hatch line direction as Vec2 instance, must not (0, 0) • distance – the normal distance to the base hatch line as float intersect_line(a: Vec2, b: Vec2, dist_a: float, dist_b: float) -> Intersection Returns the Intersection of this hatch line and the line defined by the points a and b. The arguments dist_a and dist_b are the signed normal distances of the points a and b from the hatch baseline. The normal distances from the baseline are easy to calculate by the HatchBaseLine.signed_distance() method and allow a fast intersection calculation by a simple point interpolation. Parameters • a – start point of the line as Vec2 instance • b – end point of the line as Vec2 instance • dist_a – normal distance of point a to the hatch baseline as float • dist_b – normal distance of point b to the hatch baseline as float intersect_cubic_bezier_curve(curve: Bezier4P) -> Sequence[Intersection] Returns 0 to 3 Intersection points of this hatch line with a cubic Bèzier curve. Parameters curve – the cubic Bèzier curve as ezdxf.math.Bezier4P instance class ezdxf.render.hatching.PatternRenderer(hatch_line: HatchLine, pattern: Sequence[float]) The hatch pattern of a DXF entity has one or more HatchBaseLine instances with an origin, direction, offset and line pattern. The PatternRenderer for a certain distance from the baseline has to be acquired from the HatchBaseLine by the pattern_renderer() method. The origin of the hatch line is the starting point of the line pattern. The offset defines the origin of the adjacent hatch line and doesn’t have to be orthogonal to the hatch line direction. Line Pattern The line pattern is a sequence of floats, where a value > 0.0 is a dash, a value < 0.0 is a gap and value of 0.0 is a point. Parameters • hatch_line – HatchLine • pattern – the line pattern as sequence of float values render(start: Vec2, end: Vec2) -> Iterator[Tuple[Vec2, Vec2]] Yields the pattern lines as pairs of Vec2 instances from the start- to the end point on the hatch line. For points the start- and end point are the same Vec2 instance and can be tested by the is operator. The start- and end points should be located collinear at the hatch line of this instance, otherwise the points a projected onto this hatch line. class ezdxf.render.hatching.Intersection(type: IntersectionType = IntersectionType.NONE, p0: Vec2 = Vec2(nan, nan), p1: Vec2 = Vec2(nan, nan)) Represents an intersection. type intersection type as IntersectionType instance p0 (first) intersection point as Vec2 instance p1 second intersection point as Vec2 instance, only if type is COLLINEAR class ezdxf.render.hatching.IntersectionType(value) An enumeration. NONE no intersection REGULAR regular intersection point at a polygon edge or a Bèzier curve START intersection point at the start vertex of a polygon edge END intersection point at the end vertex of a polygon edge COLLINEAR intersection is collinear to a polygon edge class ezdxf.render.hatching.Line(start: 'Vec2', end: 'Vec2', distance: 'float') start start point as Vec2 instance end end point as Vec2 instance distance signed normal distance to the HatchBaseLine Helper Functions ezdxf.render.hatching.hatch_boundary_paths(polygon: DXFPolygon, filter_text_boxes=True) -> List[Path] Returns the hatch boundary paths as ezdxf.path.Path instances of HATCH and MPOLYGON entities. Ignores text boxes if argument filter_text_boxes is True. ezdxf.render.hatching.hatch_line_distances(point_distances: Sequence[float], normal_distance: float) -> List[float] Returns all hatch line distances in the range of the given point distances. ezdxf.render.hatching.pattern_baselines(polygon: DXFPolygon) -> Iterator[HatchBaseLine] Yields the hatch pattern baselines of HATCH and MPOLYGON entities as HatchBaseLine instances. Exceptions class ezdxf.render.hatching.HatchingError Base exception of the hatching module. class ezdxf.render.hatching.HatchLineDirectionError Hatching direction is undefined or a (0, 0) vector. class ezdxf.render.hatching.DenseHatchingLinesError Very small hatching distance which creates too many hatching lines.
ADD-ONS
Drawing / Export Addon This add-on provides the functionality to render a DXF document to produce a rasterized or vector-graphic image which can be saved to a file or viewed interactively depending on the backend being used. The module provides two example scripts in the folder examples/addons/drawing which can be run to save rendered images to files or view an interactive visualisation $ ./draw_cad.py --supported_formats # will list the file formats supported by the matplotlib backend. # Many formats are supported including vector graphics formats # such as pdf and svg $ ./draw_cad.py <my_file.dxf> --out image.png # draw a layout other than the model space $ ./draw_cad.py <my_file.dxf> --layout Layout1 --out image.png # opens a GUI application to view CAD files $ ./cad_viewer.py Example for the usage of the matplotlib backend: import sys import matplotlib.pyplot as plt from ezdxf import recover from ezdxf.addons.drawing import RenderContext, Frontend from ezdxf.addons.drawing.matplotlib import MatplotlibBackend # Safe loading procedure (requires ezdxf v0.14): try: doc, auditor = recover.readfile('your.dxf') except IOError: print(f'Not a DXF file or a generic I/O error.') sys.exit(1) except ezdxf.DXFStructureError: print(f'Invalid or corrupted DXF file.') sys.exit(2) # The auditor.errors attribute stores severe errors, # which may raise exceptions when rendering. if not auditor.has_errors: fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1]) ctx = RenderContext(doc) out = MatplotlibBackend(ax) Frontend(ctx, out).draw_layout(doc.modelspace(), finalize=True) fig.savefig('your.png', dpi=300) Simplified render workflow but with less control: from ezdxf import recover from ezdxf.addons.drawing import matplotlib # Exception handling left out for compactness: doc, auditor = recover.readfile('your.dxf') if not auditor.has_errors: matplotlib.qsave(doc.modelspace(), 'your.png') MatplotlibBackend class ezdxf.addons.drawing.matplotlib.MatplotlibBackend __init__(ax: plt.Axes, *, adjust_figure: bool = True, font: FontProperties, use_text_cache: bool = True) PyQtBackend class ezdxf.addons.drawing.pyqt.PyQtBackend __init__(scene: qw.QGraphicsScene = None, *, use_text_cache: bool = True, debug_draw_rect: bool = False) Configuration Additional options for the drawing add-on can be passed by the config argument of the Frontend constructor __init__(). Not every option will be supported by all backends. class ezdxf.addons.drawing.config.Configuration Configuration options for the drawing add-on. pdsize the size to draw POINT entities (in drawing units) set to None to use the $PDSIZE value from the dxf document header ┌─────┬──────────────────────────────────┐ │0 │ 5% of draw area height │ └─────┴──────────────────────────────────┘ │<0 │ Specifies a percentage of the │ │ │ viewport size │ ├─────┼──────────────────────────────────┤ │>0 │ Specifies an absolute size │ ├─────┼──────────────────────────────────┤ │None │ use the $PDMODE value from the │ │ │ dxf document header │ └─────┴──────────────────────────────────┘ Type Optional[int] pdmode point styling mode (see POINT documentation) see Point class documentation Type Optional[int] measurement whether to use metric or imperial units as enum ezdxf.enums.Measurement ┌─────┬──────────────────────────────────┐ │0 │ use imperial units (in, ft, yd, │ │ │ ...) │ ├─────┼──────────────────────────────────┤ │1 │ use metric units (ISO meters) │ ├─────┼──────────────────────────────────┤ │None │ use the $MEASUREMENT value from │ │ │ the dxf document header │ └─────┴──────────────────────────────────┘ Type Optional[ezdxf.enums.Measurement] show_defpoints whether to show or filter out POINT entities on the defpoints layer Type bool proxy_graphic_policy the action to take when a proxy graphic is encountered Type ezdxf.addons.drawing.config.ProxyGraphicPolicy line_policy the method to use when drawing styled lines (eg dashed, dotted etc) Type ezdxf.addons.drawing.config.LinePolicy hatch_policy the method to use when drawing HATCH entities Type ezdxf.addons.drawing.config.HatchPolicy infinite_line_length the length to use when drawing infinite lines Type float lineweight_scaling set to 0.0 for a constant minimal width the current result is correct, in SVG the line width is 0.7 points for 0.25mm as required, but it often looks too thick Type float min_lineweight the minimum line width in 1/300 inch, set to None for let the backend choose. Type Optional[float] min_dash_length the minimum length for a dash when drawing a styled line (default value is arbitrary) Type float max_flattening_distance Max flattening distance in drawing units see Path.flattening documentation. The backend implementation should calculate an appropriate value, like 1 screen- or paper pixel on the output medium, but converted into drawing units. Sets Path() approximation accuracy Type float circle_approximation_count Approximate a full circle by n segments, arcs have proportional less segments. Only used for approximation of arcs in banded polylines. Type int hatching_timeout hatching timeout for a single entity, very dense hatching patterns can cause a very long execution time, the default timeout for a single entity is 30 seconds. Type float defaults() Returns a frozen Configuration object with default values. with_changes() Returns a new frozen Configuration object with modified values. Usage: my_config = Configuration.defaults() my_config = my_config.with_changes(lineweight_scaling=2) LinePolicy class ezdxf.addons.drawing.config.LinePolicy(value) SOLID draw all lines as solid regardless of the linetype style APPROXIMATE use the closest approximation available to the backend for rendering styled lines ACCURATE analyse and render styled lines as accurately as possible. This approach is slower and is not well suited to interactive applications. HatchPolicy class ezdxf.addons.drawing.config.HatchPolicy(value) The action to take when a HATCH entity is encountered IGNORE do not show HATCH entities at all SHOW_OUTLINE show only the outline of HATCH entities SHOW_SOLID show HATCH entities but draw with solid fill regardless of the pattern ProxyGraphicPolicy class ezdxf.addons.drawing.config.ProxyGraphicPolicy(value) The action to take when an entity with a proxy graphic is encountered NOTE: To get proxy graphics support proxy graphics have to be loaded: Set the global option ezdxf.options.load_proxy_graphics to True, which is the default value. This can not prevent drawing proxy graphic inside of blocks, because this is outside of the domain of the drawing add-on! IGNORE do not display proxy graphics (skip_entity will be called instead) SHOW if the entity cannot be rendered directly (eg if not implemented) but a proxy is present: display the proxy PREFER display proxy graphics even for entities where direct rendering is available Properties class ezdxf.addons.drawing.properties.Properties LayerProperties class ezdxf.addons.drawing.properties.LayerProperties RenderContext class ezdxf.addons.drawing.properties.RenderContext Frontend class ezdxf.addons.drawing.frontend.Frontend Backend class ezdxf.addons.drawing.backend.Backend Details The rendering is performed in two stages. The front-end traverses the DXF document structure, converting each encountered entity into primitive drawing commands. These commands are fed to a back-end which implements the interface: Backend. Currently a PyQtBackend (QGraphicsScene based) and a MatplotlibBackend are implemented. Although the resulting images will not be pixel-perfect with AutoCAD (which was taken as the ground truth when developing this add-on) great care has been taken to achieve similar behavior in some areas: • The algorithm for determining color should match AutoCAD. However, the color palette is not stored in the dxf file, so the chosen colors may be different to what is expected. The RenderContext class supports passing a plot style table (CTB-file) as custom color palette but uses the same palette as AutoCAD by default. • Text rendering is quite accurate, text positioning, alignment and word wrapping are very faithful. Differences may occur if a different font from what was used by the CAD application but even in that case, for supported backends, measurements are taken of the font being used to match text as closely as possible. • Visibility determination (based on which layers are visible) should match AutoCAD See examples/addons/drawing/cad_viewer.py for an advanced use of the module. See examples/addons/drawing/draw_cad.py for a simple use of the module. See drawing.md in the ezdxf repository for additional behaviours documented during the development of this add-on. Limitations • Rich text formatting is ignored (drawn as plain text) • If the backend does not match the font then the exact text placement and wrapping may appear slightly different • MULTILEADER renders only proxy graphic if available • relative size of POINT entities cannot be replicated exactly • only basic support for: • infinite lines (rendered as lines with a finite length) • VIEWPORT and OLE2FRAME entities (rendered as rectangles) • 3D entities are projected into the xy-plane and 3D text is not supported • vertical text (will render as horizontal text) • multiple columns of text (placement of additional columns may be incorrect) Geo Interface Intended Usage The intended usage of the ezdxf.addons.geo module is as tool to work with geospatial data in conjunction with dedicated geospatial applications and libraries and the module can not and should not replicate their functionality. The only reimplemented feature is the most common WSG84 EPSG:3395 World Mercator projection, for everything else use the dedicated packages like: • pyproj - Cartographic projections and coordinate transformations library. • Shapely - Manipulation and analysis of geometric objects in the Cartesian plane. • PyShp - The Python Shapefile Library (PyShp) reads and writes ESRI Shapefiles in pure Python. • GeoJSON - GeoJSON interface for Python. • GDAL - Tools for programming and manipulating the GDAL Geospatial Data Abstraction Library. • Fiona - Fiona is GDAL’s neat and nimble vector API for Python programmers. • QGIS - A free and open source geographic information system. • and many more … This module provides support for the __geo_interface__: https://gist.github.com/sgillies/2217756 Which is also supported by Shapely, for supported types see the GeoJSON Standard and examples in Appendix-A. SEE ALSO: Tutorial for the Geo Add-on for loading GPX data into DXF files with an existing geo location reference and exporting DXF entities as GeoJSON data. Proxy From Mapping The GeoProxy represents a __geo_interface__ mapping, create a new proxy by GeoProxy.parse() from an external __geo_interface__ mapping. GeoProxy.to_dxf_entities() returns new DXF entities from this mapping. Returns “Point” as Point entity, “LineString” as LWPolyline entity and “Polygon” as Hatch entity or as separated LWPolyline entities (or both) and new in v0.16.6 as MPolygon. Supports “MultiPoint”, “MultiLineString”, “MultiPolygon”, “GeometryCollection”, “Feature” and “FeatureCollection”. Add new DXF entities to a layout by the Layout.add_entity() method. Proxy From DXF Entity The proxy() function or the constructor GeoProxy.from_dxf_entities() creates a new GeoProxy object from a single DXF entity or from an iterable of DXF entities, entities without a corresponding representation will be approximated. Supported DXF entities are: • POINT as “Point” • LINE as “LineString” • LWPOLYLINE as “LineString” if open and “Polygon” if closed • POLYLINE as “LineString” if open and “Polygon” if closed, supports only 2D and 3D polylines, POLYMESH and POLYFACE are not supported • SOLID, TRACE, 3DFACE as “Polygon” • CIRCLE, ARC, ELLIPSE and SPLINE by approximation as “LineString” if open and “Polygon” if closed • HATCH and MPOLYGON as “Polygon”, holes are supported New in version 0.16.6: MPOLYGON support WARNING: This module does no extensive validity checks for “Polygon” objects and because DXF has different requirements for HATCH boundary paths than the GeoJSON Standard, it is possible to create invalid “Polygon” objects. It is recommended to check critical objects by a sophisticated geometry library like Shapely. Module Functions ezdxf.addons.geo.proxy(entity: Union[DXFGraphic, Iterable[DXFGraphic]], distance: float = 0.1, force_line_string: bool = False) -> GeoProxy Returns a GeoProxy object. Parameters • entity – a single DXF entity or iterable of DXF entities • distance – maximum flattening distance for curve approximations • force_line_string – by default this function returns Polygon objects for closed geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument force_line_string to True, this entities will be returned as LineString objects. ezdxf.addons.geo.dxf_entities(geo_mapping, polygon: int = 1, dxfattribs=None) -> Iterable[DXFGraphic] Returns __geo_interface__ mappings as DXF entities. The polygon argument determines the method to convert polygons, use 1 for Hatch entity, 2 for LWPolyline or 3 for both. Option 2 returns for the exterior path and each hole a separated LWPolyline entity. The Hatch entity supports holes, but has no explicit border line. Yields Hatch always before LWPolyline entities. MPolygon support was added in v0.16.6, which is like a Hatch entity with additional border lines, but the MPOLYGON entity is not a core DXF entity and DXF viewers, applications and libraries my not support this entity. The DXF attribute color defines the border line color and fill_color the color of the solid filling. The returned DXF entities can be added to a layout by the Layout.add_entity() method. Parameters • geo_mapping – __geo__interface__ mapping as dict or a Python object with a __geo__interface__ property • polygon – method to convert polygons (1-2-3-4) • dxfattribs – dict with additional DXF attributes ezdxf.addons.geo.gfilter(entities: Iterable[DXFGraphic]) -> Iterable[DXFGraphic] Filter DXF entities from iterable entities, which are incompatible to the __geo_reference__ interface. GeoProxy Class class ezdxf.addons.geo.GeoProxy(geo_mapping: Dict, places: int = 6) Stores the __geo_interface__ mapping in a parsed and compiled form. Stores coordinates as Vec3 objects and represents “Polygon” always as tuple (exterior, holes) even without holes. The GeoJSON specification recommends 6 decimal places for latitude and longitude which equates to roughly 10cm of precision. You may need slightly more for certain applications, 9 decimal places would be sufficient for professional survey-grade GPS coordinates. Parameters • geo_mapping – parsed and compiled __geo_interface__ mapping • places – decimal places to round for __geo_interface__ export __geo_interface__ Returns the __geo_interface__ compatible mapping as dict. geotype Property returns the top level entity type or None. classmethod parse(geo_mapping: Dict) -> GeoProxy Parse and compile a __geo_interface__ mapping as dict or a Python object with a __geo_interface__ property, does some basic syntax checks, converts all coordinates into Vec3 objects, represents “Polygon” always as tuple (exterior, holes) even without holes. classmethod from_dxf_entities(entity: Union[DXFGraphic, Iterable[DXFGraphic]], distance: float = 0.1, force_line_string: bool = False) -> GeoProxy Constructor from a single DXF entity or an iterable of DXF entities. Parameters • entity – DXF entity or entities • distance – maximum flattening distance for curve approximations • force_line_string – by default this function returns Polygon objects for closed geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument force_line_string to True, this entities will be returned as LineString objects. to_dxf_entities(polygon: int = 1, dxfattribs=None) -> Iterable[DXFGraphic] Returns stored __geo_interface__ mappings as DXF entities. The polygon argument determines the method to convert polygons, use 1 for Hatch entity, 2 for LWPolyline or 3 for both. Option 2 returns for the exterior path and each hole a separated LWPolyline entity. The Hatch entity supports holes, but has no explicit border line. Yields Hatch always before LWPolyline entities. MPolygon support was added in v0.16.6, which is like a Hatch entity with additional border lines, but the MPOLYGON entity is not a core DXF entity and DXF viewers, applications and libraries my not support this entity. The DXF attribute color defines the border line color and fill_color the color of the solid filling. The returned DXF entities can be added to a layout by the Layout.add_entity() method. Parameters • polygon – method to convert polygons (1-2-3-4) • dxfattribs – dict with additional DXF attributes New in version 0.16.6: MPOLYGON support copy() -> GeoProxy Returns a deep copy. __iter__() -> Iterable[Dict] Iterate over all geo content objects. Yields only “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString” and “MultiPolygon” objects, returns the content of “GeometryCollection”, “FeatureCollection” and “Feature” as geometry objects (“Point”, …). wcs_to_crs(crs: Matrix44) -> None Transform all coordinates recursive from WCS coordinates into Coordinate Reference System (CRS) by transformation matrix crs inplace. The CRS is defined by the GeoData entity, get the GeoData entity from the modelspace by method get_geodata(). The CRS transformation matrix can be acquired form the GeoData object by get_crs_transformation() method: doc = ezdxf.readfile('file.dxf') msp = doc.modelspace() geodata = msp.get_geodata() if geodata: matrix, axis_ordering = geodata.get_crs_transformation() If axis_ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON (see chapter 3.1.1). Parameters crs – transformation matrix of type Matrix44 crs_to_wcs(crs: Matrix44) -> None Transform all coordinates recursive from CRS into WCS coordinates by transformation matrix crs inplace, see also GeoProxy.wcs_to_crs(). Parameters crs – transformation matrix of type Matrix44 globe_to_map(func: Optional[Callable[[Vec3], Vec3]] = None) -> None Transform all coordinates recursive from globe representation in longitude and latitude in decimal degrees into 2D map representation in meters. Default is WGS84 EPSG:4326 (GPS) to WGS84 EPSG:3395 World Mercator function wgs84_4326_to_3395(). Use the pyproj package to write a custom projection function as needed. Parameters func – custom transformation function, which takes one Vec3 object as argument and returns the result as a Vec3 object. map_to_globe(func: Optional[Callable[[Vec3], Vec3]] = None) -> None Transform all coordinates recursive from 2D map representation in meters into globe representation as longitude and latitude in decimal degrees. Default is WGS84 EPSG:3395 World Mercator to WGS84 EPSG:4326 GPS function wgs84_3395_to_4326(). Use the pyproj package to write a custom projection function as needed. Parameters func – custom transformation function, which takes one Vec3 object as argument and returns the result as a Vec3 object. apply(func: Callable[[Vec3], Vec3]) -> None Apply the transformation function func recursive to all coordinates. Parameters func – transformation function as Callable[[Vec3], Vec3] filter(func: Callable[[GeoProxy], bool]) -> None Removes all mappings for which func() returns False. The function only has to handle Point, LineString and Polygon entities, other entities like MultiPolygon are divided into separate entities also any collection. Helper Functions ezdxf.addons.geo.wgs84_4326_to_3395(location: Vec3) -> Vec3 Transform WGS84 EPSG:4326 location given as latitude and longitude in decimal degrees as used by GPS into World Mercator cartesian 2D coordinates in meters EPSG:3395. Parameters location – Vec3 object, x-attribute represents the longitude value (East-West) in decimal degrees and the y-attribute represents the latitude value (North-South) in decimal degrees. ezdxf.addons.geo.wgs84_3395_to_4326(location: Vec3, tol: float = 1e-06) -> Vec3 Transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordinates x, y in meters into WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS. Parameters • location – Vec3 object, z-axis is ignored • tol – accuracy for latitude calculation ezdxf.addons.geo.dms2dd(d: float, m: float = 0, s: float = 0) -> float Convert degree, minutes, seconds into decimal degrees. ezdxf.addons.geo.dd2dms(dd: float) -> Tuple[float, float, float] Convert decimal degrees into degree, minutes, seconds. Importer This add-on is meant to import graphical entities from another DXF drawing and their required table entries like LAYER, LTYPE or STYLE. Because of complex extensibility of the DXF format and the lack of sufficient documentation, I decided to remove most of the possible source drawing dependencies from imported entities, therefore imported entities may not look the same as the original entities in the source drawing, but at least the geometry should be the same and the DXF file does not break. Removed data which could contain source drawing dependencies: Extension Dictionaries, AppData and XDATA. WARNING: DON’T EXPECT PERFECT RESULTS! The Importer supports following data import: • entities which are really safe to import: LINE, POINT, CIRCLE, ARC, TEXT, SOLID, TRACE, 3DFACE, SHAPE, POLYLINE, ATTRIB, ATTDEF, INSERT, ELLIPSE, MTEXT, LWPOLYLINE, SPLINE, HATCH, MESH, XLINE, RAY, DIMENSION, LEADER, VIEWPORT • table and table entry import is restricted to LAYER, LTYPE, STYLE, DIMSTYLE • import of BLOCK definitions is supported • import of paper space layouts is supported Import of DXF objects from the OBJECTS section is not supported. DIMSTYLE override for entities DIMENSION and LEADER is not supported. Example: import ezdxf from ezdxf.addons import Importer sdoc = ezdxf.readfile('original.dxf') tdoc = ezdxf.new() importer = Importer(sdoc, tdoc) # import all entities from source modelspace into modelspace of the target drawing importer.import_modelspace() # import all paperspace layouts from source drawing importer.import_paperspace_layouts() # import all CIRCLE and LINE entities from source modelspace into an arbitrary target layout. # create target layout tblock = tdoc.blocks.new('SOURCE_ENTS') # query source entities ents = sdoc.modelspace().query('CIRCLE LINE') # import source entities into target block importer.import_entities(ents, tblock) # This is ALWAYS the last & required step, without finalizing the target drawing is maybe invalid! # This step imports all additional required table entries and block definitions. importer.finalize() tdoc.saveas('imported.dxf') class ezdxf.addons.importer.Importer(source: Drawing, target: Drawing) The Importer class is central element for importing data from other DXF documents. Parameters • source – source Drawing • target – target Drawing source source DXF document target target DXF document used_layers Set of used layer names as string, AutoCAD accepts layer names without a LAYER table entry. used_linetypes Set of used linetype names as string, these linetypes require a TABLE entry or AutoCAD will crash. used_styles Set of used text style names, these text styles require a TABLE entry or AutoCAD will crash. used_dimstyles Set of used dimension style names, these dimension styles require a TABLE entry or AutoCAD will crash. finalize() -> None Finalize the import by importing required table entries and BLOCK definitions, without finalization the target document is maybe invalid for AutoCAD. Call the finalize() method as last step of the import process. import_block(block_name: str, rename=True) -> str Import one BLOCK definition from source document. If the BLOCK already exist the BLOCK will be renamed if argument rename is True, otherwise the existing BLOCK in the target document will be used instead of the BLOCK in the source document. Required name resolving for imported block references (INSERT), will be done in the Importer.finalize() method. To replace an existing BLOCK in the target document, just delete it before importing data: target.blocks.delete_block(block_name, safe=False) Parameters • block_name – name of BLOCK to import • rename – rename BLOCK if a BLOCK with the same name already exist in target document Returns: (renamed) BLOCK name Raises ValueError – BLOCK in source document not found (defined) import_blocks(block_names: Iterable[str], rename=False) -> None Import all BLOCK definitions from source document. If a BLOCK already exist the BLOCK will be renamed if argument rename is True, otherwise the existing BLOCK in the target document will be used instead of the BLOCK from the source document. Required name resolving for imported BLOCK references (INSERT), will be done in the Importer.finalize() method. Parameters • block_names – names of BLOCK definitions to import • rename – rename BLOCK if a BLOCK with the same name already exist in target document Raises ValueError – BLOCK in source document not found (defined) import_entities(entities: Iterable[DXFEntity], target_layout: BaseLayout = None) -> None Import all entities into target_layout or the modelspace of the target document, if target_layout is None. Parameters • entities – Iterable of DXF entities • target_layout – any layout (modelspace, paperspace or block) from the target document Raises DXFStructureError – target_layout is not a layout of target document import_entity(entity: DXFEntity, target_layout: BaseLayout = None) -> None Imports a single DXF entity into target_layout or the modelspace of the target document, if target_layout is None. Parameters • entity – DXF entity to import • target_layout – any layout (modelspace, paperspace or block) from the target document Raises DXFStructureError – target_layout is not a layout of target document import_modelspace(target_layout: BaseLayout = None) -> None Import all entities from source modelspace into target_layout or the modelspace of the target document, if target_layout is None. Parameters target_layout – any layout (modelspace, paperspace or block) from the target document Raises DXFStructureError – target_layout is not a layout of target document import_paperspace_layout(name: str) -> Layout Import paperspace layout name into the target document. Recreates the source paperspace layout in the target document, renames the target paperspace if a paperspace with same name already exist and imports all entities from the source paperspace into the target paperspace. Parameters name – source paper space name as string Returns: new created target paperspace Layout Raises • KeyError – source paperspace does not exist • DXFTypeError – invalid modelspace import import_paperspace_layouts() -> None Import all paperspace layouts and their content into the target document. Target layouts will be renamed if a layout with the same name already exist. Layouts will be imported in original tab order. import_shape_files(fonts: Set[str]) -> None Import shape file table entries from the source document into the target document. Shape file entries are stored in the styles table but without a name. import_table(name: str, entries: Union[str, Iterable[str]] = '*', replace=False) -> None Import specific table entries from the source document into the target document. Parameters • name – valid table names are “layers”, “linetypes” and “styles” • entries – Iterable of table names as strings, or a single table name or “*” for all table entries • replace – True to replace the already existing table entry else ignore existing entries Raises TypeError – unsupported table type import_tables(table_names: Union[str, Iterable[str]] = '*', replace=False) -> None Import DXF tables from the source document into the target document. Parameters • table_names – iterable of tables names as strings, or a single table name as string or “*” for all supported tables • replace – True to replace already existing table entries else ignore existing entries Raises TypeError – unsupported table type recreate_source_layout(name: str) -> Layout Recreate source paperspace layout name in the target document. The layout will be renamed if name already exist in the target document. Returns target modelspace for layout name “Model”. Parameters name – layout name as string Raises KeyError – if source layout name not exist dxf2code Translate DXF entities and structures into Python source code. Short example: import ezdxf from ezdxf.addons.dxf2code import entities_to_code, block_to_code doc = ezdxf.readfile('original.dxf') msp = doc.modelspace() source = entities_to_code(msp) # create source code for a block definition block_source = block_to_code(doc.blocks['MyBlock']) # merge source code objects source.merge(block_source) with open('source.py', mode='wt') as f: f.write(source.import_str()) f.write('\n\n') f.write(source.code_str()) f.write('\n') ezdxf.addons.dxf2code.entities_to_code(entities: Iterable[DXFEntity], layout: str = 'layout', ignore: Iterable[str] = None) -> Code Translates DXF entities into Python source code to recreate this entities by ezdxf. Parameters • entities – iterable of DXFEntity • layout – variable name of the layout (model space or block) as string • ignore – iterable of entities types to ignore as strings like ['IMAGE', 'DIMENSION'] Returns Code ezdxf.addons.dxf2code.block_to_code(block: BlockLayout, drawing: str = 'doc', ignore: Iterable[str] = None) -> Code Translates a BLOCK into Python source code to recreate the BLOCK by ezdxf. Parameters • block – block definition layout • drawing – variable name of the drawing as string • ignore – iterable of entities types to ignore as strings like [‘IMAGE’, ‘DIMENSION’] Returns Code ezdxf.addons.dxf2code.table_entries_to_code(entities: Iterable[DXFEntity], drawing='doc') -> Code ezdxf.addons.dxf2code.black(code: str, line_length=88, fast: bool = True) -> str Returns the source code as a single string formatted by Black Requires the installed Black formatter: pip3 install black Parameters • code – source code • line_length – max. source code line length • fast – True for fast mode, False to check that the reformatted code is valid Raises ImportError – Black is not available class ezdxf.addons.dxf2code.Code Source code container. code Source code line storage, store lines without line ending \\n imports source code line storage for global imports, store lines without line ending \\n layers Layers used by the generated source code, AutoCAD accepts layer names without a LAYER table entry. linetypes Linetypes used by the generated source code, these linetypes require a TABLE entry or AutoCAD will crash. styles Text styles used by the generated source code, these text styles require a TABLE entry or AutoCAD will crash. dimstyles Dimension styles used by the generated source code, these dimension styles require a TABLE entry or AutoCAD will crash. blocks Blocks used by the generated source code, these blocks require a BLOCK definition in the BLOCKS section or AutoCAD will crash. code_str(indent: int = 0) -> str Returns the source code as a single string. Parameters indent – source code indentation count by spaces black_code_str(line_length=88) -> str Returns the source code as a single string formatted by Black Parameters line_length – max. source code line length Raises ImportError – Black is not available import_str(indent: int = 0) -> str Returns required imports as a single string. Parameters indent – source code indentation count by spaces merge(code: Code, indent: int = 0) -> None Add another Code object. add_import(statement: str) -> None Add import statement, identical import statements are merged together. add_line(code: str, indent: int = 0) -> None Add a single source code line without line ending \n. add_lines(code: Iterable[str], indent: int = 0) -> None Add multiple source code lines without line ending \n. iterdxf This add-on allows iterating over entities of the modelspace of really big (> 5GB) DXF files which do not fit into memory by only loading one entity at the time. Only ASCII DXF files are supported. The entities are regular DXFGraphic objects with access to all supported DXF attributes, this entities can be written to new DXF files created by the IterDXF.export() method. The new add_foreign_entity() method allows also to add this entities to new regular ezdxf drawings (except for the INSERT entity), but resources like linetype and style are removed, only layer will be preserved but only with default attributes like color 7 and linetype CONTINUOUS. The following example shows how to split a big DXF files into several separated DXF files which contains only LINE, TEXT or POLYLINE entities. from ezdxf.addons import iterdxf doc = iterdxf.opendxf('big.dxf') line_exporter = doc.export('line.dxf') text_exporter = doc.export('text.dxf') polyline_exporter = doc.export('polyline.dxf') try: for entity in doc.modelspace(): if entity.dxftype() == 'LINE': line_exporter.write(entity) elif entity.dxftype() == 'TEXT': text_exporter.write(entity) elif entity.dxftype() == 'POLYLINE': polyline_exporter.write(entity) finally: line_exporter.close() text_exporter.close() polyline_exporter.close() doc.close() Supported DXF types: 3DFACE, ARC, ATTDEF, ATTRIB, CIRCLE, DIMENSION, ELLIPSE, HATCH, HELIX, IMAGE, INSERT, LEADER, LINE, LWPOLYLINE, MESH, MLEADER, MLINE, MTEXT, POINT, POLYLINE, RAY, SHAPE, SOLID, SPLINE, TEXT, TRACE, VERTEX, WIPEOUT, XLINE Transfer simple entities to another DXF document, this works for some supported entities, except for entities with strong dependencies to the original document like INSERT look at add_foreign_entity() for all supported types: newdoc = ezdxf.new() msp = newdoc.modelspace() # line is an entity from a big source file msp.add_foreign_entity(line) # and so on ... msp.add_foreign_entity(lwpolyline) msp.add_foreign_entity(mesh) msp.add_foreign_entity(polyface) Transfer MESH and POLYFACE (dxftype for POLYFACE and POLYMESH is POLYLINE!) entities into a new DXF document by the MeshTransformer class: from ezdxf.render import MeshTransformer # mesh is MESH from a big source file t = MeshTransformer.from_mesh(mesh) # create a new MESH entity from MeshTransformer t.render(msp) # polyface is POLYFACE from a big source file t = MeshTransformer.from_polyface(polyface) # create a new POLYMESH entity from MeshTransformer t.render_polyface(msp) Another way to import entities from a big source file into new DXF documents is to split the big file into smaller parts and use the Importer add-on for a more safe entity import. ezdxf.addons.iterdxf.opendxf(filename: Union[Path, str], errors: str = 'surrogateescape') -> IterDXF Open DXF file for iterating, be sure to open valid DXF files, no DXF structure checks will be applied. Use this function to split up big DXF files as shown in the example above. Parameters • filename – DXF filename of a seekable DXF file. