Provided by: librheolef-dev_7.2-2build1_amd64 bug

NAME

       point - d-dimensional physical point or vector (rheolef-7.2)

DESCRIPTION

       The point defines a vertex or vector in the physical d-dimensional space, d=1,2,3. It is
       represented as an array of coordinates. The coordinate index starts at zero and finishes
       at d-1, e.g. x[0], x[1] and x[2].

       The default constructor set all components to zero:

           point x;

        and this default could be overridden:

           point x (1, 2, 3.14);

        or alternatively:

           point x = {1, 2, 3.14};

        The standard linear algebra for vectors is supported by the point class.

IMPLEMENTATION

       This documentation has been generated from file fem/geo_element/point.h

       The point class is simply an alias to the point_basic class

       typedef point_basic<Float> point;

        The point_basic class is a template class with the floating type as parameter:

       template <class T>
       class point_basic {
       public:

       // typedefs:

         typedef size_t size_type;
         typedef T      element_type;
         typedef T      scalar_type;
         typedef T      float_type;

       // allocators:

         explicit point_basic();
         explicit point_basic (const T& x0, const T& x1 = 0, const T& x2 = 0);

         template <class T1>
         point_basic<T>(const point_basic<T1>& p);

         template <class T1>
         point_basic<T>& operator= (const point_basic<T1>& p);

         point_basic (const std::initializer_list<T>& il);

       // accessors:

         T& operator[](int i_coord)              { return _x[i_coord%3]; }
         T& operator()(int i_coord)              { return _x[i_coord%3]; }
         const T&  operator[](int i_coord) const { return _x[i_coord%3]; }
         const T&  operator()(int i_coord) const { return _x[i_coord%3]; }

       // algebra:

         bool operator== (const point_basic<T>& v) const;
         bool operator!= (const point_basic<T>& v) const;
         point_basic<T> operator+ (const point_basic<T>& v) const;
         point_basic<T> operator- (const point_basic<T>& v) const;
         point_basic<T> operator- () const;
         point_basic<T>& operator+= (const point_basic<T>& v);
         point_basic<T>& operator-= (const point_basic<T>& v);
         point_basic<T>& operator*= (const T& a);
         point_basic<T>& operator/= (const T& a);

         template <class U>
         typename
         std::enable_if<
           details::is_rheolef_arithmetic<U>::value
           ,point_basic<T>
         >::type
         operator* (const U& a) const;
         point_basic<T> operator/ (const T& a) const;
         point_basic<T> operator/ (point_basic<T> v) const;

       // i/o:

         std::istream& get (std::istream& s, int d = 3);
         std::ostream& put (std::ostream& s, int d = 3) const;

       };

       These linear and nonlinear functions are completed by some usual functions:

       template<class T>
       std::istream& operator >> (std::istream& s, point_basic<T>& p);

       template<class T>
       std::ostream& operator << (std::ostream& s, const point_basic<T>& p);

       template <class T, class U>
       typename
       std::enable_if<
         details::is_rheolef_arithmetic<U>::value
        ,point_basic<T>
       >::type
       operator* (const U& a, const point_basic<T>& u);

       template<class T>
       point_basic<T>
       vect (const point_basic<T>& v, const point_basic<T>& w);

       // metrics:
       template<class T>
       T dot (const point_basic<T>& x, const point_basic<T>& y);

       template<class T>
       T norm2 (const point_basic<T>& x);

       template<class T>
       T norm (const point_basic<T>& x);

       template<class T>
       T dist2 (const point_basic<T>& x,  const point_basic<T>& y);

       template<class T>
       T dist (const point_basic<T>& x,  const point_basic<T>& y);

       template<class T>
       T dist_infty (const point_basic<T>& x,  const point_basic<T>& y);

       template <class T>
       T vect2d (const point_basic<T>& v, const point_basic<T>& w);

       template <class T>
       T mixt (const point_basic<T>& u, const point_basic<T>& v, const point_basic<T>& w);

       // robust(exact) floating point predicates: return the sign of the value as (0, > 0, < 0)
       // formally: orient2d(a,b,x) = vect2d(a-x,b-x)
       template <class T>
       int sign_orient2d (
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c);

       template <class T>
       int sign_orient3d (
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c,
         const point_basic<T>& d);

       // compute also the value:
       template <class T>
       T orient2d(
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c);

       // formally: orient3d(a,b,c,x) = mixt3d(a-x,b-x,c-x)
       template <class T>
       T orient3d(
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c,
         const point_basic<T>& d);

       template <class T>
       std::string ptos (const point_basic<T>& x, int d = 3);

       // ccomparators: lexicographic order
       template<class T, size_t d>
       bool lexicographically_less (const point_basic<T>& a, const point_basic<T>& b);

AUTHOR

       Pierre  Saramito  <Pierre.Saramito@imag.fr>

COPYRIGHT

       Copyright   (C)  2000-2018  Pierre  Saramito  <Pierre.Saramito@imag.fr> GPLv3+: GNU GPL
       version 3 or later  <http://gnu.org/licenses/gpl.html>.  This  is  free  software:  you
       are free to change and redistribute it.  There is NO WARRANTY, to the extent permitted by
       law.