lunar (1) bioblend.1.gz

Provided by: python3-bioblend_1.0.0-1_all bug

NAME

       bioblend - BioBlend Documentation

ABOUT

       BioBlend is a Python library for interacting with the Galaxy API.

       BioBlend is supported and tested on:

       • Python 3.7, 3.8, 3.9 and 3.10

       • Galaxy release 17.09 and later.

       BioBlend's goal is to make it easier to script and automate the running of Galaxy analyses
       and administering of a Galaxy server.  In practice, it makes it possible to do things like
       this:

       • Interact with Galaxy via a straightforward API:

            from bioblend.galaxy import GalaxyInstance
            gi = GalaxyInstance('<Galaxy IP>', key='your API key')
            libs = gi.libraries.get_libraries()
            gi.workflows.show_workflow('workflow ID')
            wf_invocation = gi.workflows.invoke_workflow('workflow ID', inputs)

       • Interact with Galaxy via an object-oriented API:

            from bioblend.galaxy.objects import GalaxyInstance
            gi = GalaxyInstance("URL", "API_KEY")
            wf = gi.workflows.list()[0]
            hist = gi.histories.list()[0]
            inputs = hist.get_datasets()[:2]
            input_map = dict(zip(wf.input_labels, inputs))
            params = {"Paste1": {"delimiter": "U"}}
            wf_invocation = wf.invoke(input_map, params=params)

   About the library name
       The  library  was  originally  called  just Blend but we renamed it to reflect more of its
       domain and a make it bit more unique so it can be easier to find.  The name  was  intended
       to  be  short  and  easily  pronounceable. In its original implementation, the goal was to
       provide a lot more support for CloudMan and other integration capabilities, allowing  them
       to be blended together via code. BioBlend fitted the bill.

INSTALLATION

       Stable releases of BioBlend are best installed via pip from PyPI:

          $ python3 -m pip install bioblend

       Alternatively, the most current source code from our Git repository can be installed with:

          $ python3 -m pip install git+https://github.com/galaxyproject/bioblend

       After  installing  the  library,  you  will  be  able to simply import it into your Python
       environment with import bioblend. For details on the available functionality, see the  API
       documentation.

       BioBlend   requires   a   number  of  Python  libraries.  These  libraries  are  installed
       automatically when BioBlend itself is installed, regardless whether it  is  installed  via
       PyPi  or  by  running  python3  setup.py  install  command.  The  current list of required
       libraries is always available from setup.py in the source code repository.

       If you also want to run tests locally, some extra libraries are required. To install them,
       run:

          $ python3 setup.py test

USAGE

       To  get  started  using BioBlend, install the library as described above. Once the library
       becomes available on the given system, it can be developed against.  The developed scripts
       do not need to reside in any particular location on the system.

       It  is  probably  best  to  take  a  look  at  the example scripts in docs/examples source
       directory and browse the API documentation. Beyond that, it's up to your creativity :).

DEVELOPMENT

       Anyone interested in contributing or tweaking the library is more then welcome to  do  so.
       To  start, simply fork the Git repository on Github and start playing with it. Then, issue
       pull requests.

API DOCUMENTATION

       BioBlend's API focuses around and matches the services  it  wraps.  Thus,  there  are  two
       top-level  sets of APIs, each corresponding to a separate service and a corresponding step
       in the automation process. Note that each of the  service  APIs  can  be  used  completely
       independently of one another.

       Effort has been made to keep the structure and naming of those API's consistent across the
       library but because they do bridge different services, some discrepancies may exist.  Feel
       free to point those out and/or provide fixes.

       For  Galaxy,  an  alternative object-oriented API is also available.  This API provides an
       explicit modeling of server-side  Galaxy  instances  and  their  relationships,  providing
       higher-level  methods  to  perform  operations such as retrieving all datasets for a given
       history, etc.  Note that, at the moment, the oo API is still incomplete, providing  access
       to a more restricted set of Galaxy modules with respect to the standard one.

   Galaxy API
       API  used  to  manipulate  genomic  analyses  within Galaxy, including data management and
       workflow execution.

   API documentation for interacting with Galaxy
   GalaxyInstance
                                                  ----

   Config
       Contains possible interaction dealing with Galaxy configuration.

       class bioblend.galaxy.config.ConfigClient(galaxy_instance: GalaxyInstance)
              A generic Client interface defining the common fields.