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – invalid or incomplete DXF file • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.addons.iterdxf.modelspace(filename: Union[Path, str], types: Optional[Iterable[str]] = None, errors: str = 'surrogateescape') -> Iterable[DXFGraphic] Iterate over all modelspace entities as DXFGraphic objects of a seekable file. Use this function to iterate “quick” over modelspace entities of a DXF file, filtering DXF types may speed up things if many entity types will be skipped. Parameters • filename – filename of a seekable DXF file • types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all supported types. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – invalid or incomplete DXF file • UnicodeDecodeError – if errors is “strict” and a decoding error occurs ezdxf.addons.iterdxf.single_pass_modelspace(stream: BinaryIO, types: Optional[Iterable[str]] = None, errors: str = 'surrogateescape') -> Iterable[DXFGraphic] Iterate over all modelspace entities as DXFGraphic objects in one single pass. Use this function to ‘quick’ iterate over modelspace entities of a not seekable binary DXF stream, filtering DXF types may speed up things if many entity types will be skipped. Parameters • stream – (not seekable) binary DXF stream • types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all supported types. • errors – specify decoding error handler • ”surrogateescape” to preserve possible binary data (default) • ”ignore” to use the replacement char U+FFFD “�” for invalid data • ”strict” to raise an UnicodeDecodeError exception for invalid data Raises • DXFStructureError – Invalid or incomplete DXF file • UnicodeDecodeError – if errors is “strict” and a decoding error occurs class ezdxf.addons.iterdxf.IterDXF export(name: Union[Path, str]) -> IterDXFWriter Returns a companion object to export parts from the source DXF file into another DXF file, the new file will have the same HEADER, CLASSES, TABLES, BLOCKS and OBJECTS sections, which guarantees all necessary dependencies are present in the new file. Parameters name – filename, no special requirements modelspace(types: Optional[Iterable[str]] = None) -> Iterable[DXFGraphic] Returns an iterator for all supported DXF entities in the modelspace. These entities are regular DXFGraphic objects but without a valid document assigned. It is not possible to add these entities to other ezdxf documents. It is only possible to recreate the objects by factory functions base on attributes of the source entity. For MESH, POLYMESH and POLYFACE it is possible to use the MeshTransformer class to render (recreate) this objects as new entities in another document. Parameters types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all supported types. close() Safe closing source DXF file. class ezdxf.addons.iterdxf.IterDXFWriter write(entity: DXFGraphic) Write a DXF entity from the source DXF file to the export file. Don’t write entities from different documents than the source DXF file, dependencies and resources will not match, maybe it will work once, but not in a reliable way for different DXF documents. close() Safe closing of exported DXF file. Copying of OBJECTS section happens only at closing the file, without closing the new DXF file is invalid. r12writer The fast file/stream writer creates simple DXF R12 drawings with just an ENTITIES section. The HEADER, TABLES and BLOCKS sections are not present except FIXED-TABLES are written. Only LINE, CIRCLE, ARC, TEXT, POINT, SOLID, 3DFACE and POLYLINE entities are supported. FIXED-TABLES is a predefined TABLES section, which will be written, if the init argument fixed_tables of R12FastStreamWriter is True. The R12FastStreamWriter writes the DXF entities as strings direct to the stream without creating an in-memory drawing and therefore the processing is very fast. Because of the lack of a BLOCKS section, BLOCK/INSERT can not be used. Layers can be used, but this layers have a default setting color = 7 (black/white) and linetype = 'Continuous'. If writing the FIXED-TABLES, some predefined text styles and line types are available, else text style is always 'STANDARD' and line type is always 'ByLayer'. If using FIXED-TABLES, following predefined line types are available: • CONTINUOUS • CENTER ____ _ ____ _ ____ _ ____ _ ____ _ ____ • CENTERX2 ________ __ ________ __ ________ • CENTER2 ____ _ ____ _ ____ _ ____ _ ____ • DASHED __ __ __ __ __ __ __ __ __ __ __ __ __ _ • DASHEDX2 ____ ____ ____ ____ ____ ____ • DASHED2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ • PHANTOM ______ __ __ ______ __ __ ______ • PHANTOMX2 ____________ ____ ____ ____________ • PHANTOM2 ___ _ _ ___ _ _ ___ _ _ ___ _ _ ___ • DASHDOT __ . __ . __ . __ . __ . __ . __ . __ • DASHDOTX2 ____ . ____ . ____ . ____ • DASHDOT2 _ . _ . _ . _ . _ . _ . _ . _ • DOT . . . . . . . . . . . . . . . . • DOTX2 . . . . . . . . • DOT2 . . . . . . . . . . . . . . . . . . . • DIVIDE __ . . __ . . __ . . __ . . __ . . __ • DIVIDEX2 ____ . . ____ . . ____ . . ____ • DIVIDE2 _ . _ . _ . _ . _ . _ . _ . _ If using FIXED-TABLES, following predefined text styles are available: • OpenSans • OpenSansCondensed-Light Tutorial A simple example with different DXF entities: from random import random from ezdxf.addons import r12writer with r12writer("quick_and_dirty_dxf_r12.dxf") as dxf: dxf.add_line((0, 0), (17, 23)) dxf.add_circle((0, 0), radius=2) dxf.add_arc((0, 0), radius=3, start=0, end=175) dxf.add_solid([(0, 0), (1, 0), (0, 1), (1, 1)]) dxf.add_point((1.5, 1.5)) # 2d polyline, new in v0.12 dxf.add_polyline_2d([(5, 5), (7, 3), (7, 6)]) # 2d polyline with bulge value, new in v0.12 dxf.add_polyline_2d([(5, 5), (7, 3, 0.5), (7, 6)], format='xyb') # 3d polyline only, changed in v0.12 dxf.add_polyline([(4, 3, 2), (8, 5, 0), (2, 4, 9)]) dxf.add_text("test the text entity", align="MIDDLE_CENTER") A simple example of writing really many entities in a short time: from random import random from ezdxf.addons import r12writer MAX_X_COORD = 1000.0 MAX_Y_COORD = 1000.0 CIRCLE_COUNT = 1000000 with r12writer("many_circles.dxf") as dxf: for i in range(CIRCLE_COUNT): dxf.add_circle((MAX_X_COORD*random(), MAX_Y_COORD*random()), radius=2) Show all available line types: import ezdxf LINETYPES = [ 'CONTINUOUS', 'CENTER', 'CENTERX2', 'CENTER2', 'DASHED', 'DASHEDX2', 'DASHED2', 'PHANTOM', 'PHANTOMX2', 'PHANTOM2', 'DASHDOT', 'DASHDOTX2', 'DASHDOT2', 'DOT', 'DOTX2', 'DOT2', 'DIVIDE', 'DIVIDEX2', 'DIVIDE2', ] with r12writer('r12_linetypes.dxf', fixed_tables=True) as dxf: for n, ltype in enumerate(LINETYPES): dxf.add_line((0, n), (10, n), linetype=ltype) dxf.add_text(ltype, (0, n+0.1), height=0.25, style='OpenSansCondensed-Light') Reference ezdxf.addons.r12writer.r12writer(stream: Union[TextIO, BinaryIO, str], fixed_tables=False, fmt='asc') -> R12FastStreamWriter Context manager for writing DXF entities to a stream/file. stream can be any file like object with a write() method or just a string for writing DXF entities to the file system. If fixed_tables is True, a standard TABLES section is written in front of the ENTITIES section and some predefined text styles and line types can be used. Set argument fmt to “asc” to write ASCII DXF file (default) or “bin” to write Binary DXF files. ASCII DXF require a TextIO stream and Binary DXF require a BinaryIO stream. class ezdxf.addons.r12writer.R12FastStreamWriter(stream: TextIO, fixed_tables=False) Fast stream writer to create simple DXF R12 drawings. Parameters • stream – a file like object with a write() method. • fixed_tables – if fixed_tables is True, a standard TABLES section is written in front of the ENTITIES section and some predefined text styles and line types can be used. close() -> None Writes the DXF tail. Call is not necessary when using the context manager r12writer(). add_line(start: Sequence[float], end: Sequence[float], layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a LINE entity from start to end. Parameters • start – start vertex as (x, y[, z]) tuple • end – end vertex as as (x, y[, z]) tuple • layer – layer name as string, without a layer definition the assigned color = 7 (black/white) and line type is 'Continuous'. • color – color as AutoCAD Color Index (ACI) in the range from 0 to 256, 0 is ByBlock and 256 is ByLayer, default is ByLayer which is always color = 7 (black/white) without a layer definition. • linetype – line type as string, if FIXED-TABLES are written some predefined line types are available, else line type is always ByLayer, which is always 'Continuous' without a LAYERS table. add_circle(center: Sequence[float], radius: float, layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a CIRCLE entity. Parameters • center – circle center point as (x, y) tuple • radius – circle radius as float • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_arc(center: Sequence[float], radius: float, start: float = 0, end: float = 360, layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add an ARC entity. The arc goes counter clockwise from start angle to end angle. Parameters • center – arc center point as (x, y) tuple • radius – arc radius as float • start – arc start angle in degrees as float • end – arc end angle in degrees as float • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_point(location: Sequence[float], layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a POINT entity. Parameters • location – point location as (x, y [,z]) tuple • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_3dface(vertices: Iterable[Sequence[float]], invisible: int = 0, layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a 3DFACE entity. 3DFACE is a spatial area with 3 or 4 vertices, all vertices have to be in the same plane. Parameters • vertices – iterable of 3 or 4 (x, y, z) vertices. • invisible – bit coded flag to define the invisible edges, 1. edge = 1 2. edge = 2 3. edge = 4 4. edge = 8 Add edge values to set multiple edges invisible, 1. edge + 3. edge = 1 + 4 = 5, all edges = 15 • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_solid(vertices: Iterable[Sequence[float]], layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a SOLID entity. SOLID is a solid filled area with 3 or 4 edges and SOLID is a 2D entity. Parameters • vertices – iterable of 3 or 4 (x, y[, z]) tuples, z-axis will be ignored. • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_polyline_2d(points: Iterable[Sequence], format: str = 'xy', closed: bool = False, start_width: float = 0, end_width: float = 0, layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a 2D POLYLINE entity with start width, end width and bulge value support. Format codes: ┌──┬──────────────────────────────────┐ │x │ x-coordinate │ ├──┼──────────────────────────────────┤ │y │ y-coordinate │ ├──┼──────────────────────────────────┤ │s │ start width │ ├──┼──────────────────────────────────┤ │e │ end width │ ├──┼──────────────────────────────────┤ │b │ bulge value │ ├──┼──────────────────────────────────┤ │v │ (x, y) tuple (z-axis is ignored) │ └──┴──────────────────────────────────┘ Parameters • points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple, value order according to the format string, unset values default to 0 • format – format: format string, default is 'xy' • closed – True creates a closed polyline • start_width – default start width, default is 0 • end_width – default end width, default is 0 • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_polyline(vertices: Iterable[Sequence[float]], closed: bool = False, layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a 3D POLYLINE entity. Parameters • vertices – iterable of (x, y[, z]) tuples, z-axis is 0 by default • closed – True creates a closed polyline • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() Changed in version 0.12: Write only 3D POLYLINE entity, added closed argument. add_polyface(vertices: Iterable[Sequence[float]], faces: Iterable[Sequence[int]], layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a POLYFACE entity. The POLYFACE entity supports only faces of maximum 4 vertices, more indices will be ignored. A simple square would be: v0 = (0, 0, 0) v1 = (1, 0, 0) v2 = (1, 1, 0) v3 = (0, 1, 0) dxf.add_polyface(vertices=[v0, v1, v2, v3], faces=[(0, 1, 2, 3)]) All 3D form functions of the ezdxf.render.forms module return MeshBuilder objects, which provide the required vertex and face lists. See sphere example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py Parameters • vertices – iterable of (x, y, z) tuples • faces – iterable of 3 or 4 vertex indices, indices have to be 0-based • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_polymesh(vertices: Iterable[Sequence[float]], size: Tuple[int, int], closed=(False, False), layer: str = '0', color: Optional[int] = None, linetype: Optional[str] = None) -> None Add a POLYMESH entity. A POLYMESH is a mesh of m rows and n columns, each mesh vertex has its own x-, y- and z coordinates. The mesh can be closed in m- and/or n-direction. The vertices have to be in column order: (m0, n0), (m0, n1), (m0, n2), (m1, n0), (m1, n1), (m1, n2), … See example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py Parameters • vertices – iterable of (x, y, z) tuples, in column order • size – mesh dimension as (m, n)-tuple, requirement: len(vertices) == m*n • closed – (m_closed, n_closed) tuple, for closed mesh in m and/or n direction • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() • linetype – line type as string see add_line() add_text(text: str, insert: Sequence[float] = (0, 0), height: float = 1.0, width: float = 1.0, align: str = 'LEFT', rotation: float = 0.0, oblique: float = 0.0, style: str = 'STANDARD', layer: str = '0', color: Optional[int] = None) -> None Add a one line TEXT entity. Parameters • text – the text as string • insert – insert location as (x, y) tuple • height – text height in drawing units • width – text width as factor • align – text alignment, see table below • rotation – text rotation in degrees as float • oblique – oblique in degrees as float, vertical = 0 (default) • style – text style name as string, if FIXED-TABLES are written some predefined text styles are available, else text style is always 'STANDARD'. • layer – layer name as string see add_line() • color – color as AutoCAD Color Index (ACI) see add_line() ┌───────────┬─────────────┬───────────────┬──────────────┐ │Vert/Horiz │ Left │ Center │ Right │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │ ├───────────┼─────────────┼───────────────┼──────────────┤ │Baseline │ LEFT │ CENTER │ RIGHT │ └───────────┴─────────────┴───────────────┴──────────────┘ The special alignments ALIGNED and FIT are not available. ODA File Converter Support Use an installed ODA File Converter for converting between different versions of .dwg, .dxb and .dxf. WARNING: Execution of an external application is a big security issue! Especially when the path to the executable can be altered. To avoid this problem delete the ezdxf.addons.odafc.py module. The ODA File Converter has to be installed by the user, the application is available for Windows XP, Windows 7 or later, Mac OS X, and Linux in 32/64-bit RPM and DEB format. At least at Windows the GUI of the ODA File Converter pops up on every call. ODA File Converter version strings, you can use any of this strings to specify a version, 'R..' and 'AC....' strings will be automatically mapped to 'ACAD....' strings: ┌─────────┬───────────────┬─────────┐ │ODAFC │ ezdxf │ Version │ ├─────────┼───────────────┼─────────┤ │ACAD9 │ not supported │ AC1004 │ ├─────────┼───────────────┼─────────┤ │ACAD10 │ not supported │ AC1006 │ ├─────────┼───────────────┼─────────┤ │ACAD12 │ R12 │ AC1009 │ ├─────────┼───────────────┼─────────┤ │ACAD13 │ R13 │ AC1012 │ ├─────────┼───────────────┼─────────┤ │ACAD14 │ R14 │ AC1014 │ ├─────────┼───────────────┼─────────┤ │ACAD2000 │ R2000 │ AC1015 │ ├─────────┼───────────────┼─────────┤ │ACAD2004 │ R2004 │ AC1018 │ ├─────────┼───────────────┼─────────┤ │ACAD2007 │ R2007 │ AC1021 │ ├─────────┼───────────────┼─────────┤ │ACAD2010 │ R2010 │ AC1024 │ ├─────────┼───────────────┼─────────┤ │ACAD2013 │ R2013 │ AC1027 │ ├─────────┼───────────────┼─────────┤ │ACAD2018 │ R2018 │ AC1032 │ └─────────┴───────────────┴─────────┘ On Windows the path to the ODAFileConverter.exe executable is stored in the config file (see ezdxf.options) in the “odafc-addon” section as key “win_exec_path”, the default entry is: [odafc-addon] win_exec_path = "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe" On Linux and macOS the ODAFileConverter command is located by the shutil.which() function. Usage: from ezdxf.addons import odafc # Load a DWG file doc = odafc.readfile('my.dwg') # Use loaded document like any other ezdxf document print(f'Document loaded as DXF version: {doc.dxfversion}.') msp = doc.modelspace() ... # Export document as DWG file for AutoCAD R2018 odafc.export_dwg(doc, 'my_R2018.dwg', version='R2018') ezdxf.addons.odafc.win_exec_path Path to installed ODA File Converter executable on Windows systems, default is "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe". ezdxf.addons.odafc.is_installed() -> bool Returns True if the ODAFileConverter is installed. New in version 0.18. ezdxf.addons.odafc.readfile(filename: str, version: Optional[str] = None, *, audit: bool = False) -> Optional[Drawing] Uses an installed ODA File Converter to convert a DWG/DXB/DXF file into a temporary DXF file and load this file by ezdxf. Parameters • filename – file to load by ODA File Converter • version – load file as specific DXF version, by default the same version as the source file or if not detectable the latest by ezdxf supported version. • audit – audit source file before loading Raises • FileNotFoundError – source file not found • odafc.UnknownODAFCError – conversion failed for unknown reasons • odafc.UnsupportedVersion – invalid DWG version specified • odafc.UnsupportedFileFormat – unsupported file extension • odafc.ODAFCNotInstalledError – ODA File Converter not installed ezdxf.addons.odafc.export_dwg(doc: Drawing, filename: str, version: Optional[str] = None, *, audit: bool = False, replace: bool = False) -> None Uses an installed ODA File Converter to export the DXF document doc as a DWG file. A temporary DXF file will be created and converted to DWG by the ODA File Converter. If version is not specified the DXF version of the source document is used. Parameters • doc – ezdxf DXF document as Drawing object • filename – output DWG filename, the extension will be set to “.dwg” • version – DWG version to export, by default the same version as the source document. • audit – audit source file by ODA File Converter at exporting • replace – replace existing DWG file if True Raises • FileExistsError – target file already exists, and argument replace is False • FileNotFoundError – parent directory of target file does not exist • odafc.UnknownODAFCError – exporting DWG failed for unknown reasons • odafc.ODAFCNotInstalledError – ODA File Converter not installed ezdxf.addons.odafc.convert(source: Union[str, Path], dest: Union[str, Path] = '', *, version='R2018', audit=True, replace=False) Convert source file to dest file. New in version 0.18. The file extension defines the target format e.g. convert("test.dxf", "Test.dwg") converts the source file to a DWG file. If dest is an empty string the conversion depends on the source file format and is DXF to DWG or DWG to DXF. To convert DXF to DXF an explicit destination filename is required: convert("r12.dxf", "r2013.dxf", version="R2013") Parameters • source – source file • dest – destination file, an empty string uses the source filename with the extension of the target format e.g. “test.dxf” -> “test.dwg” • version – output DXF/DWG version e.g. “ACAD2018”, “R2018”, “AC1032” • audit – audit files • replace – replace existing destination file Raises • FileNotFoundError – source file or destination folder does not exist • FileExistsError – destination file already exists and argument replace is False • odafc.UnsupportedVersion – invalid DXF version specified • odafc.UnsupportedFileFormat – unsupported file extension • odafc.UnknownODAFCError – conversion failed for unknown reasons • odafc.ODAFCNotInstalledError – ODA File Converter not installed text2path New in version 0.16. Tools to convert text strings and text based DXF entities into outer- and inner linear paths as Path objects. These tools depend on the optional Matplotlib package. At the moment only the TEXT and the ATTRIB entity can be converted into paths and hatches. Don't expect a 100% match compared to CAD applications. Text Alignments The text alignments are enums of type ezdxf.enums.TextEntityAlignment ┌─────────┬─────────────┬───────────────┬──────────────┐ │Vertical │ Left │ Center │ Right │ ├─────────┼─────────────┼───────────────┼──────────────┤ │Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │ ├─────────┼─────────────┼───────────────┼──────────────┤ │Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │ ├─────────┼─────────────┼───────────────┼──────────────┤ │Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │ ├─────────┼─────────────┼───────────────┼──────────────┤ │Baseline │ LEFT │ CENTER │ RIGHT │ └─────────┴─────────────┴───────────────┴──────────────┘ The vertical middle alignments (MIDDLE_XXX), center the text vertically in the middle of the uppercase letter "X" (cap height). Special alignments, where the horizontal alignment is always in the center of the text: • ALIGNED: text is scaled to match the given length, scales x- and y-direction by the same factor. • FIT: text is scaled to match the given length, but scales only in x-direction. • MIDDLE: insertion point is the center of the total height (cap height + descender height) without scaling, the length argument is ignored. Font Face Definition A font face is defined by the Matplotlib compatible FontFace object by font-family, font-style, font-stretch and font-weight. SEE ALSO: • Font Anatomy • Font Properties String Functions Entity Functions MTextExplode This tool is meant to explode MTEXT entities into single line TEXT entities by replicating the MTEXT layout as close as possible. This tool requires the optional Matplotlib package to create usable results, nonetheless it also works without Matplotlib, but then uses a mono-spaced replacement font for text size measuring which leads to very inaccurate results. The supported MTEXT features are: • changing text color • text strokes: underline, overline and strike through • changing text size, width and oblique • changing font faces • stacked text (fractions) • multi-column support • background color • text frame The tool requires an initialized DXF document io implement all these features by creating additional text styles. When exploding multiple MTEXT entities, they can share this new text styles. Call the MTextExplode.finalize() method just once after all MTEXT entities are processed to create the required text styles, or use MTextExplode as context manager by using the with statement, see examples below. There are also many limitations: • A 100% accurate result cannot be achieved. • Character tracking is not supported. • Tabulator stops have only limited support for LEFT and JUSTIFIED aligned paragraphs to support numbered and bullet lists. An excessive use of tabs will lead to incorrect results. • The DISTRIBUTED alignment will be replaced by the JUSTIFIED alignment. • Text flow is always “left to right”. • The line spacing mostly corresponds to the “EXACT” style, except for stacked text (fractions), which corresponds more to the “AT LEAST” style, but not precisely. This behavior maybe will improve in the future. • FIELDS are not evaluated by ezdxf. class ezdxf.addons.MTextExplode(layout, doc=None, spacing_factor=1.0) The MTextExplode class is a tool to disassemble MTEXT entities into single line TEXT entities and additional LINE entities if required to emulate strokes. The layout argument defines the target layout for “exploded” parts of the MTEXT entity. Use argument doc if the target layout has no DXF document assigned. The spacing_factor argument is an advanced tuning parameter to scale the size of space chars. explode(mtext: MText, destroy=True) Explode mtext and destroy the source entity if argument destroy is True. finalize() Create required text styles. This method is called automatically if the class is used as context manager. Example to explode all MTEXT entities in the DXF file “mtext.dxf”: import ezdxf from ezdxf.addons import MTextExplode doc = ezdxf.readfile("mtext.dxf") msp = doc.modelspace() with MTextExplode(msp) as xpl: for mtext in msp.query("MTEXT"): xpl.explode(mtext) doc.saveas("xpl_mtext.dxf") Explode all MTEXT entities into the block “EXPLODE”: import ezdxf from ezdxf.addons import MTextExplode doc = ezdxf.readfile("mtext.dxf") msp = doc.modelspace() blk = doc.blocks.new("EXPLODE") with MTextExplode(blk) as xpl: for mtext in msp.query("MTEXT"): xpl.explode(mtext) msp.add_block_ref("EXPLODE", (0, 0)) doc.saveas("xpl_into_block.dxf") PyCSG Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersection to combine 3D solids. This library implements CSG operations on meshes elegantly and concisely using BSP trees, and is meant to serve as an easily understandable implementation of the algorithm. All edge cases involving overlapping coplanar polygons in both solids are correctly handled. Example for usage: import ezdxf from ezdxf.render.forms import cube, cylinder_2p from ezdxf.addons.pycsg import CSG # create new DXF document doc = ezdxf.new() msp = doc.modelspace() # create same geometric primitives as MeshTransformer() objects cube1 = cube() cylinder1 = cylinder_2p(count=32, base_center=(0, -1, 0), top_center=(0, 1, 0), radius=.25) # build solid union union = CSG(cube1) + CSG(cylinder1) # convert to mesh and render mesh to modelspace union.mesh().render(msp, dxfattribs={'color': 1}) # build solid difference difference = CSG(cube1) - CSG(cylinder1) # convert to mesh, translate mesh and render mesh to modelspace difference.mesh().translate(1.5).render(msp, dxfattribs={'color': 3}) # build solid intersection intersection = CSG(cube1) * CSG(cylinder1) # convert to mesh, translate mesh and render mesh to modelspace intersection.mesh().translate(2.75).render(msp, dxfattribs={'color': 5}) doc.saveas('csg.dxf') [image: Cube vs Cylinder] [image] This CSG kernel supports only meshes as MeshBuilder objects, which can be created from and converted to DXF Mesh entities. This CSG kernel is not compatible with ACIS objects like Solid3d, Body, Surface or Region. NOTE: This is a pure Python implementation, don’t expect great performance and the implementation is based on an unbalanced BSP tree, so in the case of RecursionError, increase the recursion limit: import sys actual_limit = sys.getrecursionlimit() # default is 1000, increasing too much may cause a seg fault sys.setrecursionlimit(10000) ... # do the CSG stuff sys.setrecursionlimit(actual_limit) CSG works also with spheres, but with really bad runtime behavior and most likely RecursionError exceptions, and use quadrilaterals as body faces to reduce face count by setting argument quads to True. import ezdxf from ezdxf.render.forms import sphere, cube from ezdxf.addons.pycsg import CSG doc = ezdxf.new() doc.set_modelspace_vport(6, center=(5, 0)) msp = doc.modelspace() cube1 = cube().translate(-.5, -.5, -.5) sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True) union = (CSG(cube1) + CSG(sphere1)).mesh() union.render(msp, dxfattribs={'color': 1}) subtract = (CSG(cube1) - CSG(sphere1)).mesh().translate(2.5) subtract.render(msp, dxfattribs={'color': 3}) intersection = (CSG(cube1) * CSG(sphere1)).mesh().translate(4) intersection.render(msp, dxfattribs={'color': 5}) [image: Cube vs Sphere] [image] Hard Core CSG - Menger Sponge Level 3 vs Sphere Required runtime on an old Xeon E5-1620 Workstation @ 3.60GHz, with default recursion limit of 1000 on Windows 10: • CPython 3.8.1 64bit: ~60 seconds, • pypy3 [PyPy 7.2.0] 32bit: ~6 seconds, and using __slots__ reduced runtime below 5 seconds, yes - pypy is worth a look for long running scripts! from ezdxf.render.forms import sphere from ezdxf.addons import MengerSponge from ezdxf.addons.pycsg import CSG doc = ezdxf.new() doc.layers.new('sponge', dxfattribs={'color': 5}) doc.layers.new('sphere', dxfattribs={'color': 6}) doc.set_modelspace_vport(6, center=(5, 0)) msp = doc.modelspace() sponge1 = MengerSponge(level=3).mesh() sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True).translate(.25, .25, 1) subtract = (CSG(sponge1, meshid=1) - CSG(sphere1, meshid=2)) # get mesh result by id subtract.mesh(1).render(msp, dxfattribs={'layer': 'sponge'}) subtract.mesh(2).render(msp, dxfattribs={'layer': 'sphere'}) [image: Menger Sponge vs Sphere] [image] CSG Class class ezdxf.addons.pycsg.CSG(mesh: MeshBuilder, meshid: int = 0) Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersection to combine 3D solids. This class implements CSG operations on meshes. New 3D solids are created from MeshBuilder objects and results can be exported as MeshTransformer objects to ezdxf by method mesh(). Parameters • mesh – ezdxf.render.MeshBuilder or inherited object • meshid – individual mesh ID to separate result meshes, 0 is default mesh(meshid: int = 0) -> MeshTransformer Returns a ezdxf.render.MeshTransformer object. Parameters meshid – individual mesh ID, 0 is default union(other: CSG) -> CSG Return a new CSG solid representing space in either this solid or in the solid other. Neither this solid nor the solid other are modified: A.union(B) +-------+ +-------+ | | | | | A | | | | +--+----+ = | +----+ +----+--+ | +----+ | | B | | | | | | | +-------+ +-------+ __add__() union = A + B subtract(other: CSG) -> CSG Return a new CSG solid representing space in this solid but not in the solid other. Neither this solid nor the solid other are modified: A.subtract(B) +-------+ +-------+ | | | | | A | | | | +--+----+ = | +--+ +----+--+ | +----+ | B | | | +-------+ __sub__() difference = A - B intersect(other: CSG) -> CSG Return a new CSG solid representing space both this solid and in the solid other. Neither this solid nor the solid other are modified: A.intersect(B) +-------+ | | | A | | +--+----+ = +--+ +----+--+ | +--+ | B | | | +-------+ __mul__() intersection = A * B inverse() -> CSG Return a new CSG solid with solid and empty space switched. This solid is not modified. License • Original implementation csg.js, Copyright (c) 2011 Evan Wallace (‐ http://madebyevan.com/), under the MIT license. • Python port pycsg, Copyright (c) 2012 Tim Knip (http://www.floorplanner.com), under the MIT license. • Additions by Alex Pletzer (Pennsylvania State University) • Integration as ezdxf add-on, Copyright (c) 2020, Manfred Moitzi, MIT License. Plot Style Files (CTB/STB) CTB and STB files store plot styles used by AutoCAD and BricsCAD for printing and plotting. If the plot style table is attached to a Paperspace or the Modelspace, a change of a plot style affects any object that uses that plot style. CTB files contain color dependent plot style tables, STB files contain named plot style tables. SEE ALSO: • Using plot style tables in AutoCAD • AutoCAD Plot Style Table Editor • BricsCAD Plot Style Table Editor • AUTODESK KNOWLEDGE NETWORK: How to install CTB files in AutoCAD ezdxf.addons.acadctb.load(filename: str) -> Union[ColorDependentPlotStyles, NamedPlotStyles] Load the CTB or STB file filename from file system. ezdxf.addons.acadctb.new_ctb() -> ColorDependentPlotStyles Create a new CTB file. Changed in version 0.10: renamed from new() ezdxf.addons.acadctb.new_stb() -> NamedPlotStyles Create a new STB file. ColorDependentPlotStyles Color dependent plot style table (CTB file), table entries are PlotStyle objects. class ezdxf.addons.acadctb.ColorDependentPlotStyles description Custom description of plot style file. scale_factor Specifies the factor by which to scale non-ISO linetypes and fill patterns. apply_factor Specifies whether or not you want to apply the scale_factor. custom_lineweight_display_units Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in millimeters. lineweights Lineweights table as array.array __getitem__(aci: int) -> PlotStyle Returns PlotStyle for AutoCAD Color Index (ACI) aci. __iter__() Iterable of all plot styles. new_style(aci: int, data: Optional[dict] = None) -> PlotStyle Set aci to new attributes defined by data dict. Parameters • aci – AutoCAD Color Index (ACI) • data – dict of PlotStyle attributes: description, color, physical_pen_number, virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight, end_style, join_style, fill_style get_lineweight(aci: int) Returns the assigned lineweight for PlotStyle aci in millimeter. get_lineweight_index(lineweight: float) -> int Get index of lineweight in the lineweight table or append lineweight to lineweight table. get_table_lineweight(index: int) -> float Returns lineweight in millimeters of lineweight table entry index. Parameters index – lineweight table index = PlotStyle.lineweight Returns lineweight in mm or 0.0 for use entity lineweight set_table_lineweight(index: int, lineweight: float) -> int Argument index is the lineweight table index, not the AutoCAD Color Index (ACI). Parameters • index – lineweight table index = PlotStyle.lineweight • lineweight – in millimeters save() Save CTB file as filename to the file system. write(stream: BinaryIO) -> None Compress and write CTB file