              All clients must define the following field (which will be used as part of the  URL
              composition    (e.g.,    http://<galaxy_instance>/api/libraries):   self.module   =
              'workflows' | 'libraries' | 'histories' | ...

              get_config() -> dict
                     Get a list of attributes about the Galaxy instance. More attributes will  be
                     present if the user is an admin.

                     Return type
                            list

                     Returns
                            A list of attributes.  For example:

                               {'allow_library_path_paste': False,
                                'allow_user_creation': True,
                                'allow_user_dataset_purge': True,
                                'allow_user_deletion': False,
                                'enable_unique_workflow_defaults': False,
                                'ftp_upload_dir': '/SOMEWHERE/galaxy/ftp_dir',
                                'ftp_upload_site': 'galaxy.com',
                                'library_import_dir': 'None',
                                'logo_url': None,
                                'support_url': 'https://galaxyproject.org/support',
                                'terms_url': None,
                                'user_library_import_dir': None,
                                'wiki_url': 'https://galaxyproject.org/'}

              get_version() -> dict
                     Get the current version of the Galaxy instance.

                     Return type
                            dict

                     Returns
                            Version of the Galaxy instance For example:

                               {'extra': {}, 'version_major': '17.01'}

              module: str = 'configuration'

              whoami() -> dict
                     Return information about the current authenticated user.

                     Return type
                            dict

                     Returns
                            Information about current authenticated user For example:

                               {'active': True,
                                'deleted': False,
                                'email': 'user@example.org',
                                'id': '4aaaaa85aacc9caa',
                                'last_password_change': '2021-07-29T05:34:54.632345',
                                'model_class': 'User',
                                'username': 'julia'}

                                                  ----

   Datasets
                                                  ----

   Dataset collections
                                                  ----

   Datatypes
                                                  ----

   Folders
                                                  ----

   Forms
                                                  ----

   FTP files
                                                  ----

   Genomes
   Groups
                                                  ----

   Histories
                                                  ----

   Invocations
                                                  ----

   Jobs
                                                  ----

   Libraries
                                                  ----

   Quotas
                                                  ----

   Roles
                                                  ----

   Tools
                                                  ----

   Tool data tables
                                                  ----

   Tool dependencies
                                                  ----

   ToolShed
                                                  ----

   Users
                                                  ----

   Visual
                                                  ----

   Workflows
   Object-oriented Galaxy API
   Client
   Wrappers
   Usage documentation
       This  page  describes  some  sample use cases for the Galaxy API and provides examples for
       these API calls.  In addition to this page, there  are  functional  examples  of  complete
       scripts in the docs/examples directory of the BioBlend source code repository.

   Connect to a Galaxy server
       To  connect  to  a running Galaxy server, you will need an account on that Galaxy instance
       and an API key for the account. Instructions on  getting  an  API  key  can  be  found  at
       https://galaxyproject.org/develop/api/ .

       To open a connection call:

          from bioblend.galaxy import GalaxyInstance

          gi = GalaxyInstance(url='http://example.galaxy.url', key='your-API-key')

       We  now  have  a  GalaxyInstance object which allows us to interact with the Galaxy server
       under our account, and access our data. If the account is a Galaxy admin account  we  also
       will be able to use this connection to carry out admin actions.

   View Histories and Datasets
       Methods  for accessing histories and datasets are grouped under GalaxyInstance.histories.*
       and GalaxyInstance.datasets.* respectively.

       To get information on the Histories currently in your account, call:

          >>> gi.histories.get_histories()
          [{'id': 'f3c2b0f3ecac9f02',
            'name': 'RNAseq_DGE_BASIC_Prep',
            'url': '/api/histories/f3c2b0f3ecac9f02'},
           {'id': '8a91dcf1866a80c2',
            'name': 'June demo',
            'url': '/api/histories/8a91dcf1866a80c2'}]

       This returns a list of dictionaries containing basic metadata, including the id  and  name
       of  each  History.  In  this  case,  we  have  two  existing  Histories  in  our  account,
       'RNAseq_DGE_BASIC_Prep' and 'June demo'. To get more detailed information about a  History
       we can pass its id to the show_history method:

          >>> gi.histories.show_history('f3c2b0f3ecac9f02', contents=False)
          {'annotation': '',
           'contents_url': '/api/histories/f3c2b0f3ecac9f02/contents',
           'id': 'f3c2b0f3ecac9f02',
           'name': 'RNAseq_DGE_BASIC_Prep',
           'nice_size': '93.5 MB',
           'state': 'ok',
           'state_details': {'discarded': 0,
                             'empty': 0,
                             'error': 0,
                             'failed_metadata': 0,
                             'new': 0,
                             'ok': 7,
                             'paused': 0,
                             'queued': 0,
                             'running': 0,
                             'setting_metadata': 0,
                             'upload': 0},
           'state_ids': {'discarded': [],
                         'empty': [],
                         'error': [],
                         'failed_metadata': [],
                         'new': [],
                         'ok': ['d6842fb08a76e351',
                                '10a4b652da44e82a',
                                '81c601a2549966a0',
                                'a154f05e3bcee26b',
                                '1352fe19ddce0400',
                                '06d549c52d753e53',
                                '9ec54455d6279cc7'],
                         'paused': [],
                         'queued': [],
                         'running': [],
                         'setting_metadata': [],
                         'upload': []}}

       This  gives  us  a  dictionary containing the History's metadata. With contents=False (the
       default), we only get a list of ids of the datasets contained  within  the  History;  with
       contents=True  we  would  get  metadata  on each dataset. We can also directly access more
       detailed information on a particular dataset by passing its id to the show_dataset method:

          >>> gi.datasets.show_dataset('10a4b652da44e82a')
          {'data_type': 'fastqsanger',
           'deleted': False,
           'file_size': 16527060,
           'genome_build': 'dm3',
           'id': 17499,
           'metadata_data_lines': None,
           'metadata_dbkey': 'dm3',
           'metadata_sequences': None,
           'misc_blurb': '15.8 MB',
           'misc_info': 'Noneuploaded fastqsanger file',
           'model_class': 'HistoryDatasetAssociation',
           'name': 'C1_R2_1.chr4.fq',
           'purged': False,
           'state': 'ok',
           'visible': True}

   Uploading Datasets to a History
       To upload a local file to a Galaxy server, you can run the upload_file  method,  supplying
       the path to a local file:

          >>> gi.tools.upload_file('test.txt', 'f3c2b0f3ecac9f02')
          {'implicit_collections': [],
           'jobs': [{'create_time': '2015-07-28T17:52:39.756488',
                     'exit_code': None,
                     'id': '9752b387803d3e1e',
                     'model_class': 'Job',
                     'state': 'new',
                     'tool_id': 'upload1',
                     'update_time': '2015-07-28T17:52:39.987509'}],
           'output_collections': [],
           'outputs': [{'create_time': '2015-07-28T17:52:39.331176',
                        'data_type': 'galaxy.datatypes.data.Text',
                        'deleted': False,
                        'file_ext': 'auto',
                        'file_size': 0,
                        'genome_build': '?',
                        'hda_ldda': 'hda',
                        'hid': 16,
                        'history_content_type': 'dataset',
                        'history_id': 'f3c2b0f3ecac9f02',
                        'id': '59c76a119581e190',
                        'metadata_data_lines': None,
                        'metadata_dbkey': '?',
                        'misc_blurb': None,
                        'misc_info': None,
                        'model_class': 'HistoryDatasetAssociation',
                        'name': 'test.txt',
                        'output_name': 'output0',
                        'peek': '<table cellspacing="0" cellpadding="3"></table>',
                        'purged': False,
                        'state': 'queued',
                        'tags': [],
                        'update_time': '2015-07-28T17:52:39.611887',
                        'uuid': 'ff0ee99b-7542-4125-802d-7a193f388e7e',
                        'visible': True}]}

       If  files  are  greater than 2GB in size, they will need to be uploaded via FTP. Importing
       files from the user's FTP folder can be done via running the upload tool again:

          >>> gi.tools.upload_from_ftp('test.txt', 'f3c2b0f3ecac9f02')
          {'implicit_collections': [],
           'jobs': [{'create_time': '2015-07-28T17:57:43.704394',
                     'exit_code': None,
                     'id': '82b264d8c3d11790',
                     'model_class': 'Job',
                     'state': 'new',
                     'tool_id': 'upload1',
                     'update_time': '2015-07-28T17:57:43.910958'}],
           'output_collections': [],
           'outputs': [{'create_time': '2015-07-28T17:57:43.209041',
                        'data_type': 'galaxy.datatypes.data.Text',
                        'deleted': False,
                        'file_ext': 'auto',
                        'file_size': 0,
                        'genome_build': '?',
                        'hda_ldda': 'hda',
                        'hid': 17,
                        'history_content_type': 'dataset',
                        'history_id': 'f3c2b0f3ecac9f02',
                        'id': 'a676e8f07209a3be',
                        'metadata_data_lines': None,
                        'metadata_dbkey': '?',
                        'misc_blurb': None,
                        'misc_info': None,
                        'model_class': 'HistoryDatasetAssociation',
                        'name': 'test.txt',
                        'output_name': 'output0',
                        'peek': '<table cellspacing="0" cellpadding="3"></table>',
                        'purged': False,
                        'state': 'queued',
                        'tags': [],
                        'update_time': '2015-07-28T17:57:43.544407',
                        'uuid': '2cbe8f0a-4019-47c4-87e2-005ce35b8449',
                        'visible': True}]}

   View Data Libraries
       Methods for accessing Data Libraries are grouped  under  GalaxyInstance.libraries.*.  Most
       Data Library methods are available to all users, but as only administrators can create new
       Data Libraries within Galaxy, the create_folder and create_library  methods  can  only  be
       called using an API key belonging to an admin account.

       We can view the Data Libraries available to our account using:

          >>> gi.libraries.get_libraries()
          [{'id': '8e6f930d00d123ea',
            'name': 'RNA-seq workshop data',
            'url': '/api/libraries/8e6f930d00d123ea'},
           {'id': 'f740ab636b360a70',
            'name': '1000 genomes',
            'url': '/api/libraries/f740ab636b360a70'}]

       This  gives a list of metadata dictionaries with basic information on each library. We can
       get more information on a particular Data Library by passing its id  to  the  show_library
       method:

          >>> gi.libraries.show_library('8e6f930d00d123ea')
          {'contents_url': '/api/libraries/8e6f930d00d123ea/contents',
           'description': 'RNA-Seq workshop data',
           'name': 'RNA-Seq',
           'synopsis': 'Data for the RNA-Seq tutorial'}

   Upload files to a Data Library
       We can get files into Data Libraries in several ways: by uploading from our local machine,
       by retrieving from a URL, by passing the new file content directly into the method, or  by
       importing a file from the filesystem on the Galaxy server.

       For instance, to upload a file from our machine we might call:

       >>> gi.libraries.upload_file_from_local_path('8e6f930d00d123ea', '/local/path/to/mydata.fastq', file_type='fastqsanger')

       Note  that  we  have  provided the id of the destination Data Library, and in this case we
       have specified the type that Galaxy should assign to the new dataset.  The  default  value
       for file_type is 'auto', in which case Galaxy will attempt to guess the dataset type.

   View Workflows
       Methods for accessing workflows are grouped under GalaxyInstance.workflows.*.

       To get information on the Workflows currently in your account, use:

          >>> gi.workflows.get_workflows()
          [{'id': 'e8b85ad72aefca86',
            'name': 'TopHat + cufflinks part 1',
            'url': '/api/workflows/e8b85ad72aefca86'},
           {'id': 'b0631c44aa74526d',
            'name': 'CuffDiff',
            'url': '/api/workflows/b0631c44aa74526d'}]

       This  returns  a  list  of  metadata  dictionaries. We can get the details of a particular
       Workflow, including its steps, by passing its id to the show_workflow method:

          >>> gi.workflows.show_workflow('e8b85ad72aefca86')
          {'id': 'e8b85ad72aefca86',
           'inputs': {'252': {'label': 'Input RNA-seq fastq', 'value': ''}},
           'name': 'TopHat + cufflinks part 1',
           'steps': {'250': {'id': 250,
                             'input_steps': {'input1': {'source_step': 252,
                                                        'step_output': 'output'}},
                             'tool_id': 'tophat',
                             'type': 'tool'},
                     '251': {'id': 251,
                             'input_steps': {'input': {'source_step': 250,
                                                       'step_output': 'accepted_hits'}},
                             'tool_id': 'cufflinks',
                             'type': 'tool'},
                     '252': {'id': 252,
                             'input_steps': {},
                             'tool_id': None,
                             'type': 'data_input'}},
           'url': '/api/workflows/e8b85ad72aefca86'}

   Export or import a workflow
       Workflows can be exported from or imported into Galaxy. This makes it possible to  archive
       workflows, or to move them between Galaxy instances.