to binary stream. NamedPlotStyles Named plot style table (STB file), table entries are PlotStyle objects. class ezdxf.addons.acadctb.NamedPlotStyles description Custom description of plot style file. scale_factor Specifies the factor by which to scale non-ISO linetypes and fill patterns. apply_factor Specifies whether or not you want to apply the scale_factor. custom_lineweight_display_units Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in millimeters. lineweights Lineweights table as array.array __getitem__(name: str) -> PlotStyle Returns PlotStyle by name. __delitem__(name: str) -> None Delete plot style name. Plot style 'Normal' is not deletable. __iter__() -> Iterable[str] Iterable of all plot style names. new_style(name: str, data: Optional[dict] = None, localized_name: Optional[str] = None) -> PlotStyle Create new class:PlotStyle name by attribute dict data, replaces existing class:PlotStyle objects. Parameters • name – plot style name • localized_name – name shown in plot style editor, uses name if None • data – dict of PlotStyle attributes: description, color, physical_pen_number, virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight, end_style, join_style, fill_style get_lineweight(name: str) Returns the assigned lineweight for PlotStyle name in millimeter. get_lineweight_index(lineweight: float) -> int Get index of lineweight in the lineweight table or append lineweight to lineweight table. get_table_lineweight(index: int) -> float Returns lineweight in millimeters of lineweight table entry index. Parameters index – lineweight table index = PlotStyle.lineweight Returns lineweight in mm or 0.0 for use entity lineweight set_table_lineweight(index: int, lineweight: float) -> int Argument index is the lineweight table index, not the AutoCAD Color Index (ACI). Parameters • index – lineweight table index = PlotStyle.lineweight • lineweight – in millimeters save() Save STB file as filename to the file system. write() Compress and write STB file to binary stream. PlotStyle class ezdxf.addons.acadctb.PlotStyle index Table index (0-based). (int) aci AutoCAD Color Index (ACI) in range from 1 to 255. Has no meaning for named plot styles. (int) description Custom description of plot style. (str) physical_pen_number Specifies physical plotter pen, valid range from 1 to 32 or AUTOMATIC. (int) virtual_pen_number Only used by non-pen plotters and only if they are configured for virtual pens. valid range from 1 to 255 or AUTOMATIC. (int) screen Specifies the color intensity of the plot on the paper, valid range is from 0 to 100. (int) If you select 100 the drawing will plotted with its full color intensity. In order for screening to work, the dithering option must be active. linetype Overrides the entity linetype, default value is OBJECT_LINETYPE. (bool) adaptive_linetype True if a complete linetype pattern is more important than a correct linetype scaling, default is True. (bool) linepattern_size Line pattern size, default = 0.5. (float) lineweight Overrides the entity lineWEIGHT, default value is OBJECT_LINEWEIGHT. This is an index into the UserStyles.lineweights table. (int) end_style Line end cap style, see table below, default is END_STYLE_OBJECT (int) join_style Line join style, see table below, default is JOIN_STYLE_OBJECT (int) fill_style Line fill style, see table below, default is FILL_STYLE_OBJECT (int) dithering Depending on the capabilities of your plotter, dithering approximates the colors with dot patterns. When this option is False, the colors are mapped to the nearest color, resulting in a smaller range of colors when plotting. Dithering is available only whether you select the object’s color or assign a plot style color. grayscale Plot colors in grayscale. (bool) Default Line Weights ┌───┬──────┐ │# │ [mm] │ ├───┼──────┤ │0 │ 0.00 │ ├───┼──────┤ │1 │ 0.05 │ ├───┼──────┤ │2 │ 0.09 │ ├───┼──────┤ │3 │ 0.10 │ ├───┼──────┤ │4 │ 0.13 │ ├───┼──────┤ │5 │ 0.15 │ ├───┼──────┤ │6 │ 0.18 │ ├───┼──────┤ │7 │ 0.20 │ ├───┼──────┤ │8 │ 0.25 │ ├───┼──────┤ │9 │ 0.30 │ ├───┼──────┤ │10 │ 0.35 │ ├───┼──────┤ │11 │ 0.40 │ ├───┼──────┤ │12 │ 0.45 │ ├───┼──────┤ │13 │ 0.50 │ ├───┼──────┤ │14 │ 0.53 │ ├───┼──────┤ │15 │ 0.60 │ ├───┼──────┤ │16 │ 0.65 │ ├───┼──────┤ │17 │ 0.70 │ ├───┼──────┤ │18 │ 0.80 │ ├───┼──────┤ │19 │ 0.90 │ ├───┼──────┤ │20 │ 1.00 │ ├───┼──────┤ │21 │ 1.06 │ ├───┼──────┤ │22 │ 1.20 │ └───┴──────┘ │23 │ 1.40 │ ├───┼──────┤ │24 │ 1.58 │ ├───┼──────┤ │25 │ 2.00 │ ├───┼──────┤ │26 │ 2.11 │ └───┴──────┘ Predefined Values ezdxf.addons.acadctb.AUTOMATIC ezdxf.addons.acadctb.OBJECT_LINEWEIGHT ezdxf.addons.acadctb.OBJECT_LINETYPE ezdxf.addons.acadctb.OBJECT_COLOR ezdxf.addons.acadctb.OBJECT_COLOR2 Line End Style [image] ┌──────────────────┬───┐ │END_STYLE_BUTT │ 0 │ ├──────────────────┼───┤ │END_STYLE_SQUARE │ 1 │ ├──────────────────┼───┤ │END_STYLE_ROUND │ 2 │ ├──────────────────┼───┤ │END_STYLE_DIAMOND │ 3 │ ├──────────────────┼───┤ │END_STYLE_OBJECT │ 4 │ └──────────────────┴───┘ Line Join Style [image] ┌───────────────────┬───┐ │JOIN_STYLE_MITER │ 0 │ ├───────────────────┼───┤ │JOIN_STYLE_BEVEL │ 1 │ ├───────────────────┼───┤ │JOIN_STYLE_ROUND │ 2 │ ├───────────────────┼───┤ │JOIN_STYLE_DIAMOND │ 3 │ ├───────────────────┼───┤ │JOIN_STYLE_OBJECT │ 5 │ └───────────────────┴───┘ Fill Style [image] ┌───────────────────────────┬────┐ │FILL_STYLE_SOLID │ 64 │ ├───────────────────────────┼────┤ │FILL_STYLE_CHECKERBOARD │ 65 │ ├───────────────────────────┼────┤ │FILL_STYLE_CROSSHATCH │ 66 │ ├───────────────────────────┼────┤ │FILL_STYLE_DIAMONDS │ 67 │ ├───────────────────────────┼────┤ │FILL_STYLE_HORIZONTAL_BARS │ 68 │ ├───────────────────────────┼────┤ │FILL_STYLE_SLANT_LEFT │ 69 │ ├───────────────────────────┼────┤ │FILL_STYLE_SLANT_RIGHT │ 70 │ ├───────────────────────────┼────┤ │FILL_STYLE_SQUARE_DOTS │ 71 │ ├───────────────────────────┼────┤ │FILL_STYLE_VERICAL_BARS │ 72 │ ├───────────────────────────┼────┤ │FILL_STYLE_OBJECT │ 73 │ └───────────────────────────┴────┘ Linetypes [image] [image] ┌─────────────────────────────────┬───────┐ │Linetype name │ Value │ ├─────────────────────────────────┼───────┤ │Solid │ 0 │ ├─────────────────────────────────┼───────┤ │Dashed │ 1 │ ├─────────────────────────────────┼───────┤ │Dotted │ 2 │ ├─────────────────────────────────┼───────┤ │Dash Dot │ 3 │ ├─────────────────────────────────┼───────┤ │Short Dash │ 4 │ ├─────────────────────────────────┼───────┤ │Medium Dash │ 5 │ ├─────────────────────────────────┼───────┤ │Long Dash │ 6 │ ├─────────────────────────────────┼───────┤ │Short Dash x2 │ 7 │ ├─────────────────────────────────┼───────┤ │Medium Dash x2 │ 8 │ ├─────────────────────────────────┼───────┤ │Long Dash x2 │ 9 │ ├─────────────────────────────────┼───────┤ │Medium Lang Dash │ 10 │ ├─────────────────────────────────┼───────┤ │Medium Dash Short Dash Short │ 11 │ │Dash │ │ ├─────────────────────────────────┼───────┤ │Long Dash Short Dash │ 12 │ ├─────────────────────────────────┼───────┤ │Long Dash Dot Dot │ 13 │ ├─────────────────────────────────┼───────┤ │Long Dash Dot │ 14 │ ├─────────────────────────────────┼───────┤ │Medium Dash Dot Short Dash Dot │ 15 │ ├─────────────────────────────────┼───────┤ │Sparse Dot │ 16 │ ├─────────────────────────────────┼───────┤ │ISO Dash │ 17 │ ├─────────────────────────────────┼───────┤ │ISO Dash Space │ 18 │ ├─────────────────────────────────┼───────┤ │ISO Long Dash Dot │ 19 │ ├─────────────────────────────────┼───────┤ │ISO Long Dash Double Dot │ 20 │ ├─────────────────────────────────┼───────┤ │ISO Long Dash Triple Dot │ 21 │ ├─────────────────────────────────┼───────┤ │ISO Dot │ 22 │ ├─────────────────────────────────┼───────┤ │ISO Long Dash Short Dash │ 23 │ ├─────────────────────────────────┼───────┤ │ISO Long Dash Double Short Dash │ 24 │ ├─────────────────────────────────┼───────┤ │ISO Dash Dot │ 25 │ ├─────────────────────────────────┼───────┤ │ISO Double Dash Dot │ 26 │ ├─────────────────────────────────┼───────┤ │ISO Dash Double Dot │ 27 │ ├─────────────────────────────────┼───────┤ │ISO Double Dash Double Dot │ 28 │ ├─────────────────────────────────┼───────┤ │ISO Dash Triple Dot │ 29 │ ├─────────────────────────────────┼───────┤ │ISO Double Dash Triple Dot │ 30 │ ├─────────────────────────────────┼───────┤ │Use entity linetype │ 31 │ └─────────────────────────────────┴───────┘ Showcase Forms MengerSponge Build a 3D Menger sponge. class ezdxf.addons.MengerSponge(location: Union[Sequence[float], Vec2, Vec3] = (0.0, 0.0, 0.0), length: float = 1.0, level: int = 1, kind: int = 0) Parameters • location – location of lower left corner as (x, y, z) tuple • length – side length • level – subdivide level • kind – type of menger sponge ┌──┬────────────────────────┐ │0 │ Original Menger Sponge │ ├──┼────────────────────────┤ │1 │ Variant XOX │ ├──┼────────────────────────┤ │2 │ Variant OXO │ ├──┼────────────────────────┤ │3 │ Jerusalem Cube │ └──┴────────────────────────┘ render(layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 = None, ucs: UCS = None) -> None Renders the menger sponge into layout, set merge to True for rendering the whole menger sponge into one MESH entity, set merge to False for rendering the individual cubes of the menger sponge as MESH entities. Parameters • layout – DXF target layout • merge – True for one MESH entity, False for individual MESH entities per cube • dxfattribs – DXF attributes for the MESH entities • matrix – apply transformation matrix at rendering • ucs – apply UCS transformation at rendering cubes() -> Iterator[MeshTransformer] Yields all cubes of the menger sponge as individual MeshTransformer objects. mesh() -> MeshTransformer Returns geometry as one MeshTransformer object. Menger Sponge kind=0: [image] Menger Sponge kind=1: [image] Menger Sponge kind=2: [image] Jerusalem Cube kind=3: [image] SierpinskyPyramid Build a 3D Sierpinsky Pyramid. class ezdxf.addons.SierpinskyPyramid(location: Union[Sequence[float], Vec2, Vec3] = (0.0, 0.0, 0.0), length: float = 1.0, level: int = 1, sides: int = 4) Parameters • location – location of base center as (x, y, z) tuple • length – side length • level – subdivide level • sides – sides of base geometry render(layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 = None, ucs: UCS = None) -> None Renders the sierpinsky pyramid into layout, set merge to True for rendering the whole sierpinsky pyramid into one MESH entity, set merge to False for individual pyramids as MESH entities. Parameters • layout – DXF target layout • merge – True for one MESH entity, False for individual MESH entities per pyramid • dxfattribs – DXF attributes for the MESH entities • matrix – apply transformation matrix at rendering • ucs – apply UCS at rendering pyramids() -> Iterable[MeshTransformer] Yields all pyramids of the sierpinsky pyramid as individual MeshTransformer objects. mesh() -> MeshTransformer Returns geometry as one MeshTransformer object. Sierpinsky Pyramid with triangle base: [image] Sierpinsky Pyramid with square base: [image] Bin-Packing Add-on New in version 0.18. This add-on is based on the 3D bin packing module py3dbp hosted on PyPI. Both sources of this package are MIT licensed like ezdxf itself. The Bin Packing Problem Quote from the Wikipedia article: The bin packing problem is an optimization problem, in which items of different sizes must be packed into a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of bins used. Example This code replicates the example used by the py3dbp package: from typing import List import ezdxf from ezdxf import colors from ezdxf.addons import binpacking as bp SMALL_ENVELOPE = ("small-envelope", 11.5, 6.125, 0.25, 10) LARGE_ENVELOPE = ("large-envelope", 15.0, 12.0, 0.75, 15) SMALL_BOX = ("small-box", 8.625, 5.375, 1.625, 70.0) MEDIUM_BOX = ("medium-box", 11.0, 8.5, 5.5, 70.0) MEDIUM_BOX2 = ("medium-box-2", 13.625, 11.875, 3.375, 70.0) LARGE_BOX = ("large-box", 12.0, 12.0, 5.5, 70.0) LARGE_BOX2 = ("large-box-2", 23.6875, 11.75, 3.0, 70.0) ALL_BINS = [ SMALL_ENVELOPE, LARGE_ENVELOPE, SMALL_BOX, MEDIUM_BOX, MEDIUM_BOX2, LARGE_BOX, LARGE_BOX2, ] def build_packer(): packer = bp.Packer() packer.add_item("50g [powder 1]", 3.9370, 1.9685, 1.9685, 1) packer.add_item("50g [powder 2]", 3.9370, 1.9685, 1.9685, 2) packer.add_item("50g [powder 3]", 3.9370, 1.9685, 1.9685, 3) packer.add_item("250g [powder 4]", 7.8740, 3.9370, 1.9685, 4) packer.add_item("250g [powder 5]", 7.8740, 3.9370, 1.9685, 5) packer.add_item("250g [powder 6]", 7.8740, 3.9370, 1.9685, 6) packer.add_item("250g [powder 7]", 7.8740, 3.9370, 1.9685, 7) packer.add_item("250g [powder 8]", 7.8740, 3.9370, 1.9685, 8) packer.add_item("250g [powder 9]", 7.8740, 3.9370, 1.9685, 9) return packer def make_doc(): doc = ezdxf.new() doc.layers.add("FRAME", color=colors.YELLOW) doc.layers.add("ITEMS") doc.layers.add("TEXT") return doc def main(filename): bins: List[bp.Bin] = [] for box in ALL_BINS: packer = build_packer() packer.add_bin(*box) packer.pack(bp.PickStrategy.BIGGER_FIRST) bins.extend(packer.bins) doc = make_doc() bp.export_dxf(doc.modelspace(), bins, offset=(0, 20, 0)) doc.saveas(filename) if __name__ == "__main__": main("py3dbp_example.dxf") [image] SEE ALSO: • example1 script • example2 script Packer Classes class ezdxf.addons.binpacking.AbstractPacker bins List of containers to fill. items List of items to pack into the bins. property is_packed: bool Returns True if packer is packed, each packer can only be used once. property unfitted_items: List[ezdxf.addons.binpacking.Item] Returns the unfitted items. __str__() -> str Return str(self). append_bin(box: Bin) -> None Append a container. append_item(item: Item) -> None Append a item. get_fill_ratio() -> float Return the fill ratio of all bins. get_capacity() -> float Returns the maximum fill volume of all bins. get_total_weight() -> float Returns the total weight of all fitted items in all bins. get_total_volume() -> float Returns the total volume of all fitted items in all bins. pack(pick=PickStrategy.BIGGER_FIRST) -> None Pack items into bins. Distributes all items across all bins. Packer class ezdxf.addons.binpacking.Packer 3D Packer inherited from AbstractPacker. add_bin(name: str, width: float, height: float, depth: float, max_weight: float = 1e+99) -> Box Add a 3D Box container. add_item(payload, width: float, height: float, depth: float, weight: float = 0.0) -> Item Add a 3D Item to pack. FlatPacker class ezdxf.addons.binpacking.FlatPacker 2D Packer inherited from AbstractPacker. All containers and items used by this packer must have a depth of 1. add_bin(name: str, width: float, height: float, max_weight: float = 1e+99) -> Envelope Add a 2D Envelope container. add_item(payload, width: float, height: float, weight: float = 0.0) -> Item Add a 2D FlatItem to pack. Bin Classes class ezdxf.addons.binpacking.Bin(name, width: float, height: float, depth: float, max_weight: float = 1e+99) name Name of then container as string. width height depth max_weight property is_empty: bool __str__() -> str Return str(self). copy() Returns a copy. reset() Reset the container to empty state. put_item(item: Item, pivot: Tuple[float, float, float]) -> bool get_capacity() -> float Returns the maximum fill volume of the bin. get_total_weight() -> float Returns the total weight of all fitted items. get_total_volume() -> float Returns the total volume of all fitted items. get_fill_ratio() -> float Return the fill ratio. Box Class class ezdxf.addons.binpacking.Box(name, width: float, height: float, depth: float, max_weight: float = 1e+99) 3D container inherited from Bin. Envelope Class class ezdxf.addons.binpacking.Envelope(name, width: float, height: float, max_weight: float = 1e+99) 2D container inherited from Bin. Item Class class ezdxf.addons.binpacking.Item(payload, width: float, height: float, depth: float, weight: float = 0.0) 3D container item. payload Arbitrary Python object. width height depth weight property bbox: ezdxf.math.bbox.AbstractBoundingBox property rotation_type: ezdxf.addons.binpacking.RotationType property position: Tuple[float, float, float] Returns the position of then lower left corner of the item in the container, the lower left corner is the origin (0, 0, 0). copy() Returns a copy, all copies have a reference to the same payload object. __str__() Return str(self). get_volume() -> float Returns the volume of the item. get_dimension() -> Tuple[float, float, float] Returns the item dimension according the rotation_type. get_transformation() -> Matrix44 Returns the transformation matrix to transform the source entity located with the minimum extension corner of its bounding box in (0, 0, 0) to the final location including the required rotation. FlatItem Class class ezdxf.addons.binpacking.FlatItem(payload, width: float, height: float, weight: float = 0.0) 2D container item, inherited from Item. Has a default depth of 1.0. Functions ezdxf.addons.binpacking.shuffle_pack(packer: AbstractPacker, attempts: int) -> AbstractPacker Random shuffle packing. Returns a new packer with the best packing result, the input packer is unchanged. Enums RotationType class ezdxf.addons.binpacking.RotationType(value) Rotation type of an item: • W = width • H = height • D = depth WHD HWD HDW DHW DWH WDH PickStrategy class ezdxf.addons.binpacking.PickStrategy(value) Order of how to pick items for placement. BIGGER_FIRST SMALLER_FIRST SHUFFLE Credits • py3dbp package by Enzo Ruiz Pelaez • bp3d by gedex - github repository on which py3dbp is based, written in Go • Optimizing three-dimensional bin packing through simulation (PDF) MeshExchange New in version 0.18. The ezdxf.addons.meshex module provides functions to exchange meshes with other tools in the following file formats: • STL: import/export, supports only triangles as faces • OFF: import/export, supports ngons as faces and is more compact than STL • OBJ: import/export, supports ngons as faces and can contain multiple meshes in one file • PLY: export only, supports ngons as faces • OpenSCAD: export as polyhedron, supports ngons as faces • IFC4: export only, supports ngons as faces The source or target object is always a MeshBuilder instance and therefore the supported features are also limited by this class. Only vertices and faces are exchanged, colors, textures and explicit face- and vertex normals are lost. NOTE: This add-on is not a replacement for a proper file format interface for this data formats! It’s just a simple way to exchange meshes with other tools like OpenSCAD or MeshLab. WARNING: The meshes created by the ezdxf.addons.pycsg add-on are usually not suitable for export because they often violate the vertex-to-vertex rule: A vertex of a face cannot lie on the edge of another face. This was one of the reasons to create this addon to get an interface to OpenSCAD. Example for a simple STL to DXF converter: import sys import ezdxf from ezdxf.addons import meshex try: mesh = meshex.stl_readfile("your.stl") except (meshex.ParsingError, IOError) as e: print(str(e)) sys.exit(1) doc = ezdxf.new() mesh.render_mesh(doc.modelspace()) doc.saveas("your.dxf") SEE ALSO: Example script meshex_export.py at github. Import ezdxf.addons.meshex.stl_readfile(filename: Union[str, PathLike]) -> MeshTransformer Read ascii or binary STL file content as ezdxf.render.MeshTransformer instance. Raises ParsingError – vertex parsing error or invalid/corrupt data ezdxf.addons.meshex.stl_loads(content: str) -> MeshTransformer Load a mesh from an ascii STL content string as ezdxf.render.MeshTransformer instance. Raises ParsingError – vertex parsing error ezdxf.addons.meshex.stl_loadb(buffer: bytes) -> MeshTransformer Load a mesh from a binary STL data ezdxf.render.MeshTransformer instance. Raises ParsingError – invalid/corrupt data or not a binary STL file ezdxf.addons.meshex.off_readfile(filename: Union[str, PathLike]) -> MeshTransformer Read OFF file content as ezdxf.render.MeshTransformer instance. Raises ParsingError – vertex or face parsing error ezdxf.addons.meshex.off_loads(content: str) -> MeshTransformer Load a mesh from a OFF content string as ezdxf.render.MeshTransformer instance. Raises ParsingError – vertex or face parsing error ezdxf.addons.meshex.obj_readfile(filename: Union[str, PathLike]) -> List[MeshTransformer] Read OBJ file content as list of ezdxf.render.MeshTransformer instances. Raises ParsingError – vertex or face parsing error ezdxf.addons.meshex.obj_loads(content: str) -> List[MeshTransformer] Load one or more meshes from an OBJ content string as list of ezdxf.render.MeshTransformer instances. Raises ParsingError – vertex parsing error Export ezdxf.addons.meshex.stl_dumps(mesh: MeshBuilder) -> str Returns the STL data as string for the given mesh. This function triangulates the meshes automatically because the STL format supports only triangles as faces. This function does not check if the mesh obey the STL format rules: • The direction of the face normal is outward. • The face vertices are listed in counter-clockwise order when looking at the object from the outside (right-hand rule). • Each triangle must share two vertices with each of its adjacent triangles. • The object represented must be located in the all-positive octant (non-negative and nonzero). ezdxf.addons.meshex.stl_dumpb(mesh: MeshBuilder) -> bytes Returns the STL binary data as bytes for the given mesh. For more information see function: stl_dumps() ezdxf.addons.meshex.off_dumps(mesh: MeshBuilder) -> str Returns the OFF data as string for the given mesh. The OFF format supports ngons as faces. ezdxf.addons.meshex.obj_dumps(mesh: MeshBuilder) -> str Returns the OBJ data as string for the given mesh. The OBJ format supports ngons as faces. ezdxf.addons.meshex.ply_dumpb(mesh: MeshBuilder) -> bytes Returns the PLY binary data as bytes for the given mesh. The PLY format supports ngons as faces. ezdxf.addons.meshex.scad_dumps(mesh: MeshBuilder) -> str Returns the OpenSCAD polyhedron definition as string for the given mesh. OpenSCAD supports ngons as faces. IMPORTANT: OpenSCAD requires the face normals pointing inwards, the method flip_normals() of the MeshBuilder class can flip the normals inplace. ezdxf.addons.meshex.ifc4_dumps(mesh: MeshBuilder, entity_type=IfcEntityType.POLYGON_FACE_SET, *, layer: str = 'MeshExport', color: Tuple[float, float, float] = (1.0, 1.0, 1.0)) -> str Returns the IFC4 string for the given mesh. The caller is responsible for checking if the mesh is a closed or open surface (e.g. mesh.diagnose().euler_characteristic == 2) and using the appropriate entity type. Parameters • mesh – MeshBuilder • entity_type – IfcEntityType • layer – layer name as string • color – entity color as RGB tuple, values in the range [0,1] WARNING: IFC4 is a very complex data format and this is a minimal effort exporter, so the exported data may not be importable by all CAD applications. The exported IFC4 data can be imported by the following applications: • BricsCAD • FreeCAD (IfcOpenShell) • Allplan • Tekla BIMsight ezdxf.addons.meshex.export_ifcZIP(filename: Union[str, PathLike], mesh: MeshBuilder, entity_type=IfcEntityType.POLYGON_FACE_SET, *, layer: str = 'MeshExport', color: Tuple[float, float, float] = (1.0, 1.0, 1.0)) Export the given mesh as zip-compressed IFC4 file. The filename suffix should be .ifcZIP. For more information see function ifc4_dumps(). Parameters • filename – zip filename, the data file has the same name with suffix .ifc • mesh – MeshBuilder • entity_type – IfcEntityType • layer – layer name as string • color – entity color as RGB tuple, values in the range [0,1] Raises IOError – IO error when opening the zip-file for writing class ezdxf.addons.meshex.IfcEntityType(value) An enumeration. POLYGON_FACE_SET “SurfaceModel” representation usable for open or closed surfaces. CLOSED_SHELL “Brep” representation usable for closed surfaces. OPEN_SHELL “SurfaceModel” representation usable for open surfaces. OpenSCAD New in version 0.18. Interface to the OpenSCAD application to apply boolean operations to MeshBuilder objects. For more information about boolean operations read the documentation of OpenSCAD. The OpenSCAD application is not bundled with ezdxf, you need to install the application yourself. On Windows the path to the openscad.exe executable is stored in the config file (see ezdxf.options) in the “openscad-addon” section as key “win_exec_path”, the default entry is: [openscad-addon] win_exec_path = "C:\Program Files\OpenSCAD\openscad.exe" On Linux and macOS the openscad command is located by the shutil.which() function. Example: import ezdxf from ezdxf.render import forms from ezdxf.addons import MengerSponge, openscad doc = ezdxf.new() msp = doc.modelspace() # 1. create the meshes: sponge = MengerSponge(level=3).mesh() sponge.flip_normals() # important for OpenSCAD sphere = forms.sphere( count=32, stacks=16, radius=0.5, quads=True ).translate(0.25, 0.25, 1) sphere.flip_normals() # important for OpenSCAD # 2. create the script: script = openscad.boolean_operation(openscad.DIFFERENCE, sponge, sphere) # 3. execute the script by OpenSCAD: result = openscad.run(script) # 4. render the MESH entity: result.render_mesh(msp) doc.set_modelspace_vport(6, center=(5, 0)) doc.saveas("OpenSCAD.dxf") [image] Functions ezdxf.addons.openscad.run(script: str, exec_path: Optional[str] = None) -> MeshTransformer Executes the given script by OpenSCAD and returns the result mesh as MeshTransformer. Parameters • script – the OpenSCAD script as string • exec_path – path to the executable as string or None to use the default installation path ezdxf.addons.openscad.boolean_operation(op: Operation, mesh1: MeshBuilder, mesh2: MeshBuilder) -> str Returns an OpenSCAD script to apply the given boolean operation to the given meshes. The supported operations are: • UNION • DIFFERENCE • INTERSECTION ezdxf.addons.openscad.is_installed() -> bool Returns True if OpenSCAD is installed. On Windows only the default install path ‘C:\Program Files\OpenSCAD\openscad.exe’ is checked. Script Class class ezdxf.addons.openscad.Script Helper class to build OpenSCAD scripts. This is a very simple string building class and does no checks at all! If you need more advanced features to build OpenSCAD scripts look at the packages pysolid and openpyscad. add(data: str) -> None Add a string. add_mirror(v: Union[Sequence[float], Vec2, Vec3]) -> None Add a mirror() operation. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#mirror Parameters v – the normal vector of a plane intersecting the origin through which to mirror the object add_multmatrix(m: Matrix44) -> None Add a transformation matrix of type Matrix44 as multmatrix() operation. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#multmatrix add_polyhedron(mesh: MeshBuilder) -> None Add mesh as polyhedron() command. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron add_polygon(path: Iterable[Union[Sequence[float], Vec2, Vec3]], holes: Optional[Sequence[Iterable[Union[Sequence[float], Vec2, Vec3]]]] = None) -> None Add a polygon() command. This is a 2D command, all z-axis values of the input vertices are ignored and all paths and holes are closed automatically. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#polygon Parameters • path – exterior path • holes – a sequence of one or more holes as vertices, or None for no holes add_resize(nx: float, ny: float, nz: float, auto: Optional[Union[bool, Tuple[bool, bool, bool]]] = None) -> None Add a resize() operation. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#resize Parameters • nx – new size in x-axis • ny – new size in y-axis • nz – new size in z-axis • auto – If the auto argument is set to True, the operation auto-scales any 0-dimensions to match. Set the auto argument as a 3-tuple of bool values to auto-scale individual axis. add_rotate(ax: float, ay: float, az: float) -> None Add a rotation() operation. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate Parameters • ax – rotation about the x-axis in degrees • ay – rotation about the y-axis in degrees • az – rotation about the z-axis in degrees add_rotate_about_axis(a: float, v: Union[Sequence[float], Vec2, Vec3]) -> None Add a rotation() operation about the given axis v. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate Parameters • a – rotation angle about axis v in degrees • v – rotation axis as ezdxf.math.UVec object add_scale(sx: float, sy: float, sz: float) -> None Add a scale() operation. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#scale Parameters • sx – scaling factor for the x-axis • sy – scaling factor for the y-axis • sz – scaling factor for the z-axis add_translate(v: Union[Sequence[float], Vec2, Vec3]) -> None Add a translate() operation. OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#translate Parameters v – translation vector get_string() -> str Returns the OpenSCAD build script. Boolean Operation Constants ezdxf.addons.openscad.UNION ezdxf.addons.openscad.DIFFERENCE ezdxf.addons.openscad.INTERSECTION openpyscad This add-on is not a complete wrapper around OpenSCAD, if you need such a tool look at the openpyscad or pysolid packages at PyPI. Not sure if the openpyscad package is still maintained, the last commit at github is more than a year old and did not pass the CI process! (state June 2022) This code snippet shows how to get the MeshTransformer object from the basic openpyscad example: from ezdxf.addons import openscad import openpyscad as ops c1 = ops.Cube([10, 20, 10]) c2 = ops.Cube([20, 10, 10]) # dump OpenSCAD script as string: script = (c1 + c2).dumps() # execute script and load the result as MeshTransformer instance: mesh = openscad.run(script) Create an openpyscad Polyhedron object from an ezdxf MeshBuilder object: from ezdxf.render import forms import openpyscad as ops # create an ezdxf MeshBuilder() object sphere = forms.sphere() sphere.flip_normals() # required for OpenSCAD # create an openpyscad Polyhedron() object polyhedron = ops.Polyhedron( points=[list(p) for p in sphere.vertices], # convert Vec3 objects to lists! faces=[list(f) for f in sphere.faces], # convert face tuples to face lists! ) # create the OpenSCAD script: script = polyhedron.dumps() The type conversion is needed to get valid OpenSCAD code from openpyscad! pysolid The pysolid package seems to be better maintained than the openpyscad package, but this is just an opinion based on newer commits at github (link) for the pysolid package. Same example for pysolid: from ezdxf.addons import openscad from solid import cube, render_scad c1 = cube([10, 20, 10]) c2 = cube([20, 10, 10]) # dump OpenSCAD script as string: script = render_scad(c1 + c2) # execute script and load the result as MeshTransformer instance: mesh = openscad.run(script) Create a pysolid polyhedron object from an ezdxf MeshBuilder object: from ezdxf.render import forms from solid import polyhedron, scad_render # create an ezdxf MeshBuilder() object sphere = forms.sphere() sphere.flip_normals() # required for OpenSCAD # create a pysolid polyhedron() object ph = polyhedron( points=[v.xyz for v in sphere.vertices], # convert Vec3 objects to tuples! faces=sphere.faces, # types are compatible ) # create the OpenSCAD script: script = scad_render(ph)
DXF INTERNALS
• DXF Reference provided by Autodesk. • DXF Developer Documentation provided by Autodesk. Basic DXF Structures DXF File Encoding DXF R2004 and prior Drawing files of DXF R2004 (AC1018) and prior are saved as ASCII files with the encoding set by the header variable $DWGCODEPAGE, which is ANSI_1252 by default if $DWGCODEPAGE is not set. Characters used in the drawing which do not exist in the chosen ASCII encoding are encoded as unicode characters with the schema \U+nnnn. see Unicode table Known $DWGCODEPAGE encodings ┌──────────┬────────┬────────────────┐ │DXF │ Python │ Name │ ├──────────┼────────┼────────────────┤ │ANSI_874 │ cp874 │ Thai │ ├──────────┼────────┼────────────────┤ │ANSI_932 │ cp932 │ Japanese │ ├──────────┼────────┼────────────────┤ │ANSI_936 │ gbk │ UnifiedChinese │ ├──────────┼────────┼────────────────┤ │ANSI_949 │ cp949 │ Korean │ ├──────────┼────────┼────────────────┤ │ANSI_950 │ cp950 │ TradChinese │ ├──────────┼────────┼────────────────┤ │ANSI_1250 │ cp1250 │ CentralEurope │ ├──────────┼────────┼────────────────┤ │ANSI_1251 │ cp1251 │ Cyrillic │ ├──────────┼────────┼────────────────┤ │ANSI_1252 │ cp1252 │ WesternEurope │ ├──────────┼────────┼────────────────┤ │ANSI_1253 │ cp1253 │ Greek │ ├──────────┼────────┼────────────────┤ │ANSI_1254 │ cp1254 │ Turkish │ ├──────────┼────────┼────────────────┤ │ANSI_1255 │ cp1255 │ Hebrew │ ├──────────┼────────┼────────────────┤ │ANSI_1256 │ cp1256 │ Arabic │ ├──────────┼────────┼────────────────┤ │ANSI_1257 │ cp1257 │ Baltic │ ├──────────┼────────┼────────────────┤ │ANSI_1258 │ cp1258 │ Vietnam │ └──────────┴────────┴────────────────┘ DXF R2007 and later Starting with DXF R2007 (AC1021) the drawing file is UTF-8 encoded, the header variable $DWGCODEPAGE is still in use, but I don’t know, if the setting still has any meaning. Encoding characters in the unicode schema \U+nnnn is still functional. SEE ALSO: String value encoding DXF Tags A Drawing Interchange File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic file structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF value on the following line. In the ezdxf documentation DXF tags will be written as (group code, value). With the introduction of extended symbol names in DXF R2000, the 255-character limit for strings has been increased to 2049 single-byte characters not including the newline at the end of the line. Nonetheless its safer to use only strings with 255 and less characters, because its not clear if this fact is true for ALL string group codes or only for symbols like layer- or text style names and not all 3rd party libraries may handle this fact correct. The MTEXT content and binary data is still divided into chunks with less than 255 characters. Group codes are indicating the value type: ┌───────────┬──────────────────────────────────┐ │Group Code │ Value Type │ ├───────────┼──────────────────────────────────┤ │0-9 │ String │ └───────────┴──────────────────────────────────┘ │10-39 │ Double precision 3D point value │ ├───────────┼──────────────────────────────────┤ │40-59 │ Double-precision floating-point │ │ │ value │ ├───────────┼──────────────────────────────────┤ │60-79 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │90-99 │ 32-bit integer value │ ├───────────┼──────────────────────────────────┤ │100 │ String │ ├───────────┼──────────────────────────────────┤ │102 │ String │ ├───────────┼──────────────────────────────────┤ │105 │ String representing hexadecimal │ │ │ (hex) handle value │ ├───────────┼──────────────────────────────────┤ │110-119 │ Double precision floating-point │ │ │ value │ ├───────────┼──────────────────────────────────┤ │120-129 │ Double precision floating-point │ │ │ value │ ├───────────┼──────────────────────────────────┤ │130-139 │ Double precision floating-point │ │ │ value │ ├───────────┼──────────────────────────────────┤ │140-149 │ Double precision scalar │ │ │ floating-point value │ ├───────────┼──────────────────────────────────┤ │160-169 │ 64-bit integer value │ ├───────────┼──────────────────────────────────┤ │170-179 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │210-239 │ Double-precision floating-point │ │ │ value │ ├───────────┼──────────────────────────────────┤ │270-279 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │280-289 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │290-299 │ Boolean flag value │ ├───────────┼──────────────────────────────────┤ │300-309 │ Arbitrary text string │ ├───────────┼──────────────────────────────────┤ │310-319 │ String representing hex value of │ │ │ binary chunk │ ├───────────┼──────────────────────────────────┤ │320-329 │ String representing hex handle │ │ │ value │ ├───────────┼──────────────────────────────────┤ │330-369 │ String representing hex object │ │ │ IDs │ ├───────────┼──────────────────────────────────┤ │370-379 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │380-389 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │390-399 │ String representing hex handle │ │ │ value │ ├───────────┼──────────────────────────────────┤ │400-409 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │410-419 │ String │ ├───────────┼──────────────────────────────────┤ │420-429 │ 32-bit integer value │ ├───────────┼──────────────────────────────────┤ │430-439 │ String │ ├───────────┼──────────────────────────────────┤ │440-449 │ 32-bit integer value │ ├───────────┼──────────────────────────────────┤ │450-459 │ Long │ ├───────────┼──────────────────────────────────┤ │460-469 │ Double-precision floating-point │ │ │ value │ ├───────────┼──────────────────────────────────┤ │470-479 │ String │ ├───────────┼──────────────────────────────────┤ │480-481 │ String representing hex handle │ │ │ value │ ├───────────┼──────────────────────────────────┤ │999 │ Comment (string) │ ├───────────┼──────────────────────────────────┤ │1000-1009 │ String │ ├───────────┼──────────────────────────────────┤ │1010-1059 │ Double-precision floating-point │ │ │ value │ ├───────────┼──────────────────────────────────┤ │1060-1070 │ 16-bit integer value │ ├───────────┼──────────────────────────────────┤ │1071 │ 32-bit integer value │ └───────────┴──────────────────────────────────┘ Explanation for some important group codes: ┌──────────────┬──────────────────────────────────┐ │Group Code │ Meaning │ ├──────────────┼──────────────────────────────────┤ │0 │ DXF structure tag, entity │ │ │ start/end or table entries │ ├──────────────┼──────────────────────────────────┤ │1 │ The primary text value for an │ │ │ entity │ ├──────────────┼──────────────────────────────────┤ │2 │ A name: Attribute tag, Block │ │ │ name, and so on. Also used to │ │ │ identify a DXF section or table │ │ │ name. │ ├──────────────┼──────────────────────────────────┤ │3-4 │ Other textual or name values │ ├──────────────┼──────────────────────────────────┤ │5 │ Entity handle as hex string │ │ │ (fixed) │ ├──────────────┼──────────────────────────────────┤ │6 │ Line type name (fixed) │ ├──────────────┼──────────────────────────────────┤ │7 │ Text style name (fixed) │ ├──────────────┼──────────────────────────────────┤ │8 │ Layer name (fixed) │ ├──────────────┼──────────────────────────────────┤ │9 │ Variable name identifier (used │ │ │ only in HEADER section of the │ │ │ DXF file) │ ├──────────────┼──────────────────────────────────┤ │10 │ Primary X coordinate (start │ │ │ point of a Line or Text entity, │ │ │ center of a Circle, etc.) │ ├──────────────┼──────────────────────────────────┤ │11-18 │ Other X coordinates │ ├──────────────┼──────────────────────────────────┤ │20 │ Primary Y coordinate. 2n values │ │ │ always correspond to 1n values │ │ │ and immediately follow them in │ │ │ the file (expected by ezdxf!) │ ├──────────────┼──────────────────────────────────┤ │21-28 │ Other Y coordinates │ ├──────────────┼──────────────────────────────────┤ │30 │ Primary Z coordinate. 3n values │ │ │ always correspond to 1n and 2n │ │ │ values and immediately follow │ │ │ them in the file (expected by │ │ │ ezdxf!) │ ├──────────────┼──────────────────────────────────┤ │31-38 │ Other Z coordinates │ ├──────────────┼──────────────────────────────────┤ │39 │ This entity’s thickness if │ │ │ nonzero (fixed) │ ├──────────────┼──────────────────────────────────┤ │40-48 │ Float values (text height, scale │ │ │ factors, etc.) │ ├──────────────┼──────────────────────────────────┤ │49 │ Repeated value - multiple 49 │ │ │ groups may appear in one entity │ │ │ for variable length tables (such │ │ │ as the dash lengths in the LTYPE │ │ │ table). A 7x group always │ │ │ appears before the first 49 │ │ │ group to specify the table │ │ │ length │ ├──────────────┼──────────────────────────────────┤ │50-58 │ Angles in degree │ ├──────────────┼──────────────────────────────────┤ │62 │ Color number (fixed) │ ├──────────────┼──────────────────────────────────┤ │66 │ “Entities follow” flag (fixed), │ │ │ only in INSERT and POLYLINE │ │ │ entities │ ├──────────────┼──────────────────────────────────┤ │67 │ Identifies whether entity is in │ │ │ modelspace (0) or paperspace (1) │ ├──────────────┼──────────────────────────────────┤ │68 │ Identifies whether viewport is │ │ │ on but fully off screen, is not │ │ │ active, or is off │ ├──────────────┼──────────────────────────────────┤ │69 │ Viewport identification number │ ├──────────────┼──────────────────────────────────┤ │70-78 │ Integer values such as repeat │ │ │ counts, flag bits, or modes │ ├──────────────┼──────────────────────────────────┤ │210, 220, 230 │ X, Y, and Z components of │ │ │ extrusion direction (fixed) │ ├──────────────┼──────────────────────────────────┤ │310 │ Proxy entity graphics as binary │ │ │ encoded data │ ├──────────────┼──────────────────────────────────┤ │330 │ Owner handle as hex string │ ├──────────────┼──────────────────────────────────┤ │347 │ MATERIAL handle as hex string │ ├──────────────┼──────────────────────────────────┤ │348 │ VISUALSTYLE handle as hex │ │ │ string │ ├──────────────┼──────────────────────────────────┤ │370 │ Lineweight in mm times 100 (e.g. │ │ │ 0.13mm = 13). │ ├──────────────┼──────────────────────────────────┤ │390 │ PLOTSTYLE handle as hex string │ ├──────────────┼──────────────────────────────────┤ │420 │ True color value as 0x00RRGGBB │ │ │ 24-bit value │ ├──────────────┼──────────────────────────────────┤ │430 │ Color name as string │ ├──────────────┼──────────────────────────────────┤ │440 │ Transparency value 0x020000TT 0 │ │ │ = fully transparent / 255 = │ │ │ opaque │ ├──────────────┼──────────────────────────────────┤ │999 │ Comments │ └──────────────┴──────────────────────────────────┘ For explanation of all group codes see: DXF Group Codes in Numerical Order Reference provided by Autodesk Extended Data DXF R2018 Reference Extended data (XDATA) is created by AutoLISP or ObjectARX applications but any other application like ezdxf can also define XDATA. If an entity contains extended data, it follows the entity’s normal definition. But extended group codes (>=1000) can appear before the XDATA section, an example is the BLOCKBASEPOINTPARAMETER entity in AutoCAD Civil 3D or AutoCAD Map 3D. ┌─────────────────┬──────────────────────────────────┐ │Group Code │ Description │ ├─────────────────┼──────────────────────────────────┤ │1000 │ Strings in extended data can be │ │ │ up to 255 bytes long (with the │ │ │ 256th byte reserved for the null │ │ │ character) │ ├─────────────────┼──────────────────────────────────┤ │1001 │ (fixed) Registered application │ │ │ name (ASCII string up to 31 │ │ │ bytes long) for XDATA │ ├─────────────────┼──────────────────────────────────┤ │1002 │ (fixed) An extended data control │ │ │ string can be either '{' or '}'. │ │ │ These braces enable applications │ │ │ to organize their data by │ │ │ subdividing the data into lists. │ │ │ Lists can be nested. │ ├─────────────────┼──────────────────────────────────┤ │1003 │ Name of the layer associated │ │ │ with the extended data │ ├─────────────────┼──────────────────────────────────┤ │1004 │ Binary data is organized into │ │ │ variable-length chunks. The │ │ │ maximum length of each chunk is │ │ │ 127 bytes. In ASCII DXF files, │ │ │ binary data is represented as a │ │ │ string of hexadecimal digits, │ │ │ two per binary byte │ ├─────────────────┼──────────────────────────────────┤ │1005 │ Database Handle of entities in │ │ │ the drawing database, see also: │ │ │ About 1005 Group Codes │ ├─────────────────┼──────────────────────────────────┤ │1010, 1020, 1030 │ Three real values, in the order │ │ │ X, Y, Z. They can be used as a │ │ │ point or vector record that will │ │ │ not be modified at any │ │ │ transformation of the entity. │ ├─────────────────┼──────────────────────────────────┤ │1011, 1021, 1031 │ a WCS point that is moved, │ │ │ scaled, rotated and mirrored │ │ │ along with the entity │ ├─────────────────┼──────────────────────────────────┤ │1012, 1012, 1022 │ a WCS displacement that is │ │ │ scaled, rotated and mirrored │ │ │ along with the entity, but is │ │ │ not moved │ ├─────────────────┼──────────────────────────────────┤ │1013, 1023, 1033 │ a WCS direction that is rotated │ │ │ and mirrored along with the │ │ │ entity, but is not moved or │ │ │ scaled │ ├─────────────────┼──────────────────────────────────┤ │1040 │ A real value │ ├─────────────────┼──────────────────────────────────┤ │1041 │ Distance, a real value that is │ │ │ scaled along with the parent │ │ │ entity │ ├─────────────────┼──────────────────────────────────┤ │1042 │ Scale Factor, also a real value │ │ │ that is scaled along with the │ │ │ parent. The difference between │ │ │ a distance and a scale factor is │ │ │ application-defined │ ├─────────────────┼──────────────────────────────────┤ │1070 │ A 16-bit integer (signed or │ │ │ unsigned) │ ├─────────────────┼──────────────────────────────────┤ │1071 │ A 32-bit signed (long) integer │ └─────────────────┴──────────────────────────────────┘ The (1001, …) tag indicates the beginning of extended data. In contrast to normal entity data, with extended data the same group code can appear multiple times, and order is important. Extended data is grouped by registered application name. Each registered application group begins with a (1001, APPID) tag, with the application name as APPID string value. Registered application names correspond to APPID symbol table entries. An application can use as many APPID names as needed. APPID names are permanent, although they can be purged if they aren’t currently used in the drawing. Each APPID name can have no more than one data group attached to each entity. Within an application group, the sequence of extended data groups and their meaning is defined by the application. String value encoding String values stored in a DXF file is plain ASCII or UTF-8, AutoCAD also supports CIF (Common Interchange Format) and MIF (Maker Interchange Format) encoding. The UTF-8 format is only supported in DXF R2007 and later. Ezdxf on import converts all strings into Python unicode strings without encoding or decoding CIF/MIF. String values containing Unicode characters are represented with control character sequences \U+nnnn. (e.g. r'TEST\U+7F3A\U+4E4F\U+89E3\U+91CA\U+6B63THIS\U+56FE') To support the DXF unicode encoding ezdxf registers an encoding codec dxf_backslash_replace, defined in ezdxf.lldxf.encoding(). String values can be stored with these dxf group codes: • 0 - 9 • 100 - 101 • 300 - 309 • 410 - 419 • 430 - 439 • 470 - 479 • 999 - 1003 Multi tag text (MTEXT) If the text string is less than 250 characters, all characters appear in tag (1, …). If the text string is longer than 250 characters, the string is divided into 250-character chunks, which appear in one or more (3, …) tags. If (3, …) tags are used, the last group is a (1, …) tag and has fewer than 250 characters: 3 ... TwoHundredAndFifty Characters .... 3 ... TwoHundredAndFifty Characters .... 1 less than TwoHundredAndFifty Characters As far I know this is only supported by the MTEXT entity. SEE ALSO: DXF File Encoding DXF R13 and later tag structure With the introduction of DXF R13 Autodesk added additional group codes and DXF tag structures to the DXF Standard. Subclass Markers Subclass markers (100, Subclass Name) divides DXF objects into several sections. Group codes can be reused in different sections. A subclass ends with the following subclass marker or at the beginning of xdata or the end of the object. See Subclass Marker Example in the DXF Reference. Quote about group codes from the DXF reference Some group codes that define an entity always appear; others are optional and appear only if their values differ from the defaults. Do not write programs that rely on the order given here. The end of an entity is indicated by the next 0 group, which begins the next entity or indicates the end of the section. Note: Accommodating DXF files from future releases of AutoCAD will be easier if you write your DXF processing program in a table-driven way, ignore undefined group codes, and make no assumptions about the order of group codes in an entity. With each new AutoCAD release, new group codes will be added to entities to accommodate additional features. Usage of group codes in subclasses twice Some later entities entities contains the same group code twice for different purposes, so order in the sense of which one comes first is important. (e.g. ATTDEF group code 280) Tag order is sometimes important especially for AutoCAD In LWPOLYLINE the order of tags is important, if the count tag is not the first tag in the AcDbPolyline subclass, AutoCAD will not close the polyline when the close flag is set, by the way other applications like BricsCAD ignores the tag order and renders the polyline always correct. Extension Dictionary The extension dictionary is an optional sequence that stores the handle of a DICTIONARY object that belongs to the current object, which in turn may contain entries. This facility allows attachment of arbitrary database objects to any database object. Any object or entity may have this section. The extension dictionary tag sequence: 102 {ACAD_XDICTIONARY 360 Hard-owner ID/handle to owner dictionary 102 } Persistent Reactors Persistent reactors are an optional sequence that stores object handles of objects registering themselves as reactors on the current object. Any object or entity may have this section. The persistent reactors tag sequence: 102 {ACAD_REACTORS 330 first Soft-pointer ID/handle to owner dictionary 330 second Soft-pointer ID/handle to owner dictionary ... 102 } Application-Defined Codes Starting at DXF R13, DXF objects can contain application-defined codes outside of XDATA. This application-defined codes can contain any tag except (0, …) and (102, ‘{…’). “{YOURAPPID” means the APPID string with an preceding “{”. The application defined data tag sequence: 102 {YOURAPPID ... 102 } (102, 'YOURAPPID}') is also a valid closing tag: 102 {YOURAPPID ... 102 YOURAPPID} All groups defined with a beginning (102, …) appear in the DXF reference before the first subclass marker, I don’t know if these groups can appear after the first or any subclass marker. Ezdxf accepts them at any position, and by default ezdxf adds new app data in front of the first subclass marker to the first tag section of an DXF object. Exception XRECORD: Tags with group code 102 and a value string without a preceding “{” or the scheme “YOURAPPID}”, should be treated as usual group codes. Embedded Objects The concept of embedded objects was introduced with AutoCAD 2018 (DXF version AC1032) and this is the only information I found about it at the Autodesk knowledge base: Embedded and Encapsulated Objects Quote from Embedded and Encapsulated Objects: For DXF filing, the embedded object must be filed out and in after all the data of the encapsulating object has been filed out and in. A separator is needed between the encapsulating object’s data and the subsequent embedded object’s data. The separator must be similar in function to the group 0 or 100 in that it must cause the filer to stop reading data. The normal DXF group code 0 cannot be used because DXF proxies use it to determine when to stop reading data. The group code 100 could have been used, but it might have caused confusion when manually reading a DXF file, and there was a need to distinguish when an embedded object is about to be written out in order to do some internal bookkeeping. Therefore, the DXF group code 101 was introduced. Hard facts: • Only used in ATTRIB, ATTDEF (embedded MTEXT) and MTEXT (columns) in DXF R2018. • Embedded object start with (101, “Embedded Object”) tag • Embedded object is appended to the encapsulated object • Embedded object tags can contain any group code except the DXF structure tag (0, …) Unconfirmed assumptions: • The embedded object is written before the Extended Data. No examples for entities including embedded objects and XDATA at the same time. • XDATA sections replaced by embedded objects, at least for the MTEXT entity • The encapsulating object can contain more than one embedded object. • Embedded objects separated by (101, “Embedded Object”) tags • every entity can contain embedded objects Real world example from an AutoCAD 2018 file: 100 <<< start of encapsulating object AcDbMText 10 2762.148 20 2327.073 30 0.0 40 2.5 41 18.852 46 0.0 71 1 72 5 1 {\fArial|b0|i0|c162|p34;CHANGE;\P\P\PTEXT} 73 1 44 1.0 101 <<< start of embedded object Embedded Object 70 1 10 1.0 20 0.0 30 0.0 11 2762.148 21 2327.073 31 0.0 40 18.852 41 0.0 42 15.428 43 15.043 71 2 72 1 44 18.852 45 12.5 73 0 74 0 46 0.0 Handles A handle is an arbitrary but in your DXF file unique hex value as string like ‘10FF’. It is common to to use uppercase letters for hex numbers. Handle can have up to 16 hexadecimal digits (8 bytes). For DXF R10 until R12 the usage of handles was optional. The header variable $HANDLING set to 1 indicate the usage of handles, else $HANDLING is 0 or missing. For DXF R13 and later the usage of handles is mandatory and the header variable $HANDLING was removed. The $HANDSEED variable in the header section should be greater than the biggest handle used in the DXF file, so a CAD application can assign handle values starting with the $HANDSEED value. But as always, don’t rely on the header variable it could be wrong, AutoCAD ignores this value. Handle Definition Entity handle definition is always the (5, ...), except for entities of the DIMSTYLE table (105, ...), because the DIMSTYLE entity has also a group code 5 tag for DIMBLK. Handle Pointer A pointer is a reference to a DXF object in the same DXF file. There are four types of pointers: • Soft-pointer handle • Hard-pointer handle • Soft-owner handle • Hard-owner handle Also, a group code range for “arbitrary” handles is defined to allow convenient storage of handle values that are unchanged at any operation (AutoCAD). Pointer and Ownership A pointer is a reference that indicates usage, but not possession or responsibility, for another object. A pointer reference means that the object uses the other object in some way, and shares access to it. An ownership reference means that an owner object is responsible for the objects for which it has an owner handle. An object can have any number of pointer references associated with it, but it can have only one owner. Hard and Soft References Hard references, whether they are pointer or owner, protect an object from being purged. Soft references do not. In AutoCAD, block definitions and complex entities are hard owners of their elements. A symbol table and dictionaries are soft owners of their elements. Polyline entities are hard owners of their vertex and seqend entities. Insert entities are hard owners of their attrib and seqend entities. When establishing a reference to another object, it is recommended that you think about whether the reference should protect an object from the PURGE command. Arbitrary Handles Arbitrary handles are distinct in that they are not translated to session-persistent identifiers internally, or to entity names in AutoLISP, and so on. They are stored as handles. When handle values are translated in drawing-merge operations, arbitrary handles are ignored. In all environments, arbitrary handles can be exchanged for entity names of the current drawing by means of the handent functions. A common usage of arbitrary handles is to refer to objects in external DXF and DWG files. About 1005 Group Codes (1005, ...) xdata have the same behavior and semantics as soft pointers, which means that they are translated whenever the host object is merged into a different drawing. However, 1005 items are not translated to session-persistent identifiers or internal entity names in AutoLISP and ObjectARX. They are stored as handles. DXF File Structure A DXF File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic file structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF value on the following line. In the ezdxf documentation DXF tags will be written as (group code, value). There exist a binary DXF format, but it seems that it is not often used and for reducing file size, zipping is much more efficient. ezdxf does support reading binary encoded DXF files. SEE ALSO: For more information about DXF tags see: DXF Tags A usual DXF file is organized in sections, starting with the DXF tag (0, ‘SECTION’) and ending with the DXF tag (0, ‘ENDSEC’). The (0, ‘EOF’) tag signals the end of file. 1. HEADER: General information about the drawing is found in this section of the DXF file. Each parameter has a variable name starting with ‘$’ and an associated value. Has to be the first section. 2. CLASSES: Holds the information for application defined classes. (DXF R13 and later) 3. TABLES:: Contains several tables for style and property definitions. • Linetype table (LTYPE) • Layer table (LAYER) • Text Style table (STYLE) • View table (VIEW): (IMHO) layout of the CAD working space, only interesting for interactive CAD applications • Viewport configuration table (VPORT): The VPORT table is unique in that it may contain several entries with the same name (indicating a multiple-viewport configuration). The entries corresponding to the active viewport configuration all have the name *ACTIVE. The first such entry describes the current viewport. • Dimension Style table (DIMSTYLE) • User Coordinate System table (UCS) (IMHO) only interesting for interactive CAD applications • Application Identification table (APPID): Table of names for all applications registered with a drawing. • Block Record table (BLOCK_RECORD) (DXF R13 and Later) 4. BLOCKS: Contains all block definitions. The block name *Model_Space or *MODEL_SPACE is reserved for the drawing modelspace and the block name *Paper_Space or *PAPER_SPACE is reserved for the active paperspace layout. Both block definitions are empty, the content of the modelspace and the active paperspace is stored in the ENTITIES section. The entities of other layouts are stored in special block definitions called *Paper_Spacennn, nnn is an arbitrary but unique number. 5. ENTITIES: Contains all graphical entities of the modelspace and the active paperspace layout. Entities of other layouts are stored in the BLOCKS sections. 6. OBJECTS: Contains all non-graphical objects of the drawing (DXF R13 and later) 7. THUMBNAILIMAGE: Contains a preview image of the DXF file, it is optional and can usually be ignored. (DXF R13 and later) 8. ACDSDATA: (DXF R2013 and later) No information in the DXF reference about this section 9. END OF FILE For further information read the original DXF Reference. Structure of a usual DXF R12 file: 0 <<< Begin HEADER section, has to be the first section SECTION 2 HEADER <<< Header variable items go here 0 <<< End HEADER section ENDSEC 0 <<< Begin TABLES section SECTION 2 TABLES 0 TABLE 2 VPORT 70 <<< viewport table maximum item count <<< viewport table items go here 0 ENDTAB 0 TABLE 2 APPID, DIMSTYLE, LTYPE, LAYER, STYLE, UCS, VIEW, or VPORT 70 <<< Table maximum item count, a not reliable value and ignored by AutoCAD <<< Table items go here 0 ENDTAB 0 <<< End TABLES section ENDSEC 0 <<< Begin BLOCKS section SECTION 2 BLOCKS <<< Block definition entities go here 0 <<< End BLOCKS section ENDSEC 0 <<< Begin ENTITIES section SECTION 2 ENTITIES <<< Drawing entities go here 0 <<< End ENTITIES section ENDSEC 0 <<< End of file marker (required) EOF Minimal DXF Content DXF R12 Contrary to the previous chapter, the DXF R12 format (AC1009) and prior requires just the ENTITIES section: 0 SECTION 2 ENTITIES 0 ENDSEC 0 EOF DXF R13/R14 and later DXF version R13/14 and later needs much more DXF content than DXF R12. Required sections: HEADER, CLASSES, TABLES, ENTITIES, OBJECTS The HEADER section requires two entries: • $ACADVER • $HANDSEED The CLASSES section can be empty, but some DXF entities requires class definitions to work in AutoCAD. The TABLES section requires following tables: • VPORT entry *ACTIVE is not required! Empty table is ok for AutoCAD. • LTYPE with at least the following line types defined: • BYBLOCK • BYLAYER • CONTINUOUS • LAYER with at least an entry for layer ‘0’ • STYLE with at least an entry for style STANDARD • VIEW can be empty • UCS can be empty • APPID with at least an entry for ACAD • DIMSTYLE with at least an entry for style STANDARD • BLOCK_RECORDS with two entries: • *MODEL_SPACE • *PAPER_SPACE The BLOCKS section requires two BLOCKS: • *MODEL_SPACE • *PAPER_SPACE The ENTITIES section can be empty. The OBJECTS section requires following entities: • DICTIONARY - the root dict - one entry named ACAD_GROUP • DICTIONARY ACAD_GROUP can be empty Minimal DXF to download: https://github.com/mozman/ezdxf/tree/master/examples_dxf Data Model Database Objects (from the DXF Reference) AutoCAD drawings consist largely of structured containers for database objects. Database objects each have the following features: • A handle whose value is unique to the drawing/DXF file, and is constant for the lifetime of the drawing. This format has existed since AutoCAD Release 10, and as of AutoCAD Release 13, handles are always enabled. • An optional XDATA table, as entities have had since AutoCAD Release 11. • An optional persistent reactor table. • An optional ownership pointer to an extension dictionary which, in turn, owns subobjects placed in it by an application. Symbol tables and symbol table records are database objects and, thus, have a handle. They can also have xdata and persistent reactors in their DXF records. DXF R12 Data Model The DXF R12 data model is identical to the file structure: • HEADER section: common settings for the DXF drawing • TABLES section: definitions for LAYERS, LINETYPE, STYLES …. • BLOCKS section: block definitions and its content • ENTITIES section: modelspace and paperspace content References are realized by simple names. The INSERT entity references the BLOCK definition by the BLOCK name, a TEXT entity defines the associated STYLE and LAYER by its name and so on, handles are not needed. Layout association of graphical entities in the ENTITIES section by the paper_space tag (67, 0 or 1), 0 or missing tag means model space, 1 means paperspace. The content of BLOCK definitions is enclosed by the BLOCK and the ENDBLK entity, no additional references are needed. A clean and simple file structure and data model, which seems to be the reason why the DXF R12 Reference (released 1992) is still a widely used file format and Autodesk/AutoCAD supports the format by reading and writing DXF R12 files until today (DXF R13/R14 has no writing support by AutoCAD!). TODO: list of available entities SEE ALSO: More information about the DXF DXF File Structure DXF R13+ Data Model With the DXF R13 file format, handles are mandatory and they are really used for organizing the new data structures introduced with DXF R13. The HEADER section is still the same with just more available settings. The new CLASSES section contains AutoCAD specific data, has to be written like AutoCAD it does, but must not be understood. The TABLES section got a new BLOCK_RECORD table - see Block Management Structures for more information. The BLOCKS sections is mostly the same, but with handles, owner tags and new ENTITY types. Not active paperspace layouts store their content also in the BLOCKS section - see Layout Management Structures for more information. The ENTITIES section is also mostly same, but with handles, owner tags and new ENTITY types. TODO: list of new available entities And the new OBJECTS section - now its getting complicated! Most information about the OBJECTS section is just guessed or gathered by trail and error, because the documentation of the OBJECTS section and its objects in the DXF reference provided by Autodesk is very shallow. This is also the reason why I started the DXF Internals section, may be it helps other developers to start one or two steps above level zero. The OBJECTS sections stores all the non-graphical entities of the DXF drawing. Non-graphical entities from now on just called ‘DXF objects’ to differentiate them from graphical entities, just called ‘entities’. The OBJECTS section follows commonly the ENTITIES section, but this is not mandatory. DXF R13 introduces several new DXF objects, which resides exclusive in the OBJECTS section, taken from the DXF R14 reference, because I have no access to the DXF R13 reference, the DXF R13 reference is a compiled .hlp file which can’t be read on Windows 10, a drastic real world example why it is better to avoid closed (proprietary) data formats ;): • DICTIONARY: a general structural entity as a <name: handle> container • ACDBDICTIONARYWDFLT: a DICTIONARY with a default value • DICTIONARYVAR: used by AutoCAD to store named values in the database • ACAD_PROXY_OBJECT: proxy object for entities created by other applications than AutoCAD • GROUP: groups graphical entities without the need of a BLOCK definition • IDBUFFER: just a list of references to objects • IMAGEDEF: IMAGE definition structure, required by the IMAGE entity • IMAGEDEF_REACTOR: also required by the IMAGE entity • LAYER_INDEX: container for LAYER names • MLINESTYLE • OBJECT_PTR • RASTERVARIABLES • SPATIAL_INDEX: is always written out empty to a DXF file. This object can be ignored. • SPATIAL_FILTER • SORTENTSTABLE: control for regeneration/redraw order of entities • XRECORD: used to store and manage arbitrary data. This object is similar in concept to XDATA but is not limited by size or order. Not supported by R13c0 through R13c3. Still missing the LAYOUT object, which is mandatory in DXF R2000 to manage multiple paperspace layouts. I don’t know how DXF R13/R14 manages multiple layouts or if they even support this feature, but I don’t care much about DXF R13/R14, because AutoCAD has no write support for this two formats anymore. ezdxf tries to upgrade this two DXF versions to DXF R2000 with the advantage of only two different data models to support: DXF R12 and DXF R2000+ New objects introduced by DXF R2000: • LAYOUT: management object for modelspace and multiple paperspace layouts • ACDBPLACEHOLDER: surprise - just a place holder New objects in DXF R2004: • DIMASSOC • LAYER_FILTER • MATERIAL • PLOTSETTINGS • VBA_PROJECT New objects in DXF R2007: • DATATABLE • FIELD • LIGHTLIST • RENDER • RENDERENVIRONMENT • MENTALRAYRENDERSETTINGS • RENDERGLOBAL • SECTION • SUNSTUDY • TABLESTYLE • UNDERLAYDEFINITION • VISUALSTYLE • WIPEOUTVARIABLES New objects in DXF R2013: • GEODATA New objects in DXF R2018: • ACDBNAVISWORKSMODELDEF Undocumented objects: • SCALE • ACDBSECTIONVIEWSTYLE • FIELDLIST Objects Organisation Many objects in the OBJECTS section are organized in a tree-like structure of DICTIONARY objects. Starting point for this data structure is the ‘root’ DICTIONARY with several entries to other DICTIONARY objects. The root DICTIONARY has to be the first object in the OBJECTS section. The management dicts for GROUP and LAYOUT objects are really important, but IMHO most of the other management tables are optional and for the most use cases not necessary. The ezdxf template for DXF R2018 contains only these entries in the root dict and most of them pointing to an empty DICTIONARY: • ACAD_COLOR: points to an empty DICTIONARY • ACAD_GROUP: supported by ezdxf • ACAD_LAYOUT: supported by ezdxf • ACAD_MATERIAL: points to an empty DICTIONARY • ACAD_MLEADERSTYLE: points to an empty DICTIONARY • ACAD_MLINESTYLE: points to an empty DICTIONARY • ACAD_PLOTSETTINGS: points to an empty DICTIONARY • ACAD_PLOTSTYLENAME: points to ACDBDICTIONARYWDFLT with one entry: ‘Normal’ • ACAD_SCALELIST: points to an empty DICTIONARY • ACAD_TABLESTYLE: points to an empty DICTIONARY • ACAD_VISUALSTYLE: points to an empty DICTIONARY Root DICTIONARY content for DXF R2018 0 SECTION 2 <<< start of the OBJECTS section OBJECTS 0 <<< root DICTIONARY has to be the first object in the OBJECTS section DICTIONARY 5 <<< handle C 330 <<< owner tag 0 <<< always #0, has no owner 100 AcDbDictionary 281 <<< hard owner flag 1 3 <<< first entry ACAD_CIP_PREVIOUS_PRODUCT_INFO 350 <<< handle to target (pointer) 78B <<< points to a XRECORD with product info about the creator application 3 <<< entry with unknown meaning, if I should guess: something with about colors ... ACAD_COLOR 350 4FB <<< points to a DICTIONARY 3 <<< entry with unknown meaning ACAD_DETAILVIEWSTYLE 350 7ED <<< points to a DICTIONARY 3 <<< GROUP management, mandatory in all DXF versions ACAD_GROUP 350 4FC <<< points to a DICTIONARY 3 <<< LAYOUT management, mandatory if more than the *active* paperspace is used ACAD_LAYOUT 350 4FD <<< points to a DICTIONARY 3 <<< MATERIAL management ACAD_MATERIAL 350 4FE <<< points to a DICTIONARY 3 <<< MLEADERSTYLE management ACAD_MLEADERSTYLE 350 4FF <<< points to a DICTIONARY 3 <<< MLINESTYLE management ACAD_MLINESTYLE 350 500 <<< points to a DICTIONARY 3 <<< PLOTSETTINGS management ACAD_PLOTSETTINGS 350 501 <<< points to a DICTIONARY 3 <<< plot style name management ACAD_PLOTSTYLENAME 350 503 <<< points to a ACDBDICTIONARYWDFLT 3 <<< SCALE management ACAD_SCALELIST 350 504 <<< points to a DICTIONARY 3 <<< entry with unknown meaning ACAD_SECTIONVIEWSTYLE 350 7EB <<< points to a DICTIONARY 3 <<< TABLESTYLE management ACAD_TABLESTYLE 350 505 <<< points to a DICTIONARY 3 <<< VISUALSTYLE management ACAD_VISUALSTYLE 350 506 <<< points to a DICTIONARY 3 <<< entry with unknown meaning ACDB_RECOMPOSE_DATA 350 7F3 3 <<< entry with unknown meaning AcDbVariableDictionary 350 7AE <<< points to a DICTIONARY with handles to DICTIONARYVAR objects 0 DICTIONARY ... ... 0 ENDSEC DXF Structures DXF Sections HEADER Section In DXF R12 and prior the HEADER section was optional, but since DXF R13 the HEADER section is mandatory. The overall structure is: 0 <<< Begin HEADER section SECTION 2 HEADER 9 $ACADVER <<< Header variable items go here 1 AC1009 ... 0 ENDSEC <<< End HEADER section A header variable has a name defined by a (9, Name) tag and following value tags. SEE ALSO: Documentation of ezdxf HeaderSection class. DXF Reference: Header Variables CLASSES Section The CLASSES section contains CLASS definitions which are only important for Autodesk products, some DXF entities require a class definition or AutoCAD will not open the DXF file. The CLASSES sections was introduced with DXF AC1015 (AutoCAD Release R13). SEE ALSO: DXF Reference: About the DXF CLASSES Section Documentation of ezdxf ClassesSection class. The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in the BLOCKS, ENTITIES, and OBJECTS sections of the database. It is assumed that a class definition is permanently fixed in the class hierarchy. All fields are required. Update 2019-03-03: Class names are not unique, Autodesk Architectural Desktop 2007 uses the same name, but with different CPP class names in the CLASS section, so storing classes in a dictionary by name as key caused loss of class entries in ezdxf, using a tuple of (name, cpp_class_name) as storage key solved the problem. CLASS Entities SEE ALSO: DXF Reference: Group Codes for the CLASS entity CLASS entities have no handle and therefore ezdxf does not store the CLASS entity in the drawing entities database! 0 SECTION 2 <<< begin CLASSES section CLASSES 0 <<< first CLASS entity CLASS 1 <<< class DXF entity name; THIS ENTRY IS MAYBE NOT UNIQUE ACDBDICTIONARYWDFLT 2 <<< C++ class name; always unique AcDbDictionaryWithDefault 3 <<< application name ObjectDBX Classes 90 <<< proxy capabilities flags 0 91 <<< instance counter for custom class, since DXF version AC1018 (R2004) 0 <<< no problem if the counter is wrong, AutoCAD doesn't care about 280 <<< was-a-proxy flag. Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise 0 281 <<< is-an-entity flag. Set to 1 if class reside in the BLOCKS or ENTITIES section. If 0, instances may appear only in the OBJECTS section 0 0 <<< second CLASS entity CLASS ... ... 0 <<< end of CLASSES section ENDSEC TABLES Section TODO BLOCKS Section The BLOCKS section contains all BLOCK definitions, beside the normal reusable BLOCKS used by the INSERT entity, all layouts, as there are the modelspace and all paperspace layouts, have at least a corresponding BLOCK definition in the BLOCKS section. The name of the modelspace BLOCK is “*Model_Space” (DXF R12: “$MODEL_SPACE”) and the name of the active paperspace BLOCK is “*Paper_Space” (DXF R12: “$PAPER_SPACE”), the entities of these two layouts are stored in the ENTITIES section, the inactive paperspace layouts are named by the scheme “*Paper_Spacennnn”, and the content of the inactive paperspace layouts are stored in their BLOCK definition in the BLOCKS section. The content entities of blocks are stored between the BLOCK and the ENDBLK entity. BLOCKS section structure: 0 <<< start of a SECTION SECTION 2 <<< start of BLOCKS section BLOCKS 0 <<< start of 1. BLOCK definition BLOCK ... <<< Block content ... 0 <<< end of 1. Block definition ENDBLK 0 <<< start of 2. BLOCK definition BLOCK ... <<< Block content ... 0 <<< end of 2. Block definition ENDBLK 0 <<< end of BLOCKS section ENDSEC SEE ALSO: Block Management Structures Layout Management Structures ENTITIES Section TODO OBJECTS Section Objects in the OBJECTS section are organized in a hierarchical tree order, starting with the named objects dictionary as the first entity in the OBJECTS section (Drawing.rootdict). Not all entities in the OBJECTS section are included in this tree, Extension Dictionary and XRECORD data of graphical entities are also stored in the OBJECTS section. DXF Tables VIEW Table The VIEW entry stores a named view of the model or a paperspace layout. This stored views makes parts of the drawing or some view points of the model in a CAD applications more accessible. This views have no influence to the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the convenience of CAD application users. Using ezdxf you have access to the views table by the attribute Drawing.views. The views table itself is not stored in the entity database, but the table entries are stored in entity database, and can be accessed by its handle. DXF R12 0 VIEW 2 <<< name of view VIEWNAME 70 <<< flags bit-coded: 1st bit -> (0/1 = modelspace/paperspace) 0 <<< modelspace 40 <<< view width in Display Coordinate System (DCS) 20.01 10 <<< view center point in DCS 40.36 <<< x value 20 <<< group code for y value 15.86 <<< y value 41 <<< view height in DCS 17.91 11 <<< view direction from target point, 3D vector 0.0 <<< x value 21 <<< group code for y value 0.0 <<< y value 31 <<< group code for z value 1.0 <<< z value 12 <<< target point in WCS 0.0 <<< x value 22 <<< group code for y value 0.0 <<< y value 32 <<< group code for z value 0.0 <<< z value 42 <<< lens (focal) length 50.0 <<< 50mm 43 <<< front clipping plane, offset from target 0.0 44 <<< back clipping plane, offset from target 0.0 50 <<< twist angle 0.0 71 <<< view mode 0 SEE ALSO: Coordinate Systems DXF R2000+ Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers. 0 <<< adding the VIEW table head, just for information TABLE 2 <<< table name VIEW 5 <<< handle of table, see owner tag of VIEW table entry 37C 330 <<< owner tag of table, always #0 0 100 <<< subclass marker AcDbSymbolTable 70 <<< VIEW table (max.) count, not reliable (ignore) 9 0 <<< first VIEW table entry VIEW 5 <<< handle 3EA 330 <<< owner, the VIEW table is the owner of the VIEW entry 37C <<< handle of the VIEW table 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbViewTableRecord 2 <<< view name, from here all the same as DXF R12 VIEWNAME 70 0 40 20.01 10 40.36 20 15.86 41 17.91 11 0.0 21 0.0 31 1.0 12 0.0 22 0.0 32 0.0 42 50.0 43 0.0 44 0.0 50 0.0 71 0 281 <<< render mode 0-6 (... too much options) 0 <<< 0= 2D optimized (classic 2D) 72 <<< UCS associated (0/1 = no/yes) 0 <<< 0 = no DXF R2000+ supports additional features in the VIEW entry, see the VIEW table reference provided by Autodesk. VPORT Configuration Table The VPORT table stores the modelspace viewport configurations. A viewport configuration is a tiled view of multiple viewports or just one viewport. [image] In contrast to other tables the VPORT table can have multiple entries with the same name, because all VPORT entries of a multi-viewport configuration are having the same name - the viewport configuration name. The name of the actual displayed viewport configuration is '*ACTIVE', as always table entry names are case insensitive ('*ACTIVE' == '*Active'). The available display area in AutoCAD has normalized coordinates, the lower-left corner is (0, 0) and the upper-right corner is (1, 1) regardless of the true aspect ratio and available display area in pixels. A single viewport configuration has one VPORT entry '*ACTIVE' with the lower-left corner (0, 0) and the upper-right corner (1, 1). The following statements refer to a 2D plan view: the view-target-point defines the origin of the DCS (Display Coordinate system), the view-direction vector defines the z-axis of the DCS, the view-center-point (in DCS) defines the point in modelspace translated to the center point of the viewport, the view height and the aspect-ratio defines how much of the modelspace is displayed. AutoCAD tries to fit the modelspace area into the available viewport space e.g. view height is 15 units and aspect-ratio is 2.0 the modelspace to display is 30 units wide and 15 units high, if the viewport has an aspect ratio of 1.0, AutoCAD displays 30x30 units of the modelspace in the viewport. If the modelspace aspect-ratio is 1.0 the modelspace to display is 15x15 units and fits properly into the viewport area. But tests show that the translation of the view-center-point to the middle of the viewport not always work as I expected. (still digging…) NOTE: All floating point values are rounded to 2 decimal places for better readability. DXF R12 Multi-viewport configuration with three viewports. 0 <<< table start TABLE 2 <<< table type VPORT 70 <<< VPORT table (max.) count, not reliable (ignore) 3 0 <<< first VPORT entry VPORT 2 <<< VPORT (configuration) name *ACTIVE 70 <<< standard flags, bit-coded 0 10 <<< lower-left corner of viewport 0.45 <<< x value, virtual coordinates in range [0 - 1] 20 <<< group code for y value 0.0 <<< y value, virtual coordinates in range [0 - 1] 11 <<< upper-right corner of viewport 1.0 <<< x value, virtual coordinates in range [0 - 1] 21 <<< group code for y value 1.0 <<< y value, virtual coordinates in range [0 - 1] 12 <<< view center point (in DCS), ??? 13.71 <<< x value 22 <<< group code for y value 0.02 <<< y value 13 <<< snap base point (in DCS) 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 14 <<< snap spacing X and Y 1.0 <<< x value 24 <<< group code for y value 1.0 <<< y value 15 <<< grid spacing X and Y 0.0 <<< x value 25 <<< group code for y value 0.0 <<< y value 16 <<< view direction from target point (in WCS), defines the z-axis of the DCS 1.0 <<< x value 26 <<< group code for y value -1.0 <<< y value 36 <<< group code for z value 1.0 <<< z value 17 <<< view target point (in WCS), defines the origin of the DCS 0.0 <<< x value 27 <<< group code for y value 0.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 40 <<< view height 35.22 41 <<< viewport aspect ratio 0.99 42 <<< lens (focal) length 50.0 <<< 50mm 43 <<< front clipping planes, offsets from target point 0.0 44 <<< back clipping planes, offsets from target point 0.0 50 <<< snap rotation angle 0.0 51 <<< view twist angle 0.0 71 <<< view mode 0 72 <<< circle zoom percent 1000 73 <<< fast zoom setting 1 74 <<< UCSICON setting 3 75 <<< snap on/off 0 76 <<< grid on/off 0 77 <<< snap style 0 78 <<< snap isopair 0 0 <<< next VPORT entry VPORT 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.5 11 0.45 21 1.0 12 8.21 22 9.41 ... ... 0 <<< next VPORT entry VPORT 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.0 11 0.45 21 0.5 12 2.01 22 -9.33 ... ... 0 ENDTAB DXF R2000+ Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers. 0 <<< table start TABLE 2 <<< table type VPORT 5 <<< table handle 151F 330 <<< owner, table has no owner - always #0 0 100 <<< subclass marker AcDbSymbolTable 70 <<< VPORT table (max.) count, not reliable (ignore) 3 0 <<< first VPORT entry VPORT 5 <<< entry handle 158B 330 <<< owner, VPORT table is owner of VPORT entry 151F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbViewportTableRecord 2 <<< VPORT (configuration) name *ACTIVE 70 <<< standard flags, bit-coded 0 10 <<< lower-left corner of viewport 0.45 <<< x value, virtual coordinates in range [0 - 1] 20 <<< group code for y value 0.0 <<< y value, virtual coordinates in range [0 - 1] 11 <<< upper-right corner of viewport 1.0 <<< x value, virtual coordinates in range [0 - 1] 21 <<< group code for y value 1.0 <<< y value, virtual coordinates in range [0 - 1] 12 <<< view center point (in DCS) 13.71 <<< x value 22 <<< group code for y value 0.38 <<< y value 13 <<< snap base point (in DCS) 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 14 <<< snap spacing X and Y 1.0 <<< x value 24 <<< group code for y value 1.0 <<< y value 15 <<< grid spacing X and Y 0.0 <<< x value 25 <<< group code for y value 0.0 <<< y value 16 <<< view direction from target point (in WCS) 1.0 <<< x value 26 <<< group code for y value -1.0 <<< y value 36 <<< group code for z value 1.0 <<< z value 17 <<< view target point (in WCS) 0.0 <<< x value 27 <<< group code for y value 0.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 40 <<< view height 35.22 41 <<< viewport aspect ratio 0.99 42 <<< lens (focal) length 50.0 <<< 50mm 43 <<< front clipping planes, offsets from target point 0.0 44 <<< back clipping planes, offsets from target point 0.0 50 <<< snap rotation angle 0.0 51 <<< view twist angle 0.0 71 <<< view mode 0 72 <<< circle zoom percent 1000 73 <<< fast zoom setting 1 74 <<< UCSICON setting 3 75 <<< snap on/off 0 76 <<< grid on/off 0 77 <<< snap style 0 78 <<< snap isopair 0 281 <<< render mode 1-6 (... too many options) 0 <<< 0 = 2D optimized (classic 2D) 65 <<< Value of UCSVP for this viewport. (0 = UCS will not change when this viewport is activated) 1 <<< 1 = then viewport stores its own UCS which will become the current UCS whenever the viewport is activated. 110 <<< UCS origin (3D point) 0.0 <<< x value 120 <<< group code for y value 0.0 <<< y value 130 <<< group code for z value 0.0 <<< z value 111 <<< UCS X-axis (3D vector) 1.0 <<< x value 121 <<< group code for y value 0.0 <<< y value 131 <<< group code for z value 0.0 <<< z value 112 <<< UCS Y-axis (3D vector) 0.0 <<< x value 122 <<< group code for y value 1.0 <<< y value 132 <<< group code for z value 0.0 <<< z value 79 <<< Orthographic type of UCS 0-6 (... too many options) 0 <<< 0 = UCS is not orthographic 146 <<< elevation 0.0 1001 <<< extended data - undocumented ACAD_NAV_VCDISPLAY 1070 3 0 <<< next VPORT entry VPORT 5 158C 330 151F 100 AcDbSymbolTableRecord 100 AcDbViewportTableRecord 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.5 11 0.45 21 1.0 12 8.21 22 9.72 ... ... 0 <<< next VPORT entry VPORT 5 158D 330 151F 100 AcDbSymbolTableRecord 100 AcDbViewportTableRecord 2 <<< VPORT (configuration) name *ACTIVE <<< same as first VPORT entry 70 0 10 0.0 20 0.0 11 0.45 21 0.5 12 2.01 22 -8.97 ... ... 0 ENDTAB LTYPE Table The LTYPE table stores all line type definitions of a DXF drawing. Every line type used in the drawing has to have a table entry, or the DXF drawing is invalid for AutoCAD. DXF R12 supports just simple line types, DXF R2000+ supports also complex line types with text or shapes included. You have access to the line types table by the attribute Drawing.linetypes. The line type table itself is not stored in the entity database, but the table entries are stored in entity database, and can be accessed by its handle. SEE ALSO: • DXF Reference: TABLES Section • DXF Reference: LTYPE Table Table Structure DXF R12 0 <<< start of table TABLE 2 <<< set table type LTYPE 70 <<< count of line types defined in this table, AutoCAD ignores this value 9 0 <<< 1. LTYPE table entry LTYPE <<< LTYPE data tags 0 <<< 2. LTYPE table entry LTYPE <<< LTYPE data tags and so on 0 <<< end of LTYPE table ENDTAB Table Structure DXF R2000+ 0 <<< start of table TABLE 2 <<< set table type LTYPE 5 <<< LTYPE table handle 5F 330 <<< owner tag, tables has no owner 0 100 <<< subclass marker AcDbSymbolTable 70 <<< count of line types defined in this table, AutoCAD ignores this value 9 0 <<< 1. LTYPE table entry LTYPE <<< LTYPE data tags 0 <<< 2. LTYPE table entry LTYPE <<< LTYPE data tags and so on 0 <<< end of LTYPE table ENDTAB Simple Line Type ezdxf setup for line type ‘CENTER’: dwg.linetypes.new("CENTER", dxfattribs={ description = "Center ____ _ ____ _ ____ _ ____ _ ____ _ ____", pattern=[2.0, 1.25, -0.25, 0.25, -0.25], }) Simple Line Type Tag Structure DXF R2000+ 0 <<< line type table entry LTYPE 5 <<< handle of line type 1B1 330 <<< owner handle, handle of LTYPE table 5F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbLinetypeTableRecord 2 <<< line type name CENTER 70 <<< flags 0 3 Center ____ _ ____ _ ____ _ ____ _ ____ _ ____ 72 65 73 4 40 2.0 49 1.25 74 0 49 -0.25 74 0 49 0.25 74 0 49 -0.25 74 0 Complex Line Type TEXT ezdxf setup for line type ‘GASLEITUNG’: dwg.linetypes.new('GASLEITUNG', dxfattribs={ 'description': 'Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--', 'length': 1, 'pattern': 'A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25', }) TEXT Tag Structure 0 LTYPE 5 614 330 5F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbLinetypeTableRecord 2 GASLEITUNG 70 0 3 Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS-- 72 65 73 3 40 1 49 0.5 74 0 49 -0.2 74 2 75 0 340 11 46 0.1 50 0.0 44 -0.1 45 -0.05 9 GAS 49 -0.25 74 0 Complex Line Type SHAPE ezdxf setup for line type ‘GRENZE2’: dwg.linetypes.new('GRENZE2', dxfattribs={ 'description': 'Grenze eckig ----[]-----[]----[]-----[]----[]--', 'length': 1.45, 'pattern': 'A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1', }) SHAPE Tag Structure 0 LTYPE 5 615 330 5F 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbLinetypeTableRecord 2 GRENZE2 70 0 3 Grenze eckig ----[]-----[]----[]-----[]----[]-- 72 65 73 4 40 1.45 49 0.25 74 0 49 -0.1 74 4 75 132 340 616 46 0.1 50 0.0 44 -0.1 45 0.0 49 -0.1 74 0 49 1.0 74 0 DIMSTYLE Table The DIMSTYLE table stores all dimension style definitions of a DXF drawing. You have access to the dimension styles table by the attribute Drawing.dimstyles. SEE ALSO: • DXF Reference: TABLES Section • DXF Reference: DIMSTYLE Table Table Structure DXF R12 0 <<< start of table TABLE 2 <<< set table type DIMSTYLE 70 <<< count of line types defined in this table, AutoCAD ignores this value 9 0 <<< 1. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags 0 <<< 2. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags and so on 0 <<< end of DIMSTYLE table ENDTAB DIMSTYLE Entry DXF R12 DIMSTYLE Variables DXF R12 Source: CADDManager Blog [image] [image] ┌─────────┬──────┬──────────────────────────┐ │DIMVAR │ Code │ Description │ ├─────────┼──────┼──────────────────────────┤ │DIMALT │ 170 │ Controls the display of │ │ │ │ alternate units in │ │ │ │ dimensions. │ ├─────────┼──────┼──────────────────────────┤ │DIMALTD │ 171 │ Controls the number of │ │ │ │ decimal places in │ │ │ │ alternate units. If │ │ │ │ DIMALT is turned on, │ │ │ │ DIMALTD sets the number │ │ │ │ of digits displayed to │ │ │ │ the right of the decimal │ │ │ │ point in the alternate │ │ │ │ measurement. │ ├─────────┼──────┼──────────────────────────┤ │DIMALTF │ 143 │ Controls the multiplier │ │ │ │ for alternate units. If │ │ │ │ DIMALT is turned on, │ │ │ │ DIMALTF multiplies │ │ │ │ linear dimensions by a │ │ │ │ factor to produce a │ │ │ │ value in an alternate │ │ │ │ system of measurement. │ │ │ │ The initial value │ │ │ │ represents the number of │ │ │ │ millimeters in an inch. │ ├─────────┼──────┼──────────────────────────┤ │DIMAPOST │ 4 │ Specifies a text prefix │ │ │ │ or suffix (or both) to │ │ │ │ the alternate dimension │ │ │ │ measurement for all │ │ │ │ types of dimensions │ │ │ │ except angular. For │ │ │ │ instance, if the current │ │ │ │ units are Architectural, │ │ │ │ DIMALT is on, DIMALTF is │ │ │ │ 25.4 (the number of │ │ │ │ millimeters per inch), │ │ │ │ DIMALTD is 2, and │ │ │ │ DIMPOST is set to “mm”, │ │ │ │ a distance of 10 units │ │ │ │ would be displayed as │ │ │ │ 10”[254.00mm]. │ ├─────────┼──────┼──────────────────────────┤ │DIMASZ │ 41 │ Controls the size of │ │ │ │ dimension line and │ │ │ │ leader line arrowheads. │ │ │ │ Also controls the size │ │ │ │ of hook lines. Multiples │ │ │ │ of the arrowhead size │ │ │ │ determine whether │ │ │ │ dimension lines and text │ │ │ │ should fit between the │ │ │ │ extension lines. DIMASZ │ │ │ │ is also used to scale │ │ │ │ arrowhead blocks if set │ │ │ │ by DIMBLK. DIMASZ has │ │ │ │ no effect when DIMTSZ is │ │ │ │ other than zero. │ ├─────────┼──────┼──────────────────────────┤ │DIMBLK │ 5 │ Sets the arrowhead block │ │ │ │ displayed at the ends of │ │ │ │ dimension lines. │ ├─────────┼──────┼──────────────────────────┤ │DIMBLK1 │ 6 │ Sets the arrowhead for │ │ │ │ the first end of the │ │ │ │ dimension line when │ │ │ │ DIMSAH is 1. │ ├─────────┼──────┼──────────────────────────┤ │DIMBLK2 │ 7 │ Sets the arrowhead for │ │ │ │ the second end of the │ │ │ │ dimension line when │ │ │ │ DIMSAH is 1. │ ├─────────┼──────┼──────────────────────────┤ │DIMCEN │ 141 │ Controls drawing of │ │ │ │ circle or arc center │ │ │ │ marks and centerlines by │ │ │ │ the DIMCENTER, │ │ │ │ DIMDIAMETER, and │ │ │ │ DIMRADIUS commands. For │ │ │ │ DIMDIAMETER and │ │ │ │ DIMRADIUS, the center │ │ │ │ mark is drawn only if │ │ │ │ you place the dimension │ │ │ │ line outside the circle │ │ │ │ or arc. │ │ │ │ │ │ │ │ • 0 = No center │ │ │ │ marks or lines │ │ │ │ are drawn │ │ │ │ │ │ │ │ • <0 = │ │ │ │ Centerlines are │ │ │ │ drawn │ │ │ │ │ │ │ │ • >0 = Center │ │ │ │ marks are drawn │ ├─────────┼──────┼──────────────────────────┤ │DIMCLRD │ 176 │ Assigns colors to │ │ │ │ dimension lines, │ │ │ │ arrowheads, and │ │ │ │ dimension leader lines. │ │ │ │ │ │ │ │ • 0 = BYBLOCK │ │ │ │ │ │ │ │ • 1-255 = ACI │ │ │ │ AutoCAD Color │ │ │ │ Index │ │ │ │ │ │ │ │ • 256 = BYLAYER │ ├─────────┼──────┼──────────────────────────┤ │DIMCLRE │ 177 │ Assigns colors to │ │ │ │ dimension extension │ │ │ │ lines, values like │ │ │ │ DIMCLRD │ ├─────────┼──────┼──────────────────────────┤ │DIMCLRT │ 178 │ Assigns colors to │ │ │ │ dimension text, values │ │ │ │ like DIMCLRD │ ├─────────┼──────┼──────────────────────────┤ │DIMDLE │ 46 │ Sets the distance the │ │ │ │ dimension line extends │ │ │ │ beyond the extension │ │ │ │ line when oblique │ │ │ │ strokes are drawn │ │ │ │ instead of arrowheads. │ ├─────────┼──────┼──────────────────────────┤ │DIMDLI │ 43 │ Controls the spacing of │ │ │ │ the dimension lines in │ │ │ │ baseline dimensions. │ │ │ │ Each dimension line is │ │ │ │ offset from the previous │ │ │ │ one by this amount, if │ │ │ │ necessary, to avoid │ │ │ │ drawing over it. Changes │ │ │ │ made with DIMDLI are not │ │ │ │ applied to existing │ │ │ │ dimensions. │ ├─────────┼──────┼──────────────────────────┤ │DIMEXE │ 44 │ Specifies how far to │ │ │ │ extend the extension │ │ │ │ line beyond the │ │ │ │ dimension line. │ ├─────────┼──────┼──────────────────────────┤ │DIMEXO │ 42 │ Specifies how far │ │ │ │ extension lines are │ │ │ │ offset from origin │ │ │ │ points. With │ │ │ │ fixed-length extension │ │ │ │ lines, this value │ │ │ │ determines the minimum │ │ │ │ offset. │ ├─────────┼──────┼──────────────────────────┤ │DIMGAP │ 147 │ Sets the distance around │ │ │ │ the dimension text when │ │ │ │ the dimension line │ │ │ │ breaks to accommodate │ │ │ │ dimension text. Also │ │ │ │ sets the gap between │ │ │ │ annotation and a hook │ │ │ │ line created with the │ │ │ │ LEADER command. If you │ │ │ │ enter a negative value, │ │ │ │ DIMGAP places a box │ │ │ │ around the dimension │ │ │ │ text. │ │ │ │ │ │ │ │ DIMGAP is also used as │ │ │ │ the minimum length for │ │ │ │ pieces of the dimension │ │ │ │ line. When the default │ │ │ │ position for the │ │ │ │ dimension text is │ │ │ │ calculated, text is │ │ │ │ positioned inside the │ │ │ │ extension lines only if │ │ │ │ doing so breaks the │ │ │ │ dimension lines into two │ │ │ │ segments at least as │ │ │ │ long as DIMGAP. Text │ │ │ │ placed above or below │ │ │ │ the dimension line is │ │ │ │ moved inside only if │ │ │ │ there is room for the │ │ │ │ arrowheads, dimension │ │ │ │ text, and a margin │ │ │ │ between them at least as │ │ │ │ large as DIMGAP: 2 * │ │ │ │ (DIMASZ + DIMGAP). │ └─────────┴──────┴──────────────────────────┘ │DIMLFAC │ 144 │ Sets a scale factor for │ │ │ │ linear dimension │ │ │ │ measurements. All linear │ │ │ │ dimension distances, │ │ │ │ including radii, │ │ │ │ diameters, and │ │ │ │ coordinates, are │ │ │ │ multiplied by DIMLFAC │ │ │ │ before being converted │ │ │ │ to dimension text. │ │ │ │ Positive values of │ │ │ │ DIMLFAC are applied to │ │ │ │ dimensions in both │ │ │ │ modelspace and │ │ │ │ paperspace; negative │ │ │ │ values are applied to │ │ │ │ paperspace only. │ │ │ │ │ │ │ │ DIMLFAC applies │ │ │ │ primarily to │ │ │ │ nonassociative │ │ │ │ dimensions (DIMASSOC set │ │ │ │ 0 or 1). For │ │ │ │ nonassociative │ │ │ │ dimensions in │ │ │ │ paperspace, DIMLFAC must │ │ │ │ be set individually for │ │ │ │ each layout viewport to │ │ │ │ accommodate viewport │ │ │ │ scaling. │ │ │ │ │ │ │ │ DIMLFAC has no effect on │ │ │ │ angular dimensions, and │ │ │ │ is not applied to the │ │ │ │ values held in DIMRND, │ │ │ │ DIMTM, or DIMTP. │ ├─────────┼──────┼──────────────────────────┤ │DIMLIM │ 72 │ Generates dimension │ │ │ │ limits as the default │ │ │ │ text. Setting DIMLIM to │ │ │ │ On turns DIMTOL off. │ │ │ │ │ │ │ │ • 0 = Dimension │ │ │ │ limits are not │ │ │ │ generated as │ │ │ │ default text │ │ │ │ │ │ │ │ • 1 = Dimension │ │ │ │ limits are │ │ │ │ generated as │ │ │ │ default text │ ├─────────┼──────┼──────────────────────────┤ │DIMPOST │ 3 │ Specifies a text prefix │ │ │ │ or suffix (or both) to │ │ │ │ the dimension │ │ │ │ measurement. │ │ │ │ │ │ │ │ For example, to │ │ │ │ establish a suffix for │ │ │ │ millimeters, set DIMPOST │ │ │ │ to mm; a distance of │ │ │ │ 19.2 units would be │ │ │ │ displayed as 19.2 mm. If │ │ │ │ tolerances are turned │ │ │ │ on, the suffix is │ │ │ │ applied to the │ │ │ │ tolerances as well as to │ │ │ │ the main dimension. │ │ │ │ │ │ │ │ Use “<>” to indicate │ │ │ │ placement of the text in │ │ │ │ relation to the │ │ │ │ dimension value. For │ │ │ │ example, enter “<>mm” to │ │ │ │ display a 5.0 millimeter │ │ │ │ radial dimension as │ │ │ │ “5.0mm”. If you entered │ │ │ │ mm “<>”, the dimension │ │ │ │ would be displayed as │ │ │ │ “mm 5.0”. │ ├─────────┼──────┼──────────────────────────┤ │DIMRND │ 45 │ Rounds all dimensioning │ │ │ │ distances to the │ │ │ │ specified value. │ │ │ │ │ │ │ │ For instance, if DIMRND │ │ │ │ is set to 0.25, all │ │ │ │ distances round to the │ │ │ │ nearest 0.25 unit. If │ │ │ │ you set DIMRND to 1.0, │ │ │ │ all distances round to │ │ │ │ the nearest integer. │ │ │ │ Note that the number of │ │ │ │ digits edited after the │ │ │ │ decimal point depends on │ │ │ │ the precision set by │ │ │ │ DIMDEC. DIMRND does not │ │ │ │ apply to angular │ │ │ │ dimensions. │ ├─────────┼──────┼──────────────────────────┤ │DIMSAH │ 173 │ Controls the display of │ │ │ │ dimension line arrowhead │ │ │ │ blocks. │ │ │ │ │ │ │ │ • 0 = Use │ │ │ │ arrowhead │ │ │ │ blocks set by │ │ │ │ DIMBLK │ │ │ │ │ │ │ │ • 1 = Use │ │ │ │ arrowhead │ │ │ │ blocks set by │ │ │ │ DIMBLK1 and │ │ │ │ DIMBLK2 │ ├─────────┼──────┼──────────────────────────┤ │DIMSCALE │ 40 │ Sets the overall scale │ │ │ │ factor applied to │ │ │ │ dimensioning variables │ │ │ │ that specify sizes, │ │ │ │ distances, or offsets. │ │ │ │ Also affects the leader │ │ │ │ objects with the LEADER │ │ │ │ command. │ │ │ │ │ │ │ │ Use MLEADERSCALE to │ │ │ │ scale multileader │ │ │ │ objects created with the │ │ │ │ MLEADER command. │ │ │ │ │ │ │ │ • 0.0 = A │ │ │ │ reasonable │ │ │ │ default value │ │ │ │ is computed │ │ │ │ based on the │ │ │ │ scaling between │ │ │ │ the current │ │ │ │ model space │ │ │ │ viewport and │ │ │ │ paperspace. If │ │ │ │ you are in │ │ │ │ paperspace or │ │ │ │ modelspace and │ │ │ │ not using the │ │ │ │ paperspace │ │ │ │ feature, the │ │ │ │ scale factor is │ │ │ │ 1.0. │ │ │ │ │ │ │ │ • >0 = A scale │ │ │ │ factor is │ │ │ │ computed that │ │ │ │ leads text │ │ │ │ sizes, │ │ │ │ arrowhead │ │ │ │ sizes, and │ │ │ │ other scaled │ │ │ │ distances to │ │ │ │ plot at their │ │ │ │ face values. │ │ │ │ │ │ │ │ DIMSCALE does not │ │ │ │ affect measured │ │ │ │ lengths, │ │ │ │ coordinates, or │ │ │ │ angles. │ │ │ │ │ │ │ │ Use DIMSCALE to │ │ │ │ control the │ │ │ │ overall scale of │ │ │ │ dimensions. │ │ │ │ However, if the │ │ │ │ current dimension │ │ │ │ style is │ │ │ │ annotative, │ │ │ │ DIMSCALE is │ │ │ │ automatically set │ │ │ │ to zero and the │ │ │ │ dimension scale │ │ │ │ is controlled by │ │ │ │ the CANNOSCALE │ │ │ │ system variable. │ │ │ │ DIMSCALE cannot │ │ │ │ be set to a │ │ │ │ non-zero value │ │ │ │ when using │ │ │ │ annotative │ │ │ │ dimensions. │ ├─────────┼──────┼──────────────────────────┤ │DIMSE1 │ 75 │ Suppresses display of │ │ │ │ the first extension │ │ │ │ line. │ │ │ │ │ │ │ │ • 0 = Extension │ │ │ │ line is not │ │ │ │ suppressed │ │ │ │ │ │ │ │ • 1 = Extension │ │ │ │ line is │ │ │ │ suppressed │ ├─────────┼──────┼──────────────────────────┤ │DIMSE2 │ 76 │ Suppresses display of │ │ │ │ the second extension │ │ │ │ line. │ │ │ │ │ │ │ │ • 0 = Extension │ │ │ │ line is not │ │ │ │ suppressed │ │ │ │ │ │ │ │ • 1 = Extension │ │ │ │ line is │ │ │ │ suppressed │ └─────────┴──────┴──────────────────────────┘ │DIMSOXD │ 175 │ Suppresses arrowheads if │ │ │ │ not enough space is │ │ │ │ available inside the │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • 0 = Arrowheads │ │ │ │ are not │ │ │ │ suppressed │ │ │ │ │ │ │ │ • 1 = Arrowheads │ │ │ │ are suppressed │ │ │ │ │ │ │ │ If not enough │ │ │ │ space is │ │ │ │ available inside │ │ │ │ the extension │ │ │ │ lines and DIMTIX │ │ │ │ is on, setting │ │ │ │ DIMSOXD to On │ │ │ │ suppresses the │ │ │ │ arrowheads. If │ │ │ │ DIMTIX is off, │ │ │ │ DIMSOXD has no │ │ │ │ effect. │ ├─────────┼──────┼──────────────────────────┤ │DIMTAD │ 77 │ Controls the vertical │ │ │ │ position of text in │ │ │ │ relation to the │ │ │ │ dimension line. │ │ │ │ │ │ │ │ • 0 = Centers the │ │ │ │ dimension text │ │ │ │ between the │ │ │ │ extension │ │ │ │ lines. │ │ │ │ │ │ │ │ • 1 = Places the │ │ │ │ dimension text │ │ │ │ above the │ │ │ │ dimension line │ │ │ │ except when the │ │ │ │ dimension line │ │ │ │ is not │ │ │ │ horizontal and │ │ │ │ text inside the │ │ │ │ extension lines │ │ │ │ is forced │ │ │ │ horizontal │ │ │ │ (DIMTIH = 1). │ │ │ │ The distance │ │ │ │ from the │ │ │ │ dimension line │ │ │ │ to the baseline │ │ │ │ of the lowest │ │ │ │ line of text is │ │ │ │ the current │ │ │ │ DIMGAP value. │ │ │ │ │ │ │ │ • 2 = Places the │ │ │ │ dimension text │ │ │ │ on the side of │ │ │ │ the dimension │ │ │ │ line farthest │ │ │ │ away from the │ │ │ │ defining │ │ │ │ points. │ │ │ │ │ │ │ │ • 3 = Places the │ │ │ │ dimension text │ │ │ │ to conform to │ │ │ │ Japanese │ │ │ │ Industrial │ │ │ │ Standards │ │ │ │ (JIS). │ │ │ │ │ │ │ │ • 4 = Places the │ │ │ │ dimension text │ │ │ │ below the │ │ │ │ dimension line. │ ├─────────┼──────┼──────────────────────────┤ │DIMTFAC │ 146 │ Specifies a scale factor │ │ │ │ for the text height of │ │ │ │ fractions and tolerance │ │ │ │ values relative to the │ │ │ │ dimension text height, │ │ │ │ as set by DIMTXT. │ │ │ │ │ │ │ │ For example, if DIMTFAC │ │ │ │ is set to 1.0, the text │ │ │ │ height of fractions and │ │ │ │ tolerances is the same │ │ │ │ height as the dimension │ │ │ │ text. If DIMTFAC is set │ │ │ │ to 0.7500, the text │ │ │ │ height of fractions and │ │ │ │ tolerances is │ │ │ │ three-quarters the size │ │ │ │ of dimension text. │ ├─────────┼──────┼──────────────────────────┤ │DIMTIH │ 73 │ Controls the position of │ │ │ │ dimension text inside │ │ │ │ the extension lines for │ │ │ │ all dimension types │ │ │ │ except Ordinate. │ │ │ │ │ │ │ │ • 0 = Aligns text │ │ │ │ with the │ │ │ │ dimension line │ │ │ │ │ │ │ │ • 1 = Draws text │ │ │ │ horizontally │ ├─────────┼──────┼──────────────────────────┤ │DIMTIX │ 174 │ Draws text between │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • 0 = Varies with │ │ │ │ the type of │ │ │ │ dimension. For │ │ │ │ linear and │ │ │ │ angular │ │ │ │ dimensions, │ │ │ │ text is placed │ │ │ │ inside the │ │ │ │ extension lines │ │ │ │ if there is │ │ │ │ sufficient │ │ │ │ room. For │ │ │ │ radius and │ │ │ │ diameter │ │ │ │ dimensions hat │ │ │ │ don’t fit │ │ │ │ inside the │ │ │ │ circle or arc, │ │ │ │ DIMTIX has no │ │ │ │ effect and │ │ │ │ always forces │ │ │ │ the text │ │ │ │ outside the │ │ │ │ circle or arc. │ │ │ │ │ │ │ │ • 1 = Draws │ │ │ │ dimension text │ │ │ │ between the │ │ │ │ extension lines │ │ │ │ even if it │ │ │ │ would │ │ │ │ ordinarily be │ │ │ │ placed outside │ │ │ │ those lines │ ├─────────┼──────┼──────────────────────────┤ │DIMTM │ 48 │ Sets the minimum (or │ │ │ │ lower) tolerance limit │ │ │ │ for dimension text when │ │ │ │ DIMTOL or DIMLIM is on. │ │ │ │ DIMTM accepts signed │ │ │ │ values. If DIMTOL is on │ │ │ │ and DIMTP and DIMTM are │ │ │ │ set to the same value, a │ │ │ │ tolerance value is │ │ │ │ drawn. If DIMTM and │ │ │ │ DIMTP values differ, the │ │ │ │ upper tolerance is drawn │ │ │ │ above the lower, and a │ │ │ │ plus sign is added to │ │ │ │ the DIMTP value if it is │ │ │ │ positive. For DIMTM, the │ │ │ │ program uses the │ │ │ │ negative of the value │ │ │ │ you enter (adding a │ │ │ │ minus sign if you │ │ │ │ specify a positive │ │ │ │ number and a plus sign │ │ │ │ if you specify a │ │ │ │ negative number). │ ├─────────┼──────┼──────────────────────────┤ │DIMTOFL │ 172 │ Controls whether a │ │ │ │ dimension line is drawn │ │ │ │ between the extension │ │ │ │ lines even when the text │ │ │ │ is placed outside. For │ │ │ │ radius and diameter │ │ │ │ dimensions (when DIMTIX │ │ │ │ is off), draws a │ │ │ │ dimension line inside │ │ │ │ the circle or arc and │ │ │ │ places the text, │ │ │ │ arrowheads, and leader │ │ │ │ outside. │ │ │ │ │ │ │ │ • 0 = Does not │ │ │ │ draw dimension │ │ │ │ lines between │ │ │ │ the measured │ │ │ │ points when │ │ │ │ arrowheads are │ │ │ │ placed outside │ │ │ │ the measured │ │ │ │ points │ │ │ │ │ │ │ │ • 1 = Draws │ │ │ │ dimension lines │ │ │ │ between the │ │ │ │ measured points │ │ │ │ even when │ │ │ │ arrowheads are │ │ │ │ placed outside │ │ │ │ the measured │ │ │ │ points │ └─────────┴──────┴──────────────────────────┘ │DIMTOH │ 74 │ Controls the position of │ │ │ │ dimension text outside │ │ │ │ the extension lines. │ │ │ │ │ │ │ │ • 0 = Aligns text │ │ │ │ with the │ │ │ │ dimension line │ │ │ │ │ │ │ │ • 1 = Draws text │ │ │ │ horizontally │ ├─────────┼──────┼──────────────────────────┤ │DIMTOL │ 71 │ Appends tolerances to │ │ │ │ dimension text. Setting │ │ │ │ DIMTOL to on turns │ │ │ │ DIMLIM off. │ ├─────────┼──────┼──────────────────────────┤ │DIMTP │ 47 │ Sets the maximum (or │ │ │ │ upper) tolerance limit │ │ │ │ for dimension text when │ │ │ │ DIMTOL or DIMLIM is on. │ │ │ │ DIMTP accepts signed │ │ │ │ values. If DIMTOL is on │ │ │ │ and DIMTP and DIMTM are │ │ │ │ set to the same value, a │ │ │ │ tolerance value is │ │ │ │ drawn. If DIMTM and │ │ │ │ DIMTP values differ, the │ │ │ │ upper tolerance is drawn │ │ │ │ above the lower and a │ │ │ │ plus sign is added to │ │ │ │ the DIMTP value if it is │ │ │ │ positive. │ ├─────────┼──────┼──────────────────────────┤ │DIMTSZ │ 142 │ Specifies the size of │ │ │ │ oblique strokes drawn │ │ │ │ instead of arrowheads │ │ │ │ for linear, radius, and │ │ │ │ diameter dimensioning. │ │ │ │ │ │ │ │ • 0 = Draws │ │ │ │ arrowheads. │ │ │ │ │ │ │ │ • >0 = Draws │ │ │ │ oblique strokes │ │ │ │ instead of │ │ │ │ arrowheads. The │ │ │ │ size of the │ │ │ │ oblique strokes │ │ │ │ is determined │ │ │ │ by this value │ │ │ │ multiplied by │ │ │ │ the DIMSCALE │ │ │ │ value │ ├─────────┼──────┼──────────────────────────┤ │DIMTVP │ 145 │ Controls the vertical │ │ │ │ position of dimension │ │ │ │ text above or below the │ │ │ │ dimension line. The │ │ │ │ DIMTVP value is used │ │ │ │ when DIMTAD = 0. The │ │ │ │ magnitude of the │ │ │ │ vertical offset of text │ │ │ │ is the product of the │ │ │ │ text height and DIMTVP. │ │ │ │ Setting DIMTVP to 1.0 is │ │ │ │ equivalent to setting │ │ │ │ DIMTAD = 1. The │ │ │ │ dimension line splits to │ │ │ │ accommodate the text │ │ │ │ only if the absolute │ │ │ │ value of DIMTVP is less │ │ │ │ than 0.7. │ ├─────────┼──────┼──────────────────────────┤ │DIMTXT │ 140 │ Specifies the height of │ │ │ │ dimension text, unless │ │ │ │ the current text style │ │ │ │ has a fixed height. │ ├─────────┼──────┼──────────────────────────┤ │DIMZIN │ 78 │ Controls the suppression │ │ │ │ of zeros in the primary │ │ │ │ unit value. Values 0-3 │ │ │ │ affect feet-and-inch │ │ │ │ dimensions only: │ │ │ │ │ │ │ │ • 0 = Suppresses │ │ │ │ zero feet and │ │ │ │ precisely zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 1 = Includes │ │ │ │ zero feet and │ │ │ │ precisely zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 2 = Includes │ │ │ │ zero feet and │ │ │ │ suppresses zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 3 = Includes │ │ │ │ zero inches and │ │ │ │ suppresses zero │ │ │ │ feet │ │ │ │ │ │ │ │ • 4 (Bit 3) = │ │ │ │ Suppresses │ │ │ │ leading zeros │ │ │ │ in decimal │ │ │ │ dimensions (for │ │ │ │ example, 0.5000 │ │ │ │ becomes .5000) │ │ │ │ │ │ │ │ • 8 (Bit 4) = │ │ │ │ Suppresses │ │ │ │ trailing zeros │ │ │ │ in decimal │ │ │ │ dimensions (for │ │ │ │ example, │ │ │ │ 12.5000 becomes │ │ │ │ 12.5) │ │ │ │ │ │ │ │ • 12 (Bit 3+4) = │ │ │ │ Suppresses both │ │ │ │ leading and │ │ │ │ trailing zeros │ │ │ │ (for example, │ │ │ │ 0.5000 becomes │ │ │ │ .5) │ └─────────┴──────┴──────────────────────────┘ Table Structure DXF R2000+ 0 <<< start of table TABLE 2 <<< set table type DIMSTYLE 5 <<< DIMSTYLE table handle 5F 330 <<< owner tag, tables has no owner 0 100 <<< subclass marker AcDbSymbolTable 70 <<< count of dimension styles defined in this table, AutoCAD ignores this value 9 0 <<< 1. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags 0 <<< 2. DIMSTYLE table entry DIMSTYLE <<< DIMSTYLE data tags and so on 0 <<< end of DIMSTYLE table ENDTAB Additional DIMSTYLE Variables DXF R13/14 Source: CADDManager Blog ┌────────────────┬──────┬──────────────────────────────────┐ │DIMVAR │ code │ Description │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMADEC │ 179 │ Controls the number of │ │ │ │ precision places │ │ │ │ displayed in angular │ │ │ │ dimensions. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTTD │ 274 │ Sets the number of │ │ │ │ decimal places for the │ │ │ │ tolerance values in the │ │ │ │ alternate units of a │ │ │ │ dimension. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTTZ │ 286 │ Controls suppression of │ │ │ │ zeros in tolerance │ │ │ │ values. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTU │ 273 │ Sets the units format │ │ │ │ for alternate units of │ │ │ │ all dimension substyles │ │ │ │ except Angular. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMALTZ │ 285 │ Controls the suppression │ │ │ │ of zeros for alternate │ │ │ │ unit dimension values. │ │ │ │ DIMALTZ values 0-3 │ │ │ │ affect feet-and-inch │ │ │ │ dimensions only. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMAUNIT │ 275 │ Sets the units format │ │ │ │ for angular dimensions. │ │ │ │ │ │ │ │ • 0 = Decimal │ │ │ │ degrees │ │ │ │ │ │ │ │ • 1 = │ │ │ │ Degrees/minutes/seconds │ │ │ │ │ │ │ │ • 2 = Grad │ │ │ │ │ │ │ │ • 3 = Radians │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMBLK_HANDLE │ 342 │ defines DIMBLK as handle to the │ │ │ │ BLOCK RECORD entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMBLK1_HANDLE │ 343 │ defines DIMBLK1 as handle to the │ │ │ │ BLOCK RECORD entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMBLK2_HANDLE │ 344 │ defines DIMBLK2 as handle to the │ │ │ │ BLOCK RECORD entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMDEC │ 271 │ Sets the number of decimal │ │ │ │ places displayed for the primary │ │ │ │ units of a dimension. The │ │ │ │ precision is based on the units │ │ │ │ or angle format you have │ │ │ │ selected. │ └────────────────┴──────┴──────────────────────────────────┘ │DIMDSEP │ 278 │ Specifies a single-character │ │ │ │ decimal separator to use when │ │ │ │ creating dimensions whose unit │ │ │ │ format is decimal. When │ │ │ │ prompted, enter a single │ │ │ │ character at the Command prompt. │ │ │ │ If dimension units is set to │ │ │ │ Decimal, the DIMDSEP character │ │ │ │ is used instead of the default │ │ │ │ decimal point. If DIMDSEP is set │ │ │ │ to NULL (default value, reset by │ │ │ │ entering a period), the decimal │ │ │ │ point is used as the dimension │ │ │ │ separator. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMJUST │ 280 │ Controls the horizontal │ │ │ │ positioning of dimension text. │ │ │ │ │ │ │ │ • 0 = Positions the text │ │ │ │ above the dimension │ │ │ │ line and │ │ │ │ center-justifies it │ │ │ │ between the extension │ │ │ │ lines │ │ │ │ │ │ │ │ • 1 = Positions the text │ │ │ │ next to the first │ │ │ │ extension line │ │ │ │ │ │ │ │ • 2 = Positions the text │ │ │ │ next to the second │ │ │ │ extension line │ │ │ │ │ │ │ │ • 3 = Positions the text │ │ │ │ above and aligned with │ │ │ │ the first extension │ │ │ │ line │ │ │ │ │ │ │ │ • 4 = =Positions the │ │ │ │ text above and aligned │ │ │ │ with the second │ │ │ │ extension line │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMSD1 │ 281 │ Controls suppression of the │ │ │ │ first dimension line and │ │ │ │ arrowhead. When turned on, │ │ │ │ suppresses the display of the │ │ │ │ dimension line and arrowhead │ │ │ │ between the first extension line │ │ │ │ and the text. │ │ │ │ │ │ │ │ • 0 = First dimension │ │ │ │ line is not suppressed │ │ │ │ │ │ │ │ • 1 = First dimension │ │ │ │ line is suppressed │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMSD2 │ 282 │ Controls suppression of the │ │ │ │ second dimension line and │ │ │ │ arrowhead. When turned on, │ │ │ │ suppresses the display of the │ │ │ │ dimension line and arrowhead │ │ │ │ between the second extension │ │ │ │ line and the text. │ │ │ │ │ │ │ │ • 0 = Second dimension │ │ │ │ line is not suppressed │ │ │ │ │ │ │ │ • 1 = Second dimension │ │ │ │ line is suppressed │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTDEC │ 272 │ Sets the number of decimal │ │ │ │ places to display in tolerance │ │ │ │ values for the primary units in │ │ │ │ a dimension. This system │ │ │ │ variable has no effect unless │ │ │ │ DIMTOL is set to On. The default │ │ │ │ for DIMTOL is Off. │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTOLJ │ 283 │ Sets the vertical justification │ │ │ │ for tolerance values relative to │ │ │ │ the nominal dimension text. │ │ │ │ This system variable has no │ │ │ │ effect unless DIMTOL is set to │ │ │ │ On. The default for DIMTOL is │ │ │ │ Off. │ │ │ │ │ │ │ │ • 0 = Bottom │ │ │ │ │ │ │ │ • 1 = Middle │ │ │ │ │ │ │ │ • 2 = Top │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTXSTY_HANDLE │ 340 │ Specifies the text style of the │ │ │ │ dimension as handle to STYLE │ │ │ │ table entry │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMTZIN │ 284 │ Controls the suppression of │ │ │ │ zeros in tolerance values. │ │ │ │ │ │ │ │ Values 0-3 affect feet-and-inch │ │ │ │ dimensions only. │ │ │ │ │ │ │ │ • 0 = Suppresses zero │ │ │ │ feet and precisely zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 1 = Includes zero feet │ │ │ │ and precisely zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 2 = Includes zero feet │ │ │ │ and suppresses zero │ │ │ │ inches │ │ │ │ │ │ │ │ • 3 = Includes zero │ │ │ │ inches and suppresses │ │ │ │ zero feet │ │ │ │ │ │ │ │ • 4 = Suppresses leading │ │ │ │ zeros in decimal │ │ │ │ dimensions (for │ │ │ │ example, 0.5000 becomes │ │ │ │ .5000) │ │ │ │ │ │ │ │ • 8 = Suppresses trailing │ │ │ │ zeros in decimal │ │ │ │ dimensions (for │ │ │ │ example, 12.5000 │ │ │ │ becomes 12.5) │ │ │ │ │ │ │ │ • 12 = Suppresses both │ │ │ │ leading and trailing │ │ │ │ zeros (for example, │ │ │ │ 0.5000 becomes .5) │ ├────────────────┼──────┼──────────────────────────────────┤ │DIMUPT │ 288 │ Controls options for │ │ │ │ user-positioned text. │ │ │ │ │ │ │ │ • 0 = Cursor controls │ │ │ │ only the dimension line │ │ │ │ location │ │ │ │ │ │ │ │ • 1 = Cursor controls │ │ │ │ both the text position │ │ │ │ and the dimension line │ │ │ │ location │ └────────────────┴──────┴──────────────────────────────────┘ Additional DIMSTYLE Variables DXF R2000 Source: CADDManager Blog ┌─────────────────┬──────┬──────────────────────────┐ │DIMVAR │ Code │ Description │ ├─────────────────┼──────┼──────────────────────────┤ │DIMALTRND │ 148 │ Rounds off the alternate │ │ │ │ dimension units. │ ├─────────────────┼──────┼──────────────────────────┤ │DIMATFIT │ 289 │ Determines how dimension │ │ │ │ text and arrows are │ │ │ │ arranged when space is │ │ │ │ not sufficient to place │ │ │ │ both within the │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • 0 = Places both │ │ │ │ text and arrows │ │ │ │ outside │ │ │ │ extension lines │ │ │ │ │ │ │ │ • 1 = Moves │ │ │ │ arrows first, │ │ │ │ then text │ │ │ │ │ │ │ │ • 2 = Moves text │ │ │ │ first, then │ │ │ │ arrows │ │ │ │ │ │ │ │ • 3 = Moves │ │ │ │ either text or │ │ │ │ arrows, │ │ │ │ whichever fits │ │ │ │ best │ │ │ │ │ │ │ │ A leader is added │ │ │ │ to moved │ │ │ │ dimension text │ │ │ │ when DIMTMOVE is │ │ │ │ set to 1. │ └─────────────────┴──────┴──────────────────────────┘ │DIMAZIN │ 79 │ Suppresses zeros for │ │ │ │ angular dimensions. │ │ │ │ │ │ │ │ • 0 = Displays │ │ │ │ all leading and │ │ │ │ trailing zeros │ │ │ │ │ │ │ │ • 1 = Suppresses │ │ │ │ leading zeros │ │ │ │ in decimal │ │ │ │ dimensions (for │ │ │ │ example, 0.5000 │ │ │ │ becomes .5000) │ │ │ │ │ │ │ │ • 2 = Suppresses │ │ │ │ trailing zeros │ │ │ │ in decimal │ │ │ │ dimensions (for │ │ │ │ example, │ │ │ │ 12.5000 becomes │ │ │ │ 12.5) │ │ │ │ │ │ │ │ • 3 = Suppresses │ │ │ │ leading and │ │ │ │ trailing zeros │ │ │ │ (for example, │ │ │ │ 0.5000 becomes │ │ │ │ .5) │ ├─────────────────┼──────┼──────────────────────────┤ │DIMFRAC │ 276 │ Sets the fraction format │ │ │ │ when DIMLUNIT is set to │ │ │ │ 4 (Architectural) or 5 │ │ │ │ (Fractional). │ │ │ │ │ │ │ │ • 0 = Horizontal │ │ │ │ stacking │ │ │ │ │ │ │ │ • 1 = Diagonal │ │ │ │ stacking │ │ │ │ │ │ │ │ • 2 = Not stacked │ │ │ │ (for example, │ │ │ │ 1/2) │ ├─────────────────┼──────┼──────────────────────────┤ │DIMLDRBLK_HANDLE │ 341 │ Specifies the arrow type │ │ │ │ for leaders. Handle to │ │ │ │ BLOCK RECORD │ ├─────────────────┼──────┼──────────────────────────┤ │DIMLUNIT │ 277 │ Sets units for all │ │ │ │ dimension types except │ │ │ │ Angular. │ │ │ │ │ │ │ │ • 1 = Scientific │ │ │ │ │ │ │ │ • 2 = Decimal │ │ │ │ │ │ │ │ • 3 = Engineering │ │ │ │ │ │ │ │ • 4 = │ │ │ │ Architectural │ │ │ │ (always │ │ │ │ displayed │ │ │ │ stacked) │ │ │ │ │ │ │ │ • 5 = Fractional │ │ │ │ (always │ │ │ │ displayed │ │ │ │ stacked) │ │ │ │ │ │ │ │ • 6 = Microsoft │ │ │ │ Windows Desktop │ │ │ │ (decimal format │ │ │ │ using Control │ │ │ │ Panel settings │ │ │ │ for decimal │ │ │ │ separator and │ │ │ │ number grouping │ │ │ │ symbols) │ ├─────────────────┼──────┼──────────────────────────┤ │DIMLWD │ 371 │ Assigns lineweight to │ │ │ │ dimension lines. │ │ │ │ │ │ │ │ • -3 = Default │ │ │ │ (the LWDEFAULT │ │ │ │ value) │ │ │ │ │ │ │ │ • -2 = BYBLOCK │ │ │ │ │ │ │ │ • -1 = BYLAYER │ ├─────────────────┼──────┼──────────────────────────┤ │DIMLWE │ 372 │ Assigns lineweight to │ │ │ │ extension lines. │ │ │ │ │ │ │ │ • -3 = Default │ │ │ │ (the LWDEFAULT │ │ │ │ value) │ │ │ │ │ │ │ │ • -2 = BYBLOCK │ │ │ │ │ │ │ │ • -1 = BYLAYER │ ├─────────────────┼──────┼──────────────────────────┤ │DIMTMOVE │ 279 │ Sets dimension text │ │ │ │ movement rules. │ │ │ │ │ │ │ │ • 0 = Moves the │ │ │ │ dimension line │ │ │ │ with dimension │ │ │ │ text │ │ │ │ │ │ │ │ • 1 = Adds a │ │ │ │ leader when │ │ │ │ dimension text │ │ │ │ is moved │ │ │ │ │ │ │ │ • 2 = Allows text │ │ │ │ to be moved │ │ │ │ freely without │ │ │ │ a leader │ └─────────────────┴──────┴──────────────────────────┘ Text Location This image shows the default text locations created by BricsCAD for dimension variables dimtad and dimjust: [image] Unofficial DIMSTYLE Variables for DXF R2007 and later The following DIMVARS are not documented in the DXF Reference by Autodesk. ┌────────────────┬──────┬──────────────────────────┐ │DIMVAR │ Code │ Description │ ├────────────────┼──────┼──────────────────────────┤ │DIMTFILL │ 69 │ Text fill 0=off; │ │ │ │ 1=background color; │ │ │ │ 2=custom color (see │ │ │ │ DIMTFILLCLR) │ ├────────────────┼──────┼──────────────────────────┤ │DIMTFILLCLR │ 70 │ Text fill custom color │ │ │ │ as color index │ ├────────────────┼──────┼──────────────────────────┤ │DIMFXLON │ 290 │ Extension line has fixed │ │ │ │ length if set to 1 │ ├────────────────┼──────┼──────────────────────────┤ │DIMFXL │ 49 │ Length of extension line │ │ │ │ below dimension line if │ │ │ │ fixed (DIMFXLON is 1), │ │ │ │ DIMEXE defines the the │ │ │ │ length above the │ │ │ │ dimension line │ ├────────────────┼──────┼──────────────────────────┤ │DIMJOGANG │ 50 │ Angle of oblique │ │ │ │ dimension line segment │ │ │ │ in jogged radius │ │ │ │ dimension │ ├────────────────┼──────┼──────────────────────────┤ │DIMLTYPE_HANDLE │ 345 │ Specifies the LINETYPE │ │ │ │ of the dimension line. │ │ │ │ Handle to LTYPE table │ │ │ │ entry │ ├────────────────┼──────┼──────────────────────────┤ │DIMLTEX1_HANDLE │ 346 │ Specifies the LINETYPE │ │ │ │ of the extension line 1. │ │ │ │ Handle to LTYPE table │ │ │ │ entry │ ├────────────────┼──────┼──────────────────────────┤ │DIMLTEX2_HANDLE │ 347 │ Specifies the LINETYPE │ │ │ │ of the extension line 2. │ │ │ │ Handle to LTYPE table │ │ │ │ entry │ └────────────────┴──────┴──────────────────────────┘ Extended Settings as Special XDATA Groups Prior to DXF R2007, some extended settings for the dimension and the extension lines are stored in the XDATA section by following entries, this is not documented by Autodesk: 1001 ACAD_DSTYLE_DIM_LINETYPE <<< linetype for dimension line 1070 380 <<< group code, which differs from R2007 DIMDLTYPE 1005 FFFF <<< handle to LTYPE entry 1001 ACAD_DSTYLE_DIM_EXT1_LINETYPE <<< linetype for extension line 1 1070 381 <<< group code, which differs from R2007 DIMLTEX1 1005 FFFF <<< handle to LTYPE entry 1001 ACAD_DSTYLE_DIM_EXT2_LINETYPE <<< linetype for extension line 1 1070 382 <<< group code, which differs from R2007 DIMLTEX2 1005 FFFF <<< handle to LTYPE entry 1001 ACAD_DSTYLE_DIMEXT_ENABLED <<< extension line fixed 1070 383 <<< group code, which differs from R2007 DIMEXFIX 1070 1 <<< fixed if 1 else 0 1001 ACAD_DSTYLE_DIMEXT_LENGTH <<< extension line fixed length 1070 378 <<< group code, which differs from R2007 DIMEXLEN 1040 1.33 <<< length of extension line below dimension line This XDATA groups requires also an appropriate APPID entry in the APPID table. This feature is not supported by ezdxf. BLOCK_RECORD Table Block records are essential elements for the entities management, each layout (modelspace and paperspace) and every block definition has a block record entry. This block record is the hard owner of the entities of layouts, each entity has an owner handle which points to a block record of the layout. LAYER Table TODO Table Structure DXF R2000+ 0 <<< start of table TABLE 2 <<< set table type LAYER 5 <<< LAYER table handle 2 330 <<< owner tag, tables has no owner 0 100 <<< subclass marker AcDbSymbolTable 70 <<< count of layers defined in this table, AutoCAD ignores this value 5 0 <<< 1. LAYER table entry LAYER ... <<< LAYER entity tags 0 <<< 2. LAYER table entry LAYER ... <<< LAYER entity tags Layer Entity Tags DXF R2000+ There are some quirks: • the frozen/thawed state is stored in flags (group code 70) • the locked/unlocked state is stored in flags (group code 70) • the off state is stored as negative color value (group code 6) • the layer description is stored in the XDATA section • the transparency value is stored in the XDATA section 0 <<< LAYER table entry LAYER 5 <<< handle of LAYER 10 330 <<< owner handle, handle of LAYER table 2 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbLayerTableRecord 2 <<< layer name 0 <<< layer "0" 70 <<< flags 0 62 <<< color 7 <<< a negative value switches the layer off 420 <<< optional true color value 0 6 <<< linetype Continuous 290 <<< optional plot flag 1 370 <<< lineweight -3 390 <<< handle to plot style F 347 <<< material handle 47 348 <<< unknown1 0 1001 <<< XDATA section, APPID AcAecLayerStandard 1000 <<< unknown first value, here an empty string 1000 <<< layer description This layer has a description 1001 <<< APPID AcCmTransparency 1071 <<< layer transparency value 0 Layer Viewport Overrides Some layer attributes can be overridden individually for any VIEWPORT entity. This overrides are stored as extension dictionary entries of the LAYER entity pointing to XRECORD entities in the objects section: 0 LAYER 5 9F 102 <<< APP data, extension dictionary {ACAD_XDICTIONARY 360 <<< handle to the xdict in the objects section B3 102 } 330 2 100 AcDbSymbolTableRecord 100 AcDbLayerTableRecord 2 LayerA ... The extension DICTIONARY entity: 0 <<< entity type DICTIONARY 5 <<< handle B3 330 <<< owner handle 9F <<< the layer owns this dictionary 100 <<< subclass marker AcDbDictionary 280 <<< hard owned flag 1 281 <<< cloning type 1 <<< keep existing 3 <<< transparency override ADSK_XREC_LAYER_ALPHA_OVR 360 <<< handle to XRECORD E5 3 <<< color override ADSK_XREC_LAYER_COLOR_OVR 360 <<< handle to XRECORD B4 3 <<< linetype override ADSK_XREC_LAYER_LINETYPE_OVR 360 <<< handle to XRECORD DD 3 <<< lineweight override ADSK_XREC_LAYER_LINEWT_OVR 360 <<< handle to XRECORD E2 Transparency override XRECORD: 0 <<< entity type XRECORD 5 <<< handle E5 102 <<< reactors app data {ACAD_REACTORS 330 B3 <<< extension dictionary 102 } 330 <<< owner tag B3 <<< extension dictionary 100 <<< subclass marker AcDbXrecord 280 <<< cloning flag 1 <<< keep existing 102 <<< for each overridden VIEWPORT one entry {ADSK_LYR_ALPHA_OVERRIDE 335 <<< handle to VIEWPORT AC 440 <<< transparency override 33554661 102 } Color override XRECORD: 0 XRECORD ... <<< like transparency XRECORD 102 <<< for each overridden VIEWPORT one entry {ADSK_LYR_COLOR_OVERRIDE 335 <<< handle to VIEWPORT AF 420 <<< color override -1023409925 <<< raw color value 102 } Linetype override XRECORD: 0 XRECORD ... <<< like transparency XRECORD 102 <<< for each overridden VIEWPORT one entry {ADSK_LYR_LINETYPE_OVERRIDE 335 <<< handle to VIEWPORT AC 343 <<< linetype override DC <<< handle to LINETYPE table entry 102 } Lineweight override XRECORD: 0 XRECORD ... <<< like transparency XRECORD 102 <<< for each overridden VIEWPORT one entry {ADSK_LYR_LINEWT_OVERRIDE 335 <<< handle to VIEWPORT AC 91 <<< lineweight override 13 <<< lineweight value 102 } DXF Entities DIMENSION Internals SEE ALSO: • DXF Reference: DIMENSION • DXFInternals: DIMSTYLE Table [image] MESH Internals The MESH entity is the compact version of the PolyFaceMesh implemented by the Polyline entity . The entity stores the vertices, edges and faces in a single entity and was introduced in DXF version R13/R14. For more information about the top level stuff go to the Mesh class. SEE ALSO: • DXF Reference: MESH • ezdxf.entities.Mesh class The following DXF code represents this cube with subdivision level of 0: [image] 0 MESH <<< DXF type 5 <<< entity handle 2F 330 <<< block record handle of owner layout 17 100 AcDbEntity 8 0 <<< layer 62 6 <<< color 100 AcDbSubDMesh <<< subclass marker 71 2 <<< version 72 1 <<< blend crease, 1 is "on", 0 is "off" 91 0 <<< subdivision level is 0 92 8 <<< vertex count, 8 cube corners 10 <<< 1. vertex, x-axis 0.0 20 <<< y-axis 0.0 30 <<< z-axis 0.0 10 <<< 2. vertex 1.0 20 0.0 30 0.0 10 <<< 3. vertex 1.0 20 1.0 30 0.0 10 <<< 4. vertex 0.0 20 1.0 30 0.0 10 <<< 5. vertex 0.0 20 0.0 30 1.0 10 <<< 6. vertex 1.0 20 0.0 30 1.0 10 <<< 7. vertex 1.0 20 1.0 30 1.0 10 <<< 8. vertex 0.0 20 1.0 30 1.0 93 <<< size of face list 30 <<< size = count of group code 90 tags = 6 x 5 90 <<< vertex count of face 1 4 <<< MESH supports ngons, count = 3, 4, 5, 6 ... 90 0 <<< face 1, index of 1. vertex 90 3 <<< face 1, index of 2. vertex 90 2 <<< face 1, index of 3. vertex 90 1 <<< face 1, index of 4. vertex 90 4 <<< vertex count of face 2 90 4 <<< face 2, index of 1. vertex 90 5 <<< face 2, index of 2. vertex 90 6 <<< face 2, index of 3. vertex 90 7 <<< face 2, index of 4. vertex 90 4 <<< vertex count of face 3 90 0 <<< face 3, index of 1. vertex 90 1 <<< face 3, index of 2. vertex 90 5 <<< face 3, index of 3. vertex 90 4 <<< face 3, index of 4. vertex 90 4 <<< vertex count of face 4 90 1 <<< face 4, index of 1. vertex 90 2 <<< face 4, index of 2. vertex 90 6 <<< face 4, index of 3. vertex 90 5 <<< face 4, index of 4. vertex 90 4 <<< vertex count of face 5 90 3 <<< face 5, index of 1. vertex 90 7 <<< face 5, index of 2. vertex 90 6 <<< face 5, index of 3. vertex 90 2 <<< face 5, index of 4. vertex 90 4 <<< vertex count of face 6 90 0 <<< face 6, index of 1. vertex 90 4 <<< face 6, index of 2. vertex 90 7 <<< face 6, index of 3. vertex 90 3 <<< face 6, index of 4. vertex 94 <<< edge count, each edge has exact two group code 90 tags 4 <<< the real edge count not the group code 90 tags! 90 0 <<< edge 1, vertex 1 90 1 <<< edge 1, vertex 1 90 1 <<< edge 2, vertex 1 90 2 <<< edge 2, vertex 2 90 2 <<< edge 3, vertex 1 90 3 <<< edge 3, vertex 2 90 3 <<< edge 4, vertex 1 90 0 <<< edge 4, vertex 2 95 <<< edge crease count, has to match edge count! 4 140 3.0 <<< crease value for edge 1 140 3.0 <<< crease value for edge 2 140 3.0 <<< crease value for edge 3 140 3.0 <<< crease value for edge 4 90 <<< property overwrite??? 0 The edge and crease data have only a meaning if subdivision of the geometry will be applied! A crease value equal to the subdivision level prevents subdividing for the edge completely, a value between 0.0 and the subdivision level applies subdivision partially. The cube with subdivision level of 3 and crease values of 3.0: [image] Front view for better details: [image] The cube with subdivision levels of 3 and crease values of 2.0: [image] The cube with subdivision level of 3 and crease values of 1.0: [image] The property overriding protocol is not documented in the DXF reference and currently I have no access to a CAD application which can created property overriding. MULTILEADER Internals The MULTILEADER leader is a very complex entity and has also some weird and unique properties. 1. MULTILEADER has the alias name MLEADER which is accepted by any reliable CAD application, but all of them create the entity as MULTILEADER 2. uses raw color values to define colors 3. creates a complex context data structures beyond simple tags inside the subclass AcDbMLeader SEE ALSO: • ezdxf.entities.MultiLeader • ezdxf.entities.MLeaderStyle • ezdxf.render.MultiLeaderBuilder • Tutorial for MultiLeader • DXF Reference: MLEADER Example for ezdxf.entities.MLeaderContext created by BricsCAD: 300 <str> CONTEXT_DATA{ 40 <float> 1.0 <<< content scale 10 <point> (x, y, z) <<< content base point 41 <float> 4.0 <<< text height 140 <float> 4.0 <<< arrowhead size 145 <float> 2.0 <<< landing gap size 174 <int> 1 <<< doc missing 175 <int> 1 <<< doc missing 176 <int> 0 <<< doc missing 177 <int> 0 <<< doc missing 290 <int> 1 <<< has_mtext_content <<< START MText Content tags: 304 <str> MTEXT content string 11 <point> (0.0, 0.0, 1.0) <<< extrusion vector 340 <hex> #A0 <<< text style as handle 12 <point> (x, y, z) <<< text location 13 <point> (1.0, 0.0, 0.0) <<< text direction 42 <float> 0.0 <<< text rotation 43 <float> 0.0 <<< text width 44 <float> 0.0 <<< text height 45 <float> 1.0 <<< text line space factor 170 <int> 1 <<< text line space style 90 <int> -1056964608 <<< text color (raw value) 171 <int> 1 <<< text attachment 172 <int> 1 <<< text flow direction 91 <int> -939524096 <<< text background color (raw value) 141 <float> 1.5 <<< text background scale factor 92 <int> 0 <<< text background transparency 291 <int> 0 <<< has_text_bg_color 292 <int> 0 <<< has_text_bg_fill 173 <int> 0 <<< text column type 293 <int> 0 <<< use text auto height 142 <float> 0.0 <<< text column width 143 <float> 0.0 <<< text column gutter width 294 <int> 0 <<< text column flow reversed 144 <float> missing <<< text column height (optional?) 295 <int> 0 <<< text use word break <<< END MText Content tags: 296 <int> 0 <<< has_block_content <<< START Block content tags <<< END Block content tags 110 <point> (0.0, 0.0, 0.0) <<< MLEADER plane origin point 111 <point> (1.0, 0.0, 0.0) <<< MLEADER plane x-axis direction 112 <point> (0.0, 1.0, 0.0) <<< MLEADER plane y-axis direction 297 <int> 0 <<< MLEADER normal reversed 302 <str> LEADER{ ... 303 <str> } 302 <str> LEADER{ ... 303 <str> } 272 <int> 9 <<< doc missing 273 <int> 9 <<< doc missing 301 <str> } <<< BricsCAD example for block content: 300 <str> CONTEXT_DATA{ 40 <float> 1.0 10 <point> (x, y, z) 41 <float> 4.0 140 <float> 4.0 145 <float> 2.0 174 <int> 1 175 <int> 1 176 <int> 0 177 <int> 0 290 <int> 0 <<< has_mtext_content 296 <int> 1 <<< has_block_content <<< START Block content tags 341 <hex> #94 <<< dxf.block_record_handle 14 <point> (0.0, 0.0, 1.0) <<< Block extrusion vector 15 <point> (x, y, z) <<< Block location 16 <point> (1.0, 1.0, 1.0) <<< Block scale vector, the x-, y- and z-axis scaling factors 46 <float> 0.0 <<< Block rotation in radians! 93 <int> -1056964608 <<< Block color (raw value) 47 <float> 1.0 <<< start of transformation matrix (16x47) 47 <float> 0.0 47 <float> 0.0 47 <float> 18.427396871473 47 <float> 0.0 47 <float> 1.0 47 <float> 0.0 47 <float> 0.702618780008 47 <float> 0.0 47 <float> 0.0 47 <float> 1.0 47 <float> 0.0 47 <float> 0.0 47 <float> 0.0 47 <float> 0.0 47 <float> 1.0 <<< end of transformation matrix <<< END Block content tags 110 <point> (0.0, 0.0, 0.0) <<< MLEADER plane origin point 111 <point> (1.0, 0.0, 0.0) <<< MLEADER plane x-axis direction 112 <point> (0.0, 1.0, 0.0) <<< MLEADER plane y-axis direction 297 <int> 0 <<< MLEADER normal reversed 302 <str> LEADER{ ... 303 <str> } 272 <int> 9 273 <int> 9 301 <str> } <<< Attribute content and other redundant block data is stored in the AcDbMLeader <<< subclass: 100 <ctrl> AcDbMLeader 270 <int> 2 <<< dxf.version 300 <str> CONTEXT_DATA{ <<< start context data ... 301 <str> } <<< end context data 340 <hex> #6D <<< dxf.style_handle 90 <int> 6816768 <<< dxf.property_override_flags ... <<< property overrides 292 <int> 0 <<< dxf.has_frame_text <<< mostly redundant block data: 344 <hex> #94 <<< dxf.block_record_handle 93 <int> -1056964608 <<< dxf.block_color (raw value) 10 <point> (1.0, 1.0, 1.0) <<< dxf.block_scale_vector 43 <float> 0.0 <<< dxf.block_rotation in radians! 176 <int> 0 <<< dxf.block_connection_type 293 <int> 0 <<< dxf.is_annotative <<< REPEAT: (optional) 94 <int> <<< arrow head index? 345 <hex> <<< arrow head handle <<< REPEAT: (optional) 330 <hex> #A3 <<< ATTDEF handle 177 <int> 1 <<< ATTDEF index 44 <float> 0.0 <<< ATTDEF width 302 <str> B <<< ATTDEF text (reused group code) ... common group codes 294, 178, 179, ... MTEXT Internals The MTEXT entity stores multiline text in a single entity and was introduced in DXF version R13/R14. For more information about the top level stuff go to the MText class. SEE ALSO: • DXF Reference: MTEXT • ezdxf.entities.MText class Orientation The MTEXT entity does not establish an OCS. The entity has a text_direction attribute, which defines the local x-axis, the extrusion attribute defines the normal vector and the y-axis = extrusion cross x-axis. The MTEXT entity can have also a rotation attribute (in degrees), the x-axis attribute has higher priority than the rotation attribute, but it is not clear how to convert the rotation attribute into a text_direction vector, but for most common cases, where only the rotation attribute is present, the extrusion is most likely the WCS z-axis and the rotation is the direction in the xy-plane. Text Content The content text is divided across multiple tags of group code 3 and 1, the last line has the group code 1, each line can have a maximum line length of 255 bytes, but BricsCAD (and AutoCAD?) store only 249 bytes in single line and one byte is not always one char. Inline Code Specials The text formatting is done by inline codes, see the MText class. Information gathered by implementing the MTextEditor and the MTextParser classes: • caret encoded characters: • “^I” tabulator • “^J” (LF) is a valid line break like “\P” • “^M” (CR) is ignored • other characters render as empty square “▯” • a space ” ” after the caret renders the caret glyph: “1^ 2” renders “1^2” • special encoded characters: • “%%c” and “%%C” renders “Ø” (alt-0216) • “%%d” and “%%D” renders “°” (alt-0176) • “%%p” and “%%P” renders “±” (alt-0177) • Alignment command “\A”: argument “0”, “1” or “2” is expected • the terminator symbol “;” is optional • the arguments “3”, “4”, “5”, “6”, “7”, “8”, “9” and “-” default to 0 • other characters terminate the command and will be printed: “\AX”, renders “X” • ACI color command “\C”: int argument is expected • the terminator symbol “;” is optional • a leading “-” or “+” terminates the command, “\C+5” renders “\C+5” • arguments > 255, are ignored but consumed “\C1000” renders nothing, not even a “0” • a trailing “;” after integers is always consumed, even for much to big values, “\C10000;” renders nothing • RGB color command “\c”: int argument is expected • the terminator symbol “;” is optional • a leading “-” or “+” terminates the command, “\c+255” renders “\c+255” • arguments >= 16777216 are masked by: value & 0xFFFFFF • a trailing “;” after integers is always consumed, even for much to big values, “\c9999999999;” renders nothing and switches the color to yellow (255, 227, 11) • Height command “\H” and “\H…x”: float argument is expected • the terminator symbol “;” is optional • a leading “-” is valid, but negative values are ignored • a leading “+” is valid • a leading “.” is valid like “\H.5x” for height factor 0.5 • exponential format is valid like “\H1e2” for height factor 100 and “\H1e-2” for 0.01 • an invalid floating point value terminates the command, “\H1..5” renders “\H1..5” • Other commands with floating point arguments like the height command: • Width commands “\W” and “\W…x” • Character tracking commands “\T” and “\T…x”, negative values are used • Slanting (oblique) command “\Q” • Stacking command “\S”: • build fractions: “numerator (upr)” + “stacking type char (t)” + “denominator (lwr)” + “;” • divider chars: “^”, “/” or “#” • a space ” ” after the divider char “^” is mandatory to avoid caret decoding: “\S1^ 2;” • the terminator symbol “;” is mandatory to end the command, all chars beyond the “\S” until the next “;” or the end of the string are part of the fraction • backslash escape “\;” to render the terminator char • a space ” ” after the divider chars “/” and “#” is rendered as space ” ” in front of the denominator • the numerator and denominator can contain spaces • backslashes “\” inside the stacking command are ignored (except “\;”) “\S\N^ \P” render “N” over “P”, therefore property changes (color, text height, …) are not possible inside the stacking command • grouping chars “{” and “}” render as simple curly braces • caret encoded chars are decoded “^I”, “^J”, “^M”, but render as a simple space ” ” or as the replacement char “▯” plus a space • a divider char after the first divider char, renders as the char itself: “\S1/2/3” renders the horizontal fraction “1” / “2/3” • Font command “\f” and “\F”: export only “\f”, parse both, “\F” ignores some arguments • the terminator symbol “;” is mandatory to end the command, all chars beyond the “\f” until the next “;” or the end of the string are part of the command • the command arguments are separated by the pipe char “|” • arguments: “font family name” | “bold” | “italic” | “codepage” | “pitch”; example “\fArial|b0|i0|c0|p0;” • only the “font family name” argument is required, fonts which are not available on the system are replaced by the “TXT.SHX” shape font • the “font family name” is the font name shown in font selection widgets in desktop applications • “b1” to use the bold font style, any other second char is interpreted as “non bold” • “i1” to use an italic font style, any other second char is interpreted as “non italic” • “c???” change codepage, “c0” use the default codepage, because of the age of unicode no further investigations, also seems to be ignored by AutoCAD and BricsCAD • “p???” change pitch size, “p0” means don’t change, ignored by AutoCAD and BricsCAD, to change the text height use the “\H” command • the order is not important, but export always in the shown order: “\fArial|b0|i0;” the arguments “c0” and “p0” are not required • Paragraph properties command “\p” • the terminator symbol “;” is mandatory to end the command, all chars beyond the “\p” until the next “;” or the end of the string are part of the command • the command arguments are separated by commas “,” • all values are factors for the initial char height of the MTEXT entity, example: char height = 2.5, “\pl1;” set the left paragraph indentation to 1 x 2.5 = 2.5 drawing units. • all values are floating point values, see height command • arguments are “i”, “l”, “r”, “q”, “t” • a “*” as argument value, resets the argument to the initial value: “i0”, “l0”, “r0”, the “q” argument most likely depends on the text direction; I haven’t seen “t*”. The sequence used by BricsCAD to reset all values is "\pi*,l*,r*,q*,t;" • “i” indentation of the first line relative to the “l” argument as floating point value, “\pi1.5” • “l” left paragraph indentation as floating point value, “\pl1.5” • “r” right paragraph indentation as floating point value, “\pr1.5” • “x” is required if a “q” or a “t” argument is present, the placement of the “x” has no obvious rules • “q” paragraph alignment • “ql” left paragraph alignment • “qr” right paragraph alignment • “qc” center paragraph alignment • “qj” justified paragraph alignment • “qd” distributed paragraph alignment • “t” tabulator stops as comma separated list, the default tabulator stops are located at 4, 8, 12, …, by defining at least one tabulator stop, the default tabulator stops will be ignored. There 3 kind of tabulator stops: left, right and center adjusted stops, e.g. “pxt1,r5,c8”: • a left adjusted stop has no leading char, two left adjusted stops “\pxt1,2;” • a right adjusted stop has a preceding “r” char, “\pxtr1,r2;” • a center adjusted stop has a preceding “c” char, “\pxtc1,c2;” complex example to create a numbered list with two items: "pxi-3,l4t4;1.^Ifirst item\P2.^Isecond item" • a parser should be very flexible, I have seen several different orders of the arguments and placing the sometimes required “x” has no obvious rules. • exporting seems to be safe to follow these three rules: 1. the command starts with “\px”, the “x” does no harm, if not required 2. argument order “i”, “l”, “r”, “q”, “t”, any of the arguments can be left off 3. terminate the command with a “;” Height Calculation There is no reliable way to calculate the MTEXT height from the existing DXF attributes. The rect_height (group code 43) attribute is not required and seldom present. DXF R2007 introduced the defined_height attribute to store the defined column height of the MTEXT entity but only in column mode. MTEXT entities without columns, except MTEXT entities created with column type “No Columns”, store always 0.0 as defined column height. Which seems to mean: defined by the rendered text content. The only way to calculate the MTEXT height is to replicate the rendering results of AutoCAD/BricsCAD by implementing a rendering engine for MTEXT. In column mode the MTEXT height is stored for every column for DXF version before R2018. In DXF R2018+ the column heights are only stored if MTextColumns.auto_height is False. If MTextColumns.auto_height is True. But DXF R2018+ stores the MTEXT total width and height in explicit attributes. Width Calculation The situation for width calculation is better than for the height calculation, but the attributes width and rect_width are not mandatory. There is a difference between MTEXT entities with and without columns: Without columns the attribute width (reference column width) contains the true entity width if present. A long word can overshoot this width! The rect_width attribute is seldom present. For MTEXT with columns, the width attribute is maybe wrong, the correct width for a column is stored in the column_width attribute and the total_width attribute stores the total width of the MTEXT entity overall columns, see also following section “Column Support”. Background Filling The background fill support is available for DXF R2007+. The group code 90 defines the kind of background fill: ┌───┬──────────────────────────────────┐ │0 │ off │ ├───┼──────────────────────────────────┤ │1 │ color defined by group code 63, │ │ │ 421 or 431 │ ├───┼──────────────────────────────────┤ │2 │ drawing window color │ ├───┼──────────────────────────────────┤ │3 │ background (canvas) color │ ├───┼──────────────────────────────────┤ │16 │ bit-flag text frame, see Open │ │ │ Design Alliance Specification │ │ │ 20.4.46 │ └───┴──────────────────────────────────┘ Group codes to define background fill attributes: ┌────┬──────────────────────────────────┐ │45 │ scaling factor for the border │ │ │ around the text, the value │ │ │ should be in the range of [1, │ │ │ 5], where 1 fits exact the MText │ │ │ entity │ ├────┼──────────────────────────────────┤ │63 │ set the background color by ACI. │ ├────┼──────────────────────────────────┤ │421 │ set the background color as true │ │ │ color value. │ └────┴──────────────────────────────────┘ │431 │ set the background color by │ │ │ color name - no idea how this │ │ │ works │ ├────┼──────────────────────────────────┤ │441 │ set the transparency of the │ │ │ background fill, not supported │ │ │ by AutoCAD or BricsCAD. │ └────┴──────────────────────────────────┘ Group codes 45, 90 and 63 are required together if one of them is used. The group code 421 and 431 also requires the group code 63, even this value is ignored. ... <snip> 1 <str> eu feugiat nulla facilisis at vero eros et accumsan et iusto ... 73 <int> 1 44 <float> 1.0 90 <int> 1, b00000001 <<< use a color 63 <int> 1 <<< ACI color (red) 45 <float> 1.5 <<< bg scaling factor, relative to the char height 441 <int> 0 <<< ignored (optional) ... <snip> [image] The background scaling does not alter the width, column_width or total_width attributes. The background acquires additional space around the MTEXT entity. Columns with background color: [image] Text Frame The MTEXT entity can have a text frame only, without a background filling, group code 90 has value 16. In this case all other background related tags are removed (45, 63, 421, 431, 441) and the scaling factor is 1.5 by default. XDATA for Text Frame This XDATA exist only if the text frame flag in group code 90 is set and for DXF version < R2018! ... <snip> 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_TEXT_BORDERS_BEGIN 1070 <int> 80 <<< group code for repeated flags 1070 <int> 16 <<< repeated group code 90? 1070 <int> 46 <<< group code for scaling factor, which is fixed? 1040 <float> 1.5 <<< scaling factor 1070 <int> 81 <<< group code for repeated flow direction? 1070 <int> 1 <<< flow direction? 1070 <int> 5 <<< group code for a handle, multiple entries possible 1005 <hex> #A8 <<< handle to the LWPOLYLINE text frame 1070 <int> 5 <<< group code for next handle 1005 <hex> #A9 <<< next handle ... 1000 <str> ACAD_MTEXT_TEXT_BORDERS_END Extra LWPOLYLINE Entity as Text Frame The newer versions of AutoCAD and BricsCAD get all the information they need from the MTEXT entity, but it seems that older versions could not handle the text frame property correct. Therefore AutoCAD and BricsCAD create a separated LWPOLYLINE entity for the text frame for DXF versions < R2018. The handle to this text frame entity is stored in the XDATA as group code 1005, see section above. Because this LWPOLYLINE is not required ezdxf does not create such a text frame entity nor the associated XDATA and ezdxf also removes this data from loaded DXF files at the second loading stage. Column Support CAD applications build multiple columns by linking 2 or more MTEXT entities together. In this case each column is a self-sufficient entity in DXF version R13 until R2013. The additional columns specifications are stored in the XDATA if the MTEXT which represents the first column. DXF R2018 changed the implementation into a single MTEXT entity which contains all the content text at once and stores the column specification in an embedded object. HINT: The width attribute for the linked MTEXT entities could be wrong. Always use the column_width and the total_width attributes in column mode. There are two column types, the static type has the same column height for all columns, the dynamic type can have the same (auto) height or an individual height for each column. Common facts about columns for all column types: • all columns have the same column width • all columns have the same gutter width • the top of the column are at the same height Column Type The column type defines how a CAD application should create the columns, this is not important for the file format, because the result of this calculation, the column count and the column height, is stored the DXF file. ┌────────────────────────┬──────────────────────────────────┐ │Column Type in BricsCAD │ Description │ ├────────────────────────┼──────────────────────────────────┤ │Static │ All columns have the same │ │ │ height. The “auto height” flag │ │ │ is 0. │ ├────────────────────────┼──────────────────────────────────┤ │Dynamic (auto height) │ Same as the static type, all │ │ │ columns have the same height. │ │ │ The “auto height” flag is 1. The │ │ │ difference to the static type is │ │ │ only important for interactive │ │ │ CAD applications. │ ├────────────────────────┼──────────────────────────────────┤ │Dynamic (manual height) │ same as the dynamic (auto │ │ │ height) type, but each column │ │ │ can have an individual height. │ ├────────────────────────┼──────────────────────────────────┤ │No column │ A regular MTEXT with “defined │ │ │ column height” attribute? │ └────────────────────────┴──────────────────────────────────┘ ┌───────────────┬────────────────┬─────────────┬─────────────────┐ │Column Type │ Defined Height │ Auto Height │ Column Heights │ ├───────────────┼────────────────┼─────────────┼─────────────────┤ │Static │ stored │ False │ not stored │ ├───────────────┼────────────────┼─────────────┼─────────────────┤ │Dynamic auto │ stored │ True │ not stored │ ├───────────────┼────────────────┼─────────────┼─────────────────┤ │Dynamic manual │ not stored │ False │ stored (last=0) │ └───────────────┴────────────────┴─────────────┴─────────────────┘ Column Count For DXF versions < R2018 the column count is always given by the count of linked MTEXT columns. Caution: the column count stored in the XDATA section by group code 76 may not match the count of linked MTEXT entities and AutoCAD is OK with that! In DXF R2018+ this property is not available, because there are no linked MTEXT entities anymore. R2018+: For the column types “static” and “dynamic manual” the correct column count is stored as group code 72. For the column type “dynamic auto” the stored column count is 0. It is possible to calculate the column count from the total width and the column width if the total width is correct like in AutoCAD and BricsCAD. Static Columns R2000 Example for a static column specification: • Column Type: Static • Number of Columns: 3 • Height: 150.0, manual entered value and all columns have the same height • Width: 50.0 • Gutter Width: 12.5 [image] The column height is stored as the “defined column height” in XDATA (46) or the embedded object (41). DXF R2000 example with a static column specification stored in XDATA: 0 MTEXT 5 <<< entity handle 9D 102 {ACAD_XDICTIONARY 360 9F 102 } 330 <<< block record handle of owner layout 1F 100 AcDbEntity 8 <<< layer 0 100 <<< begin of MTEXT specific data AcDbMText 10 <<< (10, 20, 30) insert location in WCS 285.917876152751 20 276.101821192053 30 0.0 40 <<< character height in drawing units 2.5 41 <<< reference column width, if not in column mode 62.694... <<< in column mode: the real column is defined in XDATA (48) 71 <<< attachment point 1 72 <<< text flow direction 1 3 <<< begin of text Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam ... 3 kimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit ... 3 ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ... 3 At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd ... 3 ore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio ... 1 <<< last text line and end of text euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. 73 <<< line spacing style 1 44 <<< line spacing factor 1.0 1001 AcadAnnotative 1000 AnnotativeData 1002 { 1070 1 1070 0 1002 } 1001 <<< AppID "ACAD" contains the column specification ACAD 1000 ACAD_MTEXT_COLUMN_INFO_BEGIN 1070 75 <<< group code column type 1070 1 <<< column type: 0=no column; 1=static columns; 2=dynamic columns 1070 79 <<< group code column auto height 1070 0 <<< flag column auto height 1070 76 <<< group code column count 1070 3 <<< column count 1070 78 <<< group code column flow reversed 1070 0 <<< flag column flow reversed 1070 48 <<< group code column width 1040 50.0 <<< column width in column mode 1070 49 <<< group code column gutter 1040 12.5 <<< column gutter width 1000 ACAD_MTEXT_COLUMN_INFO_END 1000 <<< linked MTEXT entities specification ACAD_MTEXT_COLUMNS_BEGIN 1070 47 <<< group code for column count, incl. the 1st column - this entity 1070 3 <<< column count 1005 1B4 <<< handle to 2nd column as MTEXT entity 1005 1B5 <<< handle to 3rd column as MTEXT entity 1000 ACAD_MTEXT_COLUMNS_END 1000 ACAD_MTEXT_DEFINED_HEIGHT_BEGIN 1070 46 <<< group code for defined column height 1040 150.0 <<< defined column height 1000 ACAD_MTEXT_DEFINED_HEIGHT_END The linked column MTEXT #1B4 in a compressed representation: 0 <ctrl> MTEXT ... <snip> 100 <ctrl> AcDbMText 10 <point> (348.417876152751, 276.101821192053, 0.0) 40 <float> 2.5 41 <float> 175.0 <<< invalid reference column width ... <snip> 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN 1070 <int> 46 <<< defined column height 1040 <float> 150.0 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END The linked MTEXT has no column specification except the “defined column height” in the XDATA. The reference column width is not the real value of 50.0, see XDATA group code 48 in the main MTEXT #9D, instead the total width of 175.0 is stored at group code 41. This is problem if a renderer try to render this MTEXT as a standalone entity. The renderer has to fit the content into the column width by itself and without the correct column width, this will produce an incorrect result. There exist no back link to the main MTEXT #9D. The linked MTEXT entities appear after the main MTEXT in the layout space, but there can be other entities located between these linked MTEXT entities. The linked column MTEXT #1B5: 0 <ctrl> MTEXT 5 <hex> #1B5 ... <snip> 100 <ctrl> AcDbMText 10 <point> (410.917876152751, 276.101821192053, 0.0) 40 <float> 2.5 41 <float> 175.0 <<< invalid reference column width ... <snip> 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN 1070 <int> 46 <<< defined column height 1040 <float> 150.0 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END Static Columns R2018 The MTEXT entity in DXF R2018 contains all column information in a single entity. The text content of all three columns are stored in a continuous text string, the separation into columns has to be done by the renderer. The manual column break \N is not used to indicate automatic column breaks. The MTEXT renderer has to replicate the AutoCAD/BricsCAD rendering as exact as possible to achieve the same results, which is very hard without rendering guidelines or specifications. The example from above in DXF R2018 with a static column specification stored in an embedded object: 0 MTEXT 5 <<< entity handle 9D 102 {ACAD_XDICTIONARY 360 9F 102 } 330 <<< block record handle of owner layout 1F 100 AcDbEntity 8 <<< layer 0 100 AcDbMText 10 <<< (10, 20, 30) insert location in WCS 285.917876152751 20 276.101821192053 30 0.0 40 <<< character height in drawing units 2.5 41 <<< reference column width, if not in column mode 62.694536423841 46 <<< defined column height 150.0 71 <<< attachment point 1 72 <<< text flow direction 1 3 <<< text content of all three columns Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam n... 3 imata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit... 3 a rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lor... 3 vero eos et accusam et justo duo dolores et ea rebum. Stet clita ka... 3 eu feugiat nulla facilisis at vero eros et accumsan et iusto odio s... 3 od tincidunt ut laoreet dolore magna aliquam erat volutpat. \P\PU... 3 e velit esse molestie consequat, vel illum dolore eu feugiat nulla ... 3 obis eleifend option congue nihil imperdiet doming id quod mazim pl... 3 m ad minim veniam, quis nostrud exerci tation ullamcorper suscipit ... 3 lisis. \P\PAt vero eos et accusam et justo duo dolores et ea rebu... 3 t labore et dolore magna aliquyam erat, sed diam voluptua. At vero ... 3 litr, At accusam aliquyam diam diam dolore dolores duo eirmod eos e... 1 ipsum dolor sit amet, consetetur 73 <<< line spacing style 1 44 <<< line spacing factor 1.0 101 <<< column specification as embedded object Embedded Object 70 <<< ??? 1 10 <<< (10, 20, 30) text direction vector (local x-axis) 1.0 20 0.0 30 0.0 11 <<< (11, 21, 31) repeated insert location of AcDbMText 285.917876152751 21 276.101821192053 31 0.0 40 <<< repeated reference column width 62.694536423841 41 <<< repeated defined column height 150.0 42 <<< extents (total) width 175.0 43 <<< extents (total) height, max. height if different column heights 150.0 71 <<< column type: 0=no column; 1=static columns; 2=dynamic columns 1 72 <<< column height count 3 44 <<< column width 50.0 45 <<< column gutter width 12.5 73 <<< flag column auto height 0 74 <<< flag reversed column flow 0 1001 AcadAnnotative 1000 AnnotativeData 1002 { 1070 1 1070 0 1002 } Dynamic (auto height) Columns R2000 Example for a dynamic column specification: • Column Type: Dynamic • Number of Columns: 3 • Height: 158.189… adjusted by widget and all columns have the same height • Width: 50.0 • Gutter Width: 12.5 0 <ctrl> MTEXT 5 <hex> #A2 <<< entity handle ... <snip> 330 <hex> #1F <<< block record handle of owner layout 100 <ctrl> AcDbEntity 8 <str> 0 <<< layer 100 <ctrl> AcDbMText 10 <point> (-133.714579865783, 276.101821192053, 0.0) <<< insert location in WCS 40 <float> 2.5 <<< character height in drawing units 41 <float> 62.694536423841 <<< reference column width, if not in column mode 71 <int> 1 <<< attachment point 72 <int> 1 <<< flag text flow direction 3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed dia... ... <snip> 73 <int> 1 <<< line spacing style 44 <float> 1.0 <<< line spacing factor 1001 <ctrl> AcadAnnotative ... <snip> 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_COLUMN_INFO_BEGIN 1070 <int> 75 <<< column type: 2=dynamic columns 1070 <int> 2 1070 <int> 79 <<< flag column auto height 1070 <int> 1 1070 <int> 76 <<< column count 1070 <int> 3 1070 <int> 78 <<< flag column flow reversed 1070 <int> 0 1070 <int> 48 <<< column width in column mode 1040 <float> 50.0 1070 <int> 49 <<< column gutter width 1040 <float> 12.5 1000 <str> ACAD_MTEXT_COLUMN_INFO_END 1000 <str> ACAD_MTEXT_COLUMNS_BEGIN 1070 <int> 47 <<< column count 1070 <int> 3 1005 <hex> #1B6 <<< handle to 2. column as MTEXT entity 1005 <hex> #1B7 <<< handle to 3. column as MTEXT entity 1000 <str> ACAD_MTEXT_COLUMNS_END 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN 1070 <int> 46 <<< defined column height 1040 <float> 158.189308131867 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END The linked column MTEXT #1B6: 0 <ctrl> MTEXT ... <snip> 100 <ctrl> AcDbMText 10 <point> (-71.214579865783, 276.101821192053, 0.0) 40 <float> 2.5 41 <float> 175.0 <<< invalid column width ... <snip> 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN 1070 <int> 46 <<< defined column height 1040 <float> 158.189308131867 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END The linked column MTEXT #1B7: 0 <ctrl> MTEXT ... <snip> 100 <ctrl> AcDbMText 10 <point> (-8.714579865783, 276.101821192053, 0.0) 40 <float> 2.5 41 <float> 175.0 <<< invalid column width ... <snip> 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN 1070 <int> 46 <<< defined column height 1040 <float> 158.189308131867 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END Dynamic (auto height) Columns R2018 0 <ctrl> MTEXT 5 <hex> #A2 <<< entity handle 102 <ctrl> {ACAD_XDICTIONARY 360 <hex> #A3 102 <ctrl> } 330 <hex> #1F <<< block record handle of owner layout 100 <ctrl> AcDbEntity 8 <str> 0 <<< layer 100 <ctrl> AcDbMText 10 <point> (-133.714579865783, 276.101821192053, 0.0) <<< insert location in WCS 40 <float> 2.5 <<< character height in drawing units 41 <float> 62.694536423841 <<< reference column width, if not in column mode 46 <float> 158.189308131867 <<< defined column height 71 <int> 1 <<< attachment point 72 <int> 1 <<< text flow direction 3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam... ... <snip> text content of all three columns 73 <int> 1 <<< line spacing style 44 <float> 1.0 <<< line spacing factor 101 <ctrl> Embedded Object 70 <int> 1, b00000001 <<< ??? 10 <point> (1.0, 0.0, 0.0) <<< text direction vector (local x-axis) 11 <point> (-133.714579865783, 276.101821192053, 0.0) <<< repeated insert location 40 <float> 62.694536423841 <<< repeated reference column width 41 <float> 158.189308131867 <<< repeated defined column height 42 <float> 175.0 <<< extents (total) width 43 <float> 158.189308131867 <<< extents (total) height, max. height if different column heights 71 <int> 2 <<< column type: 2=dynamic columns 72 <int> 0 <<< column height count 44 <float> 50.0 <<< column width 45 <float> 12.5 <<< column gutter width 73 <int> 1 <<< flag column auto height 74 <int> 0 <<< flag reversed column flow 1001 <ctrl> AcadAnnotative 1000 <str> AnnotativeData 1002 <str> { 1070 <int> 1 1070 <int> 0 1002 <str> } Dynamic (manual height) Columns R2000 Example for a dynamic column specification with manual height definition for three columns with different column heights. None of the (linked) MTEXT entities does contain XDATA for the defined column height. HINT: If “content type” is 2 and flag “column auto height” is 0, no defined height in XDATA. • Column Type: Dynamic • Number of Columns: 3 • Height: 164.802450331126, max. column height • Width: 50.0 • Gutter Width: 12.5 [image] 0 <ctrl> MTEXT 5 <hex> #9C <<< entity handle 330 <hex> #1F <<< block record handle of owner layout 100 <ctrl> AcDbEntity 8 <str> 0 <<< layer 100 <ctrl> AcDbMText 10 <point> (69.806121185863, 276.101821192053, 0.0) <<< insert location in WCS 40 <float> 2.5 <<< character height in drawing units 41 <float> 62.694536423841 <<< reference column width, if not in column mode 71 <int> 1 <<< attachment point 72 <int> 1 <<< flag text flow direction 3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, ... ... <snip> 73 <int> 1 <<< line spacing style 44 <float> 1.0 <<< line spacing factor 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_COLUMN_INFO_BEGIN 1070 <int> 75 <<< column type: 2=dynamic columns 1070 <int> 2 1070 <int> 79 <<< flag column auto height 1070 <int> 0 1070 <int> 76 <<< column count 1070 <int> 3 1070 <int> 78 <<< flag column flow reversed 1070 <int> 0 1070 <int> 48 <<< column width in column mode 1040 <float> 50.0 1070 <int> 49 <<< column gutter width 1040 <float> 12.5 1070 <int> 50 <<< column height count 1070 <int> 3 1040 <float> 164.802450331126 <<< column height 1. column 1040 <float> 154.311699779249 <<< column height 2. column 1040 <float> 0.0 <<< column height 3. column, takes the rest? 1000 <str> ACAD_MTEXT_COLUMN_INFO_END 1000 <str> ACAD_MTEXT_COLUMNS_BEGIN 1070 <int> 47 <<< column count 1070 <int> 3 1005 <hex> #1B2 <<< handle to 2. column as MTEXT entity 1005 <hex> #1B3 <<< handle to 3. column as MTEXT entity 1000 <str> ACAD_MTEXT_COLUMNS_END The linked column MTEXT #1B2: 0 <ctrl> MTEXT ... <snip> 100 <ctrl> AcDbMText 10 <point> (132.306121185863, 276.101821192053, 0.0) 40 <float> 2.5 41 <float> 175.0 <<< invalid reference column width ... <snip> 73 <int> 1 44 <float> 1.0 The linked column MTEXT #1B3: 0 <ctrl> MTEXT ... <snip> 100 <ctrl> AcDbMText 10 <point> (194.806121185863, 276.101821192053, 0.0) 40 <float> 2.5 41 <float> 175.0 <<< invalid reference column width ... <snip> 73 <int> 1 44 <float> 1.0 Dynamic (manual height) Columns R2018 HINT: If “content type” is 2 and flag “column auto height” is 0, the “defined column height” is 0.0. 0 <ctrl> MTEXT 5 <hex> #9C <<< entity handle 330 <hex> #1F 100 <ctrl> AcDbEntity 8 <str> 0 <<< block record handle of owner layout 100 <ctrl> AcDbMText 10 <point> (69.806121185863, 276.101821192053, 0.0) <<< insert location in WCS 40 <float> 2.5 <<< character height in drawing units 41 <float> 62.694536423841 <<< reference column width, if not in column mode 46 <float> 0.0 <<< defined column height 71 <int> 1 <<< attachment point 72 <int> 1 <<< text flow direction 3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam... ... <snip> text content of all three columns 73 <int> 1 <<< line spacing style 44 <float> 1.0 <<< line spacing factor 101 <ctrl> Embedded Object 70 <int> 1, b00000001 <<< ??? 10 <point> (1.0, 0.0, 0.0) <<< text direction vector (local x-axis) 11 <point> (69.806121185863, 276.101821192053, 0.0) <<< repeated insert location 40 <float> 62.694536423841 <<< repeated reference column width 41 <float> 0.0 <<< repeated defined column height 42 <float> 175.0 <<< extents (total) width 43 <float> 164.802450331126 <<< extents (total) height, max. height if different column heights 71 <int> 2 <<< column type: 2=dynamic columns 72 <int> 3 <<< column height count 44 <float> 50.0 <<< column width 45 <float> 12.5 <<< column gutter width 73 <int> 0 <<< flag column auto height 74 <int> 0 <<< flag reversed column flow 46 <float> 164.802450331126 <<< column height 1. column 46 <float> 154.311699779249 <<< column height 2. column 46 <float> 0.0 <<< column height 3. column, takes the rest? No Columns R2000 I have no idea why this column type exist, but at least provides a reliable value for the MTEXT height by the “defined column height” attribute. The column type is not stored in the MTEXT entity and is therefore not detectable! • Column Type: No columns • Number of Columns: 1 • Height: 158.189308131867, defined column height • Width: 175.0, reference column width 0 <ctrl> MTEXT ... <snip> 100 <ctrl> AcDbMText 10 <point> (-344.497343455795, 276.101821192053, 0.0) <<< insert location in WCS 40 <float> 2.5 <<< character height in drawing units 41 <float> 175.0 <<< reference column width 71 <int> 1 <<< attachment point 72 <int> 1 <<< flag text flow direction 3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam... ... <snip> text content of all three columns 73 <int> 1 <<< line spacing style 44 <float> 1.0 <<< line spacing factor ... <snip> 1001 <ctrl> ACAD 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN 1070 <int> 46 <<< defined column height 1040 <float> 158.189308131867 1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END No Columns R2018 Does not contain an embedded object. 0 <ctrl> MTEXT ... <snip> 100 <ctrl> AcDbMText 10 <point> (-334.691900433414, 276.101821192053, 0.0) <<< insert location in WCS 40 <float> 2.5 <<< character height in drawing units 41 <float> 175.0 <<< reference column width 46 <float> 158.189308131867 <<< defined column height 71 <int> 1 <<< attachment point 72 <int> 1 <<< flag text flow direction 3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, ... ... <snip> 73 <int> 1 <<< line spacing style 44 <float> 1.0 <<< line spacing factor 1001 <ctrl> AcadAnnotative ... <snip> DXF Objects TODO Management Structures Block Management Structures A BLOCK is a layout like the modelspace or a paperspace layout, with the similarity that all these layouts are containers for graphical DXF entities. This block definition can be referenced in other layouts by the INSERT entity. By using block references, the same set of graphical entities can be located multiple times at different layouts, this block references can be stretched and rotated without modifying the original entities. A block is referenced only by its name defined by the DXF tag (2, name), there is a second DXF tag (3, name2) for the block name, which is not further documented by Autodesk, just ignore it. The (10, base_point) tag (in BLOCK defines a insertion point of the block, by ‘inserting’ a block by the INSERT entity, this point of the block is placed at the location defined by the (10, insert) tag in the INSERT entity, and it is also the base point for stretching and rotation. A block definition can contain INSERT entities, and it is possible to create cyclic block definitions (a BLOCK contains a INSERT of itself), but this should be avoided, CAD applications will not load the DXF file at all or maybe just crash. This is also the case for all other kinds of cyclic definitions like: BLOCK “A” -> INSERT BLOCK “B” and BLOCK “B” -> INSERT BLOCK “A”. SEE ALSO: • ezdxf DXF Internals: BLOCKS Section • DXF Reference: BLOCKS Section • DXF Reference: BLOCK Entity • DXF Reference: ENDBLK Entity • DXF Reference: INSERT Entity Block Names Block names has to be unique and they are case insensitive (“Test” == “TEST”). If there are two or more block definitions with the same name, AutoCAD merges these blocks into a single block with unpredictable properties of all these blocks. In my test with two blocks, the final block has the name of the first block and the base-point of the second block, and contains all entities of both blocks. Block Definitions in DXF R12 In DXF R12 the definition of a block is located in the BLOCKS section, no additional structures are needed. The definition starts with a BLOCK entity and ends with a ENDBLK entity. All entities between this two entities are the content of the block, the block is the owner of this entities like any layout. As shown in the DXF file below (created by AutoCAD LT 2018), the BLOCK entity has no handle, but ezdxf writes also handles for the BLOCK entity and AutoCAD doesn’t complain. DXF R12 BLOCKS structure: 0 <<< start of a SECTION SECTION 2 <<< start of BLOCKS section BLOCKS ... <<< modelspace and paperspace block definitions not shown, ... <<< see layout management ... 0 <<< start of a BLOCK definition BLOCK 8 <<< layer 0 2 <<< block name ArchTick 70 <<< flags 1 10 <<< base point, x 0.0 20 <<< base point, y 0.0 30 <<< base point, z 0.0 3 <<< second BLOCK name, same as (2, name) ArchTick 1 <<< xref name, if block is an external reference <<< empty string! 0 <<< start of the first entity of the BLOCK LINE 5 28E 8 0 62 0 10 500.0 20 500.0 30 0.0 11 500.0 21 511.0 31 0.0 0 <<< start of the second entity of the BLOCK LINE ... 0.0 0 <<< ENDBLK entity, marks the end of the BLOCK definition ENDBLK 5 <<< ENDBLK gets a handle by AutoCAD, but BLOCK didn't 2F2 8 <<< as every entity, also ENDBLK requires a layer (same as BLOCK entity!) 0 0 <<< start of next BLOCK entity BLOCK ... 0 <<< end BLOCK entity ENDBLK 0 <<< end of BLOCKS section ENDSEC Block Definitions in DXF R2000+ The overall organization in the BLOCKS sections remains the same, but additional tags in the BLOCK entity, have to be maintained. Especially the concept of ownership is important. Since DXF R13 every graphic entity is associated to a specific layout and a BLOCK definition is also a layout. So all entities in the BLOCK definition, including the BLOCK and the ENDBLK entities, have an owner tag (330, ...), which points to a BLOCK_RECORD entry in the BLOCK_RECORD table. This BLOCK_RECORD is the main management structure for all layouts and is the real owner of the layout entities. As you can see in the chapter about Layout Management Structures, this concept is also valid for modelspace and paperspace layouts, because these layouts are also BLOCKS, with the special difference, that the entities of the modelspace and the active paperspace layout are stored in the ENTITIES section. [image] SEE ALSO: • DXF R13 and later tag structure • ezdxf DXF Internals: TABLES Section • DXF Reference: TABLES Section • DXF Reference: BLOCK_RECORD Entity DXF R13 BLOCKS structure: 0 <<< start of a SECTION SECTION 2 <<< start of BLOCKS section BLOCKS ... <<< modelspace and paperspace block definitions not shown, ... <<< see layout management 0 <<< start of BLOCK definition BLOCK 5 <<< even BLOCK gets a handle now ;) 23A 330 <<< owner tag, the owner of a BLOCK is a BLOCK_RECORD in the ... BLOCK_RECORD table 238 100 <<< subclass marker AcDbEntity 8 <<< layer of the BLOCK definition 0 100 <<< subclass marker AcDbBlockBegin 2 <<< BLOCK name ArchTick 70 <<< flags 0 10 <<< base point, x 0.0 20 <<< base point, y 0.0 30 <<< base point, z 0.0 3 <<< second BLOCK name, same as (2, name) ArchTick 1 <<< xref name, if block is an external reference <<< empty string! 0 <<< start of the first entity of the BLOCK LWPOLYLINE 5 239 330 <<< owner tag of LWPOLYLINE 238 <<< handle of the BLOCK_RECORD! 100 AcDbEntity 8 0 6 ByBlock 62 0 100 AcDbPolyline 90 2 70 0 43 0.15 10 -0.5 20 -0.5 10 0.5 20 0.5 0 <<< ENDBLK entity, marks the end of the BLOCK definition ENDBLK 5 <<< handle 23B 330 <<< owner tag, same BLOCK_RECORD as for the BLOCK entity 238 100 <<< subclass marker AcDbEntity 8 <<< ENDBLK requires the same layer as the BLOCK entity! 0 100 <<< subclass marker AcDbBlockEnd 0 <<< start of the next BLOCK BLOCK ... 0 ENDBLK ... 0 <<< end of the BLOCKS section ENDSEC DXF R13 BLOCK_RECORD structure: 0 <<< start of a SECTION SECTION 2 <<< start of TABLES section TABLES 0 <<< start of a TABLE TABLE 2 <<< start of the BLOCK_RECORD table BLOCK_RECORD 5 <<< handle of the table 1 330 <<< owner tag of the table 0 <<< is always #0 100 <<< subclass marker AcDbSymbolTable 70 <<< count of table entries, not reliable 4 0 <<< start of first BLOCK_RECORD entry BLOCK_RECORD 5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key" 1F 330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table 1 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbBlockTableRecord 2 <<< name of the BLOCK or LAYOUT *Model_Space 340 <<< pointer to the associated LAYOUT object 4AF 70 <<< AC1021 (R2007) block insertion units 0 280 <<< AC1021 (R2007) block explodability 1 281 <<< AC1021 (R2007) block scalability 0 ... <<< paperspace not shown ... 0 <<< next BLOCK_RECORD BLOCK_RECORD 5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key" 238 330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table 1 100 <<< subclass marker AcDbSymbolTableRecord 100 <<< subclass marker AcDbBlockTableRecord 2 <<< name of the BLOCK ArchTick 340 <<< pointer to the associated LAYOUT object 0 <<< #0, because BLOCK doesn't have an associated LAYOUT object 70 <<< AC1021 (R2007) block insertion units 0 280 <<< AC1021 (R2007) block explodability 1 281 <<< AC1021 (R2007) block scalability 0 0 <<< end of BLOCK_RECORD table ENDTAB 0 <<< next TABLE TABLE ... 0 ENDTAB 0 <<< end of TABLES section ENDESC Layout Management Structures Layouts are separated entity spaces, there are three different Layout types: 1. modelspace contains the ‘real’ world representation of the drawing subjects in real world units. 2. paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF export 3. Blocks are reusable sets of graphical entities, inserted/referenced by the INSERT entity. All layouts have at least a BLOCK definition in the BLOCKS section and since DXF R13 exist the BLOCK_RECORD table with an entry for every BLOCK in the BLOCKS section. SEE ALSO: Information about Block Management Structures The name of the modelspace BLOCK is “*Model_Space” (DXF R12: “$MODEL_SPACE”) and the name of the active paperspace BLOCK is “*Paper_Space” (DXF R12: “$PAPER_SPACE”), the entities of these two layouts are stored in the ENTITIES section, DXF R12 supports just one paperspace layout. DXF R13+ supports multiple paperspace layouts, the active layout is still called “*Paper_Space”, the additional inactive paperspace layouts are named by the scheme “*Paper_Spacennnn”, where the first inactive paper space is called “*Paper_Space0”, the second “*Paper_Space1” and so on. A none consecutive numbering is tolerated by AutoCAD. The content of the inactive paperspace layouts are stored as BLOCK content in the BLOCKS section. These names are just the DXF internal layout names, each layout has an additional layout name which is displayed to the user by the CAD application. A BLOCK definition and a BLOCK_RECORD is not enough for a proper layout setup, an LAYOUT entity in the OBJECTS section is also required. All LAYOUT entities are managed by a DICTIONARY entity, which is referenced as “ACAD_LAYOUT” entity in the root DICTIONARY of the DXF file. NOTE: All floating point values are rounded to 2 decimal places for better readability. LAYOUT Entity Since DXF R2000 modelspace and paperspace layouts require the DXF LAYOUT entity. 0 LAYOUT 5 <<< handle 59 102 <<< extension dictionary (ignore) {ACAD_XDICTIONARY 360 1C3 102 } 102 <<< reactor (required?) {ACAD_REACTORS 330 1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (layout management table) 102 } 330 <<< owner handle 1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (same as reactor pointer) 100 <<< PLOTSETTINGS AcDbPlotSettings 1 <<< page setup name 2 <<< name of system printer or plot configuration file none_device 4 <<< paper size, part in braces should follow the schema ... (width_x_height_unit) unit is 'Inches' or 'MM' ... Letter\_(8.50_x_11.00_Inches) the part in front of the braces is ... ignored by AutoCAD 6 <<< plot view name 40 <<< size of unprintable margin on left side of paper in millimeters, ... defines also the plot origin-x 6.35 41 <<< size of unprintable margin on bottom of paper in millimeters, ... defines also the plot origin-y 6.35 42 <<< size of unprintable margin on right side of paper in millimeters 6.35 43 <<< size of unprintable margin on top of paper in millimeters 6.35 44 <<< plot paper size: physical paper width in millimeters 215.90 45 <<< plot paper size: physical paper height in millimeters 279.40 46 <<< X value of plot origin offset in millimeters, moves the plot origin-x 0.0 47 <<< Y value of plot origin offset in millimeters, moves the plot origin-y 0.0 48 <<< plot window area: X value of lower-left window corner 0.0 49 <<< plot window area: Y value of lower-left window corner 0.0 140 <<< plot window area: X value of upper-right window corner 0.0 141 <<< plot window area: Y value of upper-right window corner 0.0 142 <<< numerator of custom print scale: real world (paper) units, 1.0 ... for scale 1:50 1.0 143 <<< denominator of custom print scale: drawing units, 50.0 ... for scale 1:50 1.0 70 <<< plot layout flags, bit-coded (... too many options) 688 <<< b1010110000 = UseStandardScale(16)/PlotPlotStyle(32) ... PrintLineweights(128)/DrawViewportsFirst(512) 72 <<< plot paper units (0/1/2 for inches/millimeters/pixels), are ... pixels really supported? 0 73 <<< plot rotation (0/1/2/3 for 0deg/90deg counter-cw/upside-down/90deg cw) 1 <<< 90deg clockwise 74 <<< plot type 0-5 (... too many options) 5 <<< 5 = layout information 7 <<< current plot style name, e.g. 'acad.ctb' or 'acadlt.ctb' 75 <<< standard scale type 0-31 (... too many options) 16 <<< 16 = 1:1, also 16 if user scale type is used 147 <<< unit conversion factor 1.0 <<< for plot paper units in mm, else 0.03937... (1/25.4) for inches ... as plot paper units 76 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered) 0 <<< as displayed 77 <<< shade plot resolution level 1-5 (... too many options) 2 <<< normal 78 <<< shade plot custom DPI: 100-32767, Only applied when shade plot ... resolution level is set to 5 (Custom) 300 148 <<< paper image origin: X value 0.0 149 <<< paper image origin: Y value 0.0 100 <<< LAYOUT settings AcDbLayout 1 <<< layout name Layout1 70 <<< flags bit-coded 1 <<< 1 = Indicates the PSLTSCALE value for this layout when this ... layout is current 71 <<< Tab order ("Model" tab always appears as the first tab ... regardless of its tab order) 1 10 <<< minimum limits for this layout (defined by LIMMIN while this ... layout is current) -0.25 <<< x value, distance of the left paper margin from the plot ... origin-x, in plot paper units and by scale (e.g. x50 for 1:50) 20 <<< group code for y value -0.25 <<< y value, distance of the bottom paper margin from the plot ... origin-y, in plot paper units and by scale (e.g. x50 for 1:50) 11 <<< maximum limits for this layout (defined by LIMMAX while this ... layout is current) 10.75 <<< x value, distance of the right paper margin from the plot ... origin-x, in plot paper units and by scale (e.g. x50 for 1:50) 21 <<< group code for y value 8.25 <<< y value, distance of the top paper margin from the plot ... origin-y, in plot paper units and by scale (e.g. x50 for 1:50) 12 <<< insertion base point for this layout (defined by INSBASE while ... this layout is current) 0.0 <<< x value 22 <<< group code for y value 0.0 <<< y value 32 <<< group code for z value 0.0 <<< z value 14 <<< minimum extents for this layout (defined by EXTMIN while this ... layout is current), AutoCAD default is (1e20, 1e20, 1e20) 1.05 <<< x value 24 <<< group code for y value 0.80 <<< y value 34 <<< group code for z value 0.0 <<< z value 15 <<< maximum extents for this layout (defined by EXTMAX while this ... layout is current), AutoCAD default is (-1e20, -1e20, -1e20) 9.45 <<< x value 25 <<< group code for y value 7.20 <<< y value 35 <<< group code for z value 0.0 <<< z value 146 <<< elevation ??? 0.0 13 <<< UCS origin (3D Point) 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 33 <<< group code for z value 0.0 <<< z value 16 <<< UCS X-axis (3D vector) 1.0 <<< x value 26 <<< group code for y value 0.0 <<< y value 36 <<< group code for z value 0.0 <<< z value 17 <<< UCS Y-axis (3D vector) 0.0 <<< x value 27 <<< group code for y value 1.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 76 <<< orthographic type of UCS 0-6 (... too many options) 0 <<< 0 = UCS is not orthographic ??? 330 <<< ID/handle of required block table record 58 331 <<< ID/handle to the viewport that was last active in this layout ... when the layout was current 1B9 1001 <<< extended data (ignore) ... And as it seems this is also not enough for a well defined LAYOUT, at least a “main” VIEWPORT entity with ID=1 is required for paperspace layouts, located in the entity space of the layout. The modelspace layout requires (?) a VPORT entity in the VPORT table (group code 331 in the AcDbLayout subclass). Main VIEWPORT Entity for LAYOUT The “main” viewport for layout “Layout1” shown above. This viewport is located in the associated BLOCK definition called “*Paper_Space0”. Group code 330 in subclass AcDbLayout points to the BLOCK_RECORD of “*Paper_Space0”. Remember: the entities of the active paperspace layout are located in the ENTITIES section, therefore “Layout1” is not the active paperspace layout. The “main” VIEWPORT describes, how the application shows the paperspace layout on the screen, and I guess only AutoCAD needs this values. [image] 0 VIEWPORT 5 <<< handle 1B4 102 <<< extension dictionary (ignore) {ACAD_XDICTIONARY 360 1B5 102 } 330 <<< owner handle 58 <<< points to BLOCK_RECORD (same as group code 330 in AcDbLayout of ... "Layout1") 100 AcDbEntity 67 <<< paperspace flag 1 <<< 0 = modelspace; 1 = paperspace 8 <<< layer, 0 100 AcDbViewport 10 <<< Center point (in WCS) 5.25 <<< x value 20 <<< group code for y value 4.00 <<< y value 30 <<< group code for z value 0.0 <<< z value 40 <<< width in paperspace units 23.55 <<< VIEW size in AutoCAD, depends on the workstation configuration 41 <<< height in paperspace units 9.00 <<< VIEW size in AutoCAD, depends on the workstation configuration 68 <<< viewport status field -1/0/n 2 <<< >0 On and active. The value indicates the order of stacking for ... the viewports, where 1 is the active viewport, 2 is the next, and so forth 69 <<< viewport ID 1 <<< "main" viewport has always ID=1 12 <<< view center point in Drawing Coordinate System (DCS), defines ... the center point of the VIEW in relation to the LAYOUT origin 5.25 <<< x value 22 <<< group code for y value 4.00 <<< y value 13 <<< snap base point in modelspace 0.0 <<< x value 23 <<< group code for y value 0.0 <<< y value 14 <<< snap spacing in modelspace units 0.5 <<< x value 24 <<< group code for y value 0.5 <<< y value 15 <<< grid spacing in modelspace units 0.5 <<< x value 25 <<< group code for y value 0.5 <<< y value 16 <<< view direction vector from target (in WCS) 0.0 <<< x value 26 <<< group code for y value 0.0 <<< y value 36 <<< group code for z value 1.0 <<< z value 17 <<< view target point 0.0 <<< x value 27 <<< group code for y value 0.0 <<< y value 37 <<< group code for z value 0.0 <<< z value 42 <<< perspective lens length, focal length? 50.0 <<< 50mm 43 <<< front clip plane z value 0.0 <<< z value 44 <<< back clip plane z value 0.0 <<< z value 45 <<< view height (in modelspace units) 9.00 50 <<< snap angle 0.0 51 <<< view twist angle 0.0 72 <<< circle zoom percent 1000 90 <<< Viewport status bit-coded flags (... too many options) 819232 <<< b11001000000000100000 1 <<< plot style sheet name assigned to this viewport 281 <<< render mode (... too many options) 0 <<< 0 = 2D optimized (classic 2D) 71 <<< UCS per viewport flag 1 <<< 1 = This viewport stores its own UCS which will become the ... current UCS whenever the viewport is activated 74 <<< Display UCS icon at UCS origin flag 0 <<< this field is currently being ignored and the icon always ... represents the viewport UCS 110 <<< UCS origin (3D point) 0.0 <<< x value 120 <<< group code for y value 0.0 <<< y value 130 <<< group code for z value 0.0 <<< z value 111 <<< UCS X-axis (3D vector) 1.0 <<< x value 121 <<< group code for y value 0.0 <<< y value 131 <<< group code for z value 0.0 <<< z value 112 <<< UCS Y-axis (3D vector) 0.0 <<< x value 122 <<< group code for y value 1.0 <<< y value 132 <<< group code for z value 0.0 <<< z value 79 <<< Orthographic type of UCS (... too many options) 0 <<< 0 = UCS is not orthographic 146 <<< elevation 0.0 170 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered) 0 <<< as displayed 61 <<< frequency of major grid lines compared to minor grid lines 5 <<< major grid subdivided by 5 348 <<< visual style ID/handle (optional) 9F 292 <<< default lighting flag, on when no user lights are specified. 1 282 <<< Default lighting type (0/1 = one distant light/two distant lights) 1 <<< one distant light 141 <<< view brightness 0.0 142 <<< view contrast 0.0 63 <<< ambient light color (ACI), write only if not black color 250 421 <<< ambient light color (RGB), write only if not black color 3355443
DEVELOPER GUIDES
Information about ezdxf internals. Source Code Formatting Reformat code by Black for a column width of 80: C:\> black -l 80 <python-file> Reformatting the ezdxf code base is an ongoing process, add reformatted code in a separate commit without changing the runtime logic. Type Annotations The use of type annotations is encouraged. New modules should pass mypy without errors in non-strict mode. Using # type: ignore is fine in tricky situations - type annotations should be helpful in understanding the code and not be a burden. The following global options are required to pass mypy without error messages: [mypy] python_version = 3.7 ignore_missing_imports = True Read this to learn where mypy searches for config files. Use the mypy command line option --ignore-missing-imports and -p to check the whole package from any location in the file system: PS D:\Source\ezdxf.git> mypy --ignore-missing-imports -p ezdxf Success: no issues found in 255 source files Design The Package Design for Developers section shows the structure of the ezdxf package for developers with more experience, which want to have more insight into the package an maybe want to develop add-ons or want contribute to the ezdxf package. !!! UNDER CONSTRUCTION !!! Package Design for Developers A DXF document is divided into several sections, this sections are managed by the Drawing object. For each section exist a corresponding attribute in the Drawing object: ┌─────────┬──────────────────┐ │Section │ Attribute │ ├─────────┼──────────────────┤ │HEADER │ Drawing.header │ ├─────────┼──────────────────┤ │CLASSES │ Drawing.classes │ ├─────────┼──────────────────┤ │TABLES │ Drawing.tables │ ├─────────┼──────────────────┤ │BLOCKS │ Drawing.blocks │ ├─────────┼──────────────────┤ │ENTITIES │ Drawing.entities │ ├─────────┼──────────────────┤ │OBJECTS │ Drawing.objects │ └─────────┴──────────────────┘ Resource entities (LAYER, STYLE, LTYPE, …) are stored in tables in the TABLES section. A table owns the table entries, the owner handle of table entry is the handle of the table. Each table has a shortcut in the Drawing object: ┌─────────────┬───────────────────────┐ │Table │ Attribute │ ├─────────────┼───────────────────────┤ │APPID │ Drawing.appids │ ├─────────────┼───────────────────────┤ │BLOCK_RECORD │ Drawing.block_records │ ├─────────────┼───────────────────────┤ │DIMSTYLE │ Drawing.dimstyles │ ├─────────────┼───────────────────────┤ │LAYER │ Drawing.layers │ ├─────────────┼───────────────────────┤ │LTYPE │ Drawing.linetypes │ ├─────────────┼───────────────────────┤ │STYLE │ Drawing.styles │ ├─────────────┼───────────────────────┤ │UCS │ Drawing.ucs │ ├─────────────┼───────────────────────┤ │VIEW │ Drawing.views │ ├─────────────┼───────────────────────┤ │VPORT │ Drawing.viewports │ └─────────────┴───────────────────────┘ Graphical entities are stored in layouts: Modelspace, Paperspace layouts and BlockLayout. The core management object of this layouts is the BLOCK_RECORD entity (BlockRecord), the BLOCK_RECORD is the real owner of the entities, the owner handle of the entities is the handle of the BLOCK_RECORD and the BLOCK_RECORD also owns and manages the entity space of the layout which contains all entities of the layout. For more information about layouts see also: Layout Management Structures For more information about blocks see also: Block Management Structures Non-graphical entities (objects) are stored in the OBJECTS section. Every object has a parent object in the OBJECTS section, most likely a DICTIONARY object, and is stored in the entity space of the OBJECTS section. For more information about the OBJECTS section see also: OBJECTS Section All table entries, DXF entities and DXF objects are stored in the entities database accessible as Drawing.entitydb. The entity database is a simple key, value storage, key is the entity handle, value is the DXF object. For more information about the DXF data model see also: Data Model Terminology States DXF entities and objects can have different states: UNBOUND Entity is not stored in the Drawing entity database and DXF attribute handle is None and attribute doc can be None BOUND Entity is stored in the Drawing entity database, attribute doc has a reference to Drawing and DXF attribute handle is not None UNLINKED Entity is not linked to a layout/owner, DXF attribute owner is None LINKED Entity is linked to a layout/owner, DXF attribute owner is not None Virtual Entity State: UNBOUND & UNLINKED Unlinked Entity State: BOUND & UNLINKED Bound Entity State: BOUND & LINKED Actions NEW Create a new DXF document LOAD Load a DXF document from an external source CREATE Create DXF structures from NEW or LOAD data DESTROY Delete DXF structures BIND Bind an entity to a Drawing, set entity state to BOUND & UNLINKED and check or create required resources UNBIND unbind … LINK Link an entity to an owner/layout. This makes an entity to a real DXF entity, which will be exported at the saving process. Any DXF entity can only be linked to one parent entity like DICTIONARY or BLOCK_RECORD. UNLINK unlink … Loading a DXF Document Loading a DXF document from an external source, creates a new Drawing object. This loading process has two stages: First Loading Stage • LOAD content from external source as SectionDict: loader.load_dxf_structure() • LOAD tag structures as DXFEntity objects: loader.load_dxf_entities() • BIND entities: loader.load_and_bind_dxf_content(); Special handling of the BIND process, because the Drawing is not full initialized, a complete validation is not possible at this stage. Second Loading Stage Parse SectionDict: • CREATE sections: HEADER, CLASSES, TABLES, BLOCKS and OBJECTS • CREATE layouts: Blocks, Layouts • LINK entities to a owner/layout The ENTITIES section is a relict from older DXF versions and has to be exported including the modelspace and active paperspace entities, but all entities reside in a BLOCK definition, even modelspace and paperspace layouts are only BLOCK definitions and ezdxf has no explicit ENTITIES section. Source Code: as developer start your journey at ezdxf.document.Drawing.read(), which has no public documentation, because package-user should use ezdxf.read() and ezdxf.readfile(). New DXF Document Creating New DXF Entities The default constructor of each entity type creates a new virtual entity: • DXF attribute owner is None • DXF attribute handle is None • Attribute doc is None The DXFEntity.new() constructor creates entities with given owner, handle and doc attributes, if doc is not None and entity is not already bound to a document, the new() constructor automatically bind the entity to the given document doc. There exist only two scenarios: 1. UNBOUND: doc is None and handle is None 2. BOUND: doc is not None and handle is not None Factory functions • new(), create a new virtual DXF object/entity • load(), load (create) virtual DXF object/entity from DXF tags • bind(), bind an entity to a document, create required resources if necessary (e.g. ImageDefReactor, SEQEND) and raise exceptions for non-existing resources. • Bind entity loaded from an external source to a document, all referenced resources must exist, but try to repair as many flaws as possible because errors were created by another application and are not the responsibility of the package-user. • Bind an entity from another DXF document, all invalid resources will be removed silently or created (e.g. SEQEND). This is a simple import from another document without resource import, for a more advanced import including resources exist the importer add-on. • Bootstrap problem for binding loaded table entries and objects in the OBJECTS section! Can’t use Auditor to repair this objects, because the DXF document is not fully initialized. • is_bound() returns True if entity is bound to document doc • unbind() function to remove an entity from a document and set state to a virtual entity, which should also UNLINK the entity from layout, because an layout can not store a virtual entity. • cls(), returns the class • register_entity(), registration decorator • replace_entity(), registration decorator Class Interfaces DXF Entities • NEW constructor to create an entity from scratch • LOAD constructor to create an entity loaded from an external source • DESTROY interface to kill an entity, set entity state to dead, which means entity.is_alive returns False. All entity iterators like EntitySpace, EntityQuery, and EntityDB must filter (ignore) dead entities. Calling DXFEntity.destroy() is a regular way to delete entities. • LINK an entity to a layout by BlockRecord.link(), which set the owner handle to BLOCK_RECORD handle (= layout key) and add the entity to the entity space of the BLOCK_RECORD and set/clear the paperspace flag. DXF Objects • NEW, LOAD, DESTROY see DXF entities • LINK: Linking an DXF object means adding the entity to a parent object in the OBJECTS section, most likely a DICTIONARY object, and adding the object to the entity space of the OBJECTS section, the root-dict is the only entity in the OBJECTS section which has an invalid owner handle “0”. Any other object with an invalid or destroyed owner is an orphaned entity. The audit process destroys and removes orphaned objects. • Extension dictionaries (ACAD_XDICTIONARY) are DICTIONARY objects located in the OBJECTS sections and can reference/own other entities of the OBJECTS section. • The root-dictionary is the only entity in the OBJECTS section which has an invalid owner handle “0”. Any other object with an invalid or destroyed owner is an orphaned entity. Layouts • LINK interface to link an entity to a layout • UNLINK interface to remove an entity from a layout Database • BIND interface to add an entity to the database of a document • delete_entity() interface, same as UNBIND and DESTROY an entity Internal Data Structures Entity Database The EntityDB is a simple key/value database to store DXFEntity objects by it’s handle, every Drawing has its own EntityDB, stored in the Drawing attribute entitydb. Every DXF entity/object, except tables and sections, are represented as DXFEntity or inherited types, this entities are stored in the EntityDB, database-key is the dxf.handle as plain hex string. All iterators like keys(), values(), items() and __iter__() do not yield destroyed entities. WARNING: The get() method and the index operator [], return destroyed entities and entities from the trashcan. class ezdxf.entitydb.EntityDB __getitem__(handle: str) -> DXFEntity Get entity by handle, does not filter destroyed entities nor entities in the trashcan. __setitem__(handle: str, entity: DXFEntity) -> None Set entity for handle. __delitem__(handle: str) -> None Delete entity by handle. Removes entity only from database, does not destroy the entity. __contains__(item: Union[str, DXFEntity]) -> bool True if database contains handle. __len__() -> int Count of database items. __iter__() -> Iterator[str] Iterable of all handles, does filter destroyed entities but not entities in the trashcan. get(handle: str) -> Optional[DXFEntity] Returns entity for handle or None if no entry exist, does not filter destroyed entities. next_handle() -> str Returns next unique handle. keys() -> Iterable[str] Iterable of all handles, does filter destroyed entities. values() -> Iterable[DXFEntity] Iterable of all entities, does filter destroyed entities. items() -> Iterable[Tuple[str, DXFEntity]] Iterable of all (handle, entities) pairs, does filter destroyed entities. add(entity: DXFEntity) -> None Add entity to database, assigns a new handle to the entity if entity.dxf.handle is None. Adding the same entity multiple times is possible and creates only a single database entry. new_trashcan() -> Trashcan Returns a new trashcan, empty trashcan manually by: : func:Trashcan.clear(). trashcan() -> Trashcan Returns a new trashcan in context manager mode, trashcan will be emptied when leaving context. purge() -> None Remove all destroyed entities from database, but does not empty the trashcan. query(query: str = '*') -> EntityQuery Entity query over all entities in the DXF document. Parameters query – query string SEE ALSO: Entity Query String and Retrieve entities by query language Entity Space class ezdxf.entitydb.EntitySpace(entities: Optional[Iterable[DXFEntity]] = None) An EntitySpace is a collection of DXFEntity objects, that stores only references to DXFEntity objects. The Modelspace, any Paperspace layout and BlockLayout objects have an EntitySpace container to store their entities. __iter__() -> Iterable[DXFEntity] Iterable of all entities, filters destroyed entities. __getitem__(index) -> DXFEntity Get entity at index item EntitySpace has a standard Python list like interface, therefore index can be any valid list indexing or slicing term, like a single index layout[-1] to get the last entity, or an index slice layout[:10] to get the first 10 or less entities as List[DXFEntity]. Does not filter destroyed entities. __len__() -> int Count of entities including destroyed entities. has_handle(handle: str) -> bool True if handle is present, does filter destroyed entities. purge() Remove all destroyed entities from entity space. add(entity: DXFEntity) -> None Add entity. extend(entities: Iterable[DXFEntity]) -> None Add multiple entities. remove(entity: DXFEntity) -> None Remove entity. clear() -> None Remove all entities. DXF Types Required DXF tag interface: • property code: group code as int • property value: tag value of unspecific type • dxfstr(): returns the DXF string • clone(): returns a deep copy of tag DXFTag Factory Functions ezdxf.lldxf.types.dxftag(code: int, value: Any) -> DXFTag DXF tag factory function. Parameters • code – group code • value – tag value Returns: DXFTag or inherited ezdxf.lldxf.types.tuples_to_tags(iterable: Iterable[Tuple[int, Any]]) -> Iterable[DXFTag] Returns an iterable if DXFTag or inherited, accepts an iterable of (code, value) tuples as input. DXFTag class ezdxf.lldxf.types.DXFTag(code: int, value: Any) Immutable DXFTag class. Parameters • code – group code as int • value – tag value, type depends on group code code group code as int (do not change) value tag value (read-only property) __eq__(other) -> bool True if other and self has same content for code and value. __getitem__(index: int) Returns code for index 0 and value for index 1, emulates a tuple. __hash__() Hash support, DXFTag can be used in sets and as dict key. __iter__() Returns (code, value) tuples. __repr__() -> str Returns representation string 'DXFTag(code, value)'. __str__() -> str Returns content string '(code, value)'. clone() -> DXFTag Returns a clone of itself, this method is necessary for the more complex (and not immutable) DXF tag types. dxfstr() -> str Returns the DXF string e.g. ' 0\nLINE\n' DXFBinaryTag class ezdxf.lldxf.types.DXFBinaryTag(DXFTag) Immutable BinaryTags class - immutable by design, not by implementation. dxfstr() -> str Returns the DXF string for all vertex components. tostring() -> str Returns binary value as single hex-string. DXFVertex class ezdxf.lldxf.types.DXFVertex(DXFTag) Represents a 2D or 3D vertex, stores only the group code of the x-component of the vertex, because the y-group-code is x-group-code + 10 and z-group-code id x-group-code+20, this is a rule that ALWAYS applies. This tag is immutable by design, not by implementation. Parameters • code – group code of x-component • value – sequence of x, y and optional z values dxfstr() -> str Returns the DXF string for all vertex components. dxftags() -> Iterable[DXFTag] Returns all vertex components as single DXFTag objects. NONE_TAG ezdxf.lldxf.types.NONE_TAG Special tag representing a none existing tag. Tags A list of DXFTag, inherits from Python standard list. Unlike the statement in the DXF Reference “Do not write programs that rely on the order given here”, tag order is sometimes essential and some group codes may appear multiples times in one entity. At the worst case (Material: normal map shares group codes with diffuse map) using same group codes with different meanings. class ezdxf.lldxf.tags.Tags Subclass of list. Collection of DXFTag as flat list. Low level tag container, only required for advanced stuff. classmethod from_text(text: str) -> Tags Constructor from DXF string. dxftype() -> str Returns DXF type of entity, e.g. 'LINE'. get_handle() -> str Get DXF handle. Raises DXFValueError if handle not exist. Returns handle as plain hex string like 'FF00' Raises DXFValueError – no handle found replace_handle(new_handle: str) -> None Replace existing handle. Parameters new_handle – new handle as plain hex string e.g. 'FF00' has_tag(code: int) -> bool Returns True if a DXFTag with given group code is present. Parameters code – group code as int has_embedded_objects() -> bool get_first_tag(code: int, default=DXFValueError) -> DXFTag Returns first DXFTag with given group code or default, if default != DXFValueError, else raises DXFValueError. Parameters • code – group code as int • default – return value for default case or raises DXFValueError get_first_value(code: int, default=DXFValueError) -> Any Returns value of first DXFTag with given group code or default if default != DXFValueError, else raises DXFValueError. Parameters • code – group code as int • default – return value for default case or raises DXFValueError find_all(code: int) -> List[DXFTag] Returns a list of DXFTag with given group code. Parameters code – group code as int filter(codes: Iterable[int]) -> Iterable[DXFTag] Iterate and filter tags by group codes. Parameters codes – group codes to filter collect_consecutive_tags(codes: Iterable[int], start: int = 0, end: int = None) -> Tags Collect all consecutive tags with group code in codes, start and end delimits the search range. A tag code not in codes ends the process. Parameters • codes – iterable of group codes • start – start index as int • end – end index as int, None for end index = len(self) Returns collected tags as Tags tag_index(code: int, start: int = 0, end: Optional[int] = None) -> int Return index of first DXFTag with given group code. Parameters • code – group code as int • start – start index as int • end – end index as int, None for end index = len(self) update(tag: DXFTag) Update first existing tag with same group code as tag, raises DXFValueError if tag not exist. set_first(tag: DXFTag) Update first existing tag with group code tag.code or append tag. remove_tags(codes: Iterable[int]) -> None Remove all tags inplace with group codes specified in codes. Parameters codes – iterable of group codes as int remove_tags_except(codes: Iterable[int]) -> None Remove all tags inplace except those with group codes specified in codes. Parameters codes – iterable of group codes pop_tags(codes: Iterable[int]) -> Iterable[DXFTag] Pop tags with group codes specified in codes. Parameters codes – iterable of group codes classmethod strip(tags: Tags, codes: Iterable[int]) -> Tags Constructor from tags, strips all tags with group codes in codes from tags. Parameters • tags – iterable of DXFTag • codes – iterable of group codes as int ezdxf.lldxf.tags.group_tags(tags: Iterable[DXFTag], splitcode: int = 0) -> Iterable[Tags] Group of tags starts with a SplitTag and ends before the next SplitTag. A SplitTag is a tag with code == splitcode, like (0, ‘SECTION’) for splitcode == 0. Parameters • tags – iterable of DXFTag • splitcode – group code of split tag class ezdxf.lldxf.extendedtags.ExtendedTags(tags: Iterable[DXFTag] = None, legacy=False) Represents the extended DXF tag structure introduced with DXF R13. Args: tags: iterable of DXFTag legacy: flag for DXF R12 tags appdata Application defined data as list of Tags subclasses Subclasses as list of Tags xdata XDATA as list of Tags embedded_objects embedded objects as list of Tags noclass Short cut to access first subclass. get_handle() -> str Returns handle as hex string. dxftype() -> str Returns DXF type as string like “LINE”. replace_handle(handle: str) -> None Replace the existing entity handle by a new value. legacy_repair() Legacy (DXF R12) tags handling and repair. clone() -> ExtendedTags Shallow copy. flatten_subclasses() Flatten subclasses in legacy mode (DXF R12). There exists DXF R12 with subclass markers, technical incorrect but works if the reader ignore subclass marker tags, unfortunately ezdxf tries to use this subclass markers and therefore R12 parsing by ezdxf does not work without removing these subclass markers. This method removes all subclass markers and flattens all subclasses into ExtendedTags.noclass. get_subclass(name: str, pos: int = 0) -> Tags Get subclass name. Parameters • name – subclass name as string like “AcDbEntity” • pos – start searching at subclass pos. has_xdata(appid: str) -> bool True if has XDATA for appid. get_xdata(appid: str) -> Tags Returns XDATA for appid as Tags. set_xdata(appid: str, tags: IterableTags) -> None Set tags as XDATA for appid. new_xdata(appid: str, tags: 'IterableTags' = None) -> Tags Append a new XDATA block. Assumes that no XDATA block with the same appid already exist: try: xdata = tags.get_xdata('EZDXF') except ValueError: xdata = tags.new_xdata('EZDXF') has_app_data(appid: str) -> bool True if has application defined data for appid. get_app_data(appid: str) -> Tags Returns application defined data for appid as Tags including marker tags. get_app_data_content(appid: str) -> Tags Returns application defined data for appid as Tags without first and last marker tag. set_app_data_content(appid: str, tags: IterableTags) -> None Set application defined data for appid for already exiting data. new_app_data(appid: str, tags: 'IterableTags' = None, subclass_name: str = None) -> Tags Append a new application defined data to subclass subclass_name. Assumes that no app data block with the same appid already exist: try: app_data = tags.get_app_data('{ACAD_REACTORS', tags) except ValueError: app_data = tags.new_app_data('{ACAD_REACTORS', tags) classmethod from_text(text: str, legacy: bool = False) -> ExtendedTags Create ExtendedTags from DXF text. Packed DXF Tags Store DXF tags in compact data structures as list or array.array to reduce memory usage. class ezdxf.lldxf.packedtags.TagList(data: Iterable = None) Store data in a standard Python list. Args: data: iterable of DXF tag values. values Data storage as list. clone() -> TagList Returns a deep copy. classmethod from_tags(tags: Tags, code: int) -> TagList Setup list from iterable tags. Parameters • tags – tag collection as Tags • code – group code to collect clear() -> None Delete all data values. class ezdxf.lldxf.packedtags.TagArray(data: Iterable = None) TagArray is a subclass of TagList, which store data in an array.array. Array type is defined by class variable DTYPE. Args: data: iterable of DXF tag values. DTYPE array.array type as string values Data storage as array.array set_values(values: Iterable) -> None Replace data by values. class ezdxf.lldxf.packedtags.VertexArray(data: Iterable = None) Store vertices in an array.array('d'). Vertex size is defined by class variable VERTEX_SIZE. Args: data: iterable of vertex values as linear list e.g. [x1, y1, x2, y2, x3, y3, ...]. VERTEX_SIZE Size of vertex (2 or 3 axis). __len__() -> int Count of vertices. __getitem__(index: int) Get vertex at index, extended slicing supported. __setitem__(index: int, point: Sequence[float]) -> None Set vertex point at index, extended slicing not supported. __delitem__(index: int) -> None Delete vertex at index, extended slicing supported. __iter__() -> Iterator[Sequence[float]] Returns iterable of vertices. __str__() -> str String representation. insert(pos: int, point: Sequence[float]) Insert point in front of vertex at index pos. Parameters • pos – insert position • point – point as tuple append(point: Sequence[float]) -> None Append point. extend(points: Iterable[Sequence[float]]) -> None Extend array by points. set(points: Iterable[Sequence[float]]) -> None Replace all vertices by points. clear() -> None Delete all vertices. clone() -> VertexArray Returns a deep copy. classmethod from_tags(tags: Iterable[DXFTag], code: int = 10) -> VertexArray Setup point array from iterable tags. Parameters • tags – iterable of DXFVertex • code – group code to collect export_dxf(tagwriter: TagWriter, code=10) XData class ezdxf.entities.xdata.XData Internal management class for XDATA. SEE ALSO: • XDATA user reference: Extended Data (XDATA) • Wrapper class to store a list in XDATA: XDataUserList • Wrapper class to store a dict in XDATA: XDataUserDict • Tutorial: Storing Custom Data in DXF Files • DXF Internals: Extended Data • DXF R2018 Reference __contains__(appid: str) -> bool Returns True if DXF tags for appid exist. add(appid: str, tags: Iterable[Union[Tuple[int, Any], DXFTag]]) -> None Add a list of DXF tags for appid. The tags argument is an iterable of (group code, value) tuples, where the group code has to be an integer value. The mandatory XDATA marker (1001, appid) is added automatically if front of the tags if missing. Each entity can contain only one list of tags for each appid. Adding a second list of tags for the same appid replaces the existing list of tags. The valid XDATA group codes are restricted to some specific values in the range from 1000 to 1071, for more information see also the internals about Extended Data. get(appid: str) -> Tags Returns the DXF tags as Tags list stored by appid. Raises DXFValueError – no data for appid exist discard(appid) Delete DXF tags for appid. None existing appids are silently ignored. has_xlist(appid: str, name: str) -> bool Returns True if list name from XDATA appid exists. Parameters • appid – APPID • name – list name get_xlist(appid: str, name: str) -> List[Tuple] Get list name from XDATA appid. Parameters • appid – APPID • name – list name Returns: list of DXFTags including list name and curly braces ‘{’ ‘}’ tags Raises • DXFKeyError – XDATA appid does not exist • DXFValueError – list name does not exist set_xlist(appid: str, name: str, tags: Iterable) -> None Create new list name of XDATA appid with xdata_tags and replaces list name if already exists. Parameters • appid – APPID • name – list name • tags – list content as DXFTags or (code, value) tuples, list name and curly braces ‘{’ ‘}’ tags will be added discard_xlist(appid: str, name: str) -> None Deletes list name from XDATA appid. Ignores silently if XDATA appid or list name not exist. Parameters • appid – APPID • name – list name replace_xlist(appid: str, name: str, tags: Iterable) -> None Replaces list name of existing XDATA appid by tags. Appends new list if list name do not exist, but raises DXFValueError if XDATA appid do not exist. Low level interface, if not sure use set_xdata_list() instead. Parameters • appid – APPID • name – list name • tags – list content as DXFTags or (code, value) tuples, list name and curly braces ‘{’ ‘}’ tags will be added Raises DXFValueError – XDATA appid do not exist transform(m: Matrix44) -> None Transform XDATA tags with group codes 1011, 1012, 1013, 1041 and 1042 inplace. For more information see Extended Data Internals. Application-Defined Data (AppData) Starting at DXF R13, DXF objects can contain application-defined codes (AppData) outside of XDATA. All AppData is defined with a beginning (102, “{APPID”) tag and according to the DXF reference appear should appear before the first subclass marker. There are two known use cases of this data structure in Autodesk products: • ACAD_REACTORS, store handles to persistent reactors in a DXF entity • ACAD_XDICTIONARY, store handle to the extension dictionary of a DXF entity Both AppIDs are not defined/stored in the AppID table! class ezdxf.entities.appdata.AppData Internal management class for Application defined data. SEE ALSO: • User reference: Application-Defined Data (AppData) • Internals about Application-Defined Codes tags __contains__(appid: str) -> bool Returns True if application-defined data exist for appid. __len__() -> int Returns the count of AppData. add(appid: str, data: Iterable[Sequence]) -> None Add application-defined tags for appid. Adds first tag (102, “{APPID”) if not exist. Adds last tag (102, “}” if not exist. get(appid: str) -> Tags Get application-defined data for appid as Tags container. The first tag is always (102, “{APPID”). The last tag is always (102, “}”). set(tags: Tags) -> None Store raw application-defined data tags. The first tag has to be (102, “{APPID”). The last tag has to be (102, “}”). discard(appid: str) Delete application-defined data for appid without raising and error if appid doesn’t exist. Reactors class ezdxf.entities.appdata.Reactors Internal management class for persistent reactor handles. Handles are stored as hex strings like "ABBA". SEE ALSO: • User reference: Reactors • Internals about Persistent Reactors tags __contains__(handle: str) -> bool Returns True if handle is registered. __len__() -> int Returns count of registered handles. __iter__() -> Iterator[str] Returns an iterator for all registered handles. add(handle: str) -> None Add a single handle. get() -> List[str] Returns all registered handles as sorted list. set(handles: Optional[Iterable[str]]) -> None Reset all handles. discard(handle: str) Discard a single handle. Documentation Guide Formatting Guide This section is only for myself, because of the long pauses between develop iterations, I often forget to be consistent in documentation formatting. Documentation is written with Sphinx and reSturcturedText. Started integration of documentation into source code and using autodoc features of Sphinx wherever useful. Sphinx theme provided by Read the Docs : pip install sphinx-rtd-theme guide — Example module guide.example_func(a: int, b: str, test: str = None, flag: bool = True) -> None Parameters a and b are positional arguments, argument test defaults to None and flag to True. Set a to 70 and b to “x” as an example. Inline code examples example_func(70, 'x') or simple example_func(70, "x") • arguments: a, b, test and flags • literal number values: 1, 2 … 999 • literal string values: “a String” • literal tags: (5, “F000”) • inline code: call a example_func(x) • Python keywords: None, True, False, tuple, list, dict, str, int, float • Exception classes: DXFAttributeError class guide.ExampleCls(**kwargs) The ExampleCls constructor accepts a number of optional keyword arguments. Each keyword argument corresponds to an instance attribute, so for example e = ExampleCls(flag=True) flag This is the attribute flag. set_axis(axis) axis as (x, y, z) tuple Args: axis: (x, y, z) tuple example_method(flag: bool = False) -> None Method example_method() of class ExampleCls Text Formatting DXF version DXF R12 (AC1009), DXF R2004 (AC1018) DXF Types DXF types are always written in uppercase letters but without further formatting: DXF, LINE, CIRCLE (internal API) Marks methods as internal API, gets no public documentation. (internal class) Marks classes only for internal usage, gets not public documentation. Spatial Dimensions 2D and 3D with an uppercase letter D Axis x-axis, y-axis and z-axis Planes xy-plane, xz-plane, yz-plane Layouts modelspace, paperspace [layout], block [layout] Extended Entity Data AppData, XDATA, embedded object, APPID
GLOSSARY
ACI AutoCAD Color Index (ACI) ACIS The 3D ACIS Modeler (ACIS) is a geometric modeling kernel developed by Spatial Corp. ® (formerly Spatial Technology) and now part of Dassault Systems. All ACIS based DXF entities store their geometry as SAT or SAB data. These are not open data formats and a license has to be purchased to get access to their SDK, therefore ezdxf can not provide any support for creating, processing or transforming of ACIS based DXF entities. bulge The Bulge value is used to create arc shaped line segments in Polyline and LWPolyline entities. CAD Computer-Assisted Drafting or Computer-Aided Design CTB Color dependent plot style table (ColorDependentPlotStyles) DWG Proprietary file format of AutoCAD ®. Documentation for this format is available from the Open Design Alliance (ODA) at their Downloads section. This documentation is created by reverse engineering therefore not perfect nor complete. DXF Drawing eXchange Format is a file format used by AutoCAD ® to interchange data with other CAD applications. DXF is a trademark of Autodesk ®. See also What is DXF? raw color Raw color value as stored in DWG files, this integer value can represent ACI values as well as and true color values reliable CAD application CAD applications which create valid DXF documents in the meaning and interpretation of Autodesk. See also What is DXF? SAB ACIS file format (Standard ACIS Binary), binary stored data SAT ACIS file format (Standard ACIS Text), data stored as ASCII text STB Named plot style table (NamedPlotStyles) true color RGB color representation, a combination red, green and blue values to define a color.
INDICES AND TABLES
• Index • Search Page
AUTHOR
Manfred Moitzi
COPYRIGHT
2011-2022, Manfred Moitzi