       To export a workflow, we can call:

          >>> workflow_dict = gi.workflows.export_workflow_dict('e8b85ad72aefca86')

       This  gives  us  a  complex  dictionary  representing  the  workflow.  We  can import this
       dictionary as a new workflow with:

          >>> gi.workflows.import_workflow_dict(workflow_dict)
          {'id': 'c0bacafdfe211f9a',
           'name': 'TopHat + cufflinks part 1 (imported from API)',
           'url': '/api/workflows/c0bacafdfe211f9a'}

       This call returns a dictionary containing basic metadata on the  new  workflow.  Since  in
       this case we have imported the dictionary into the original Galaxy instance, we now have a
       duplicate of the original workflow in our account:

       >>> gi.workflows.get_workflows()
       [{'id': 'c0bacafdfe211f9a',
         'name': 'TopHat + cufflinks part 1 (imported from API)',
         'url': '/api/workflows/c0bacafdfe211f9a'},
        {'id': 'e8b85ad72aefca86',
         'name': 'TopHat + cufflinks part 1',
         'url': '/api/workflows/e8b85ad72aefca86'},
        {'id': 'b0631c44aa74526d',
         'name': 'CuffDiff',
         'url': '/api/workflows/b0631c44aa74526d'}]

       Instead of using dictionaries directly, workflows can be  exported  to  or  imported  from
       files    on    the    local    disk    using    the    export_workflow_to_local_path   and
       import_workflow_from_local_path methods. See the API reference for details.

       NOTE:
          If we export a workflow from one Galaxy instance and import  it  into  another,  Galaxy
          will  only run it without modification if it has the same versions of the tool wrappers
          installed. This is to ensure reproducibility.  Otherwise,  we  will  need  to  manually
          update the workflow to use the new tool versions.

   Invoke a workflow
       To  invoke  a  workflow,  we  need to tell Galaxy which datasets to use for which workflow
       inputs. We can use datasets from histories or data libraries.

       Examine the workflow above. We can see that it takes only one input file. That is:

       >>> wf = gi.workflows.show_workflow('e8b85ad72aefca86')
       >>> wf['inputs']
       {'252': {'label': 'Input RNA-seq fastq', 'value': ''}}

       There is one input, labelled 'Input RNA-seq fastq'. This input is  passed  to  the  Tophat
       tool  and  should  be  a fastq file. We will use the dataset we examined above, under View
       Histories and Datasets, which had name 'C1_R2_1.chr4.fq' and id '10a4b652da44e82a'.

       To specify the inputs, we build a data map and pass this to  the  invoke_workflow  method.
       This data map is a nested dictionary object which maps inputs to datasets. We call:

          >>> datamap = {'252': {'src':'hda', 'id':'10a4b652da44e82a'}}
          >>> gi.workflows.invoke_workflow('e8b85ad72aefca86', inputs=datamap, history_name='New output history')
          {'history': '0a7b7992a7cabaec',
           'outputs': ['33be8ad9917d9207',
                       'fbee1c2dc793c114',
                       '85866441984f9e28',
                       '1c51aa78d3742386',
                       'a68e8770e52d03b4',
                       'c54baf809e3036ac',
                       'ba0db8ce6cd1fe8f',
                       'c019e4cf08b2ac94']}

       In   this  case  the  only  input  id  is  '252'  and  the  corresponding  dataset  id  is
       '10a4b652da44e82a'.   We   have   specified   the   dataset    source    to    be    'hda'
       (HistoryDatasetAssociation)  since  the  dataset  is  stored  in  a  History.  See the API
       reference for allowed dataset specifications. We have also requested that a new History be
       created  and  used  to  store  the results of the run, by setting history_name='New output
       history'.

       The invoke_workflow call submits all the jobs which need to be run to the Galaxy  workflow
       engine, with the appropriate dependencies so that they will run in order. The call returns
       immediately, so we can continue to submit new jobs while  waiting  for  this  workflow  to
       execute. invoke_workflow returns the a dictionary describing the workflow invocation.

       If  we  view  the  output  History  immediately after calling invoke_workflow, we will see
       something like:

          >>> gi.histories.show_history('0a7b7992a7cabaec')
          {'annotation': '',
           'contents_url': '/api/histories/0a7b7992a7cabaec/contents',
           'id': '0a7b7992a7cabaec',
           'name': 'New output history',
           'nice_size': '0 bytes',
           'state': 'queued',
           'state_details': {'discarded': 0,
                             'empty': 0,
                             'error': 0,
                             'failed_metadata': 0,
                             'new': 0,
                             'ok': 0,
                             'paused': 0,
                             'queued': 8,
                             'running': 0,
                             'setting_metadata': 0,
                             'upload': 0},
           'state_ids': {'discarded': [],
                         'empty': [],
                         'error': [],
                         'failed_metadata': [],
                         'new': [],
                         'ok': [],
                         'paused': [],
                         'queued': ['33be8ad9917d9207',
                                    'fbee1c2dc793c114',
                                    '85866441984f9e28',
                                    '1c51aa78d3742386',
                                    'a68e8770e52d03b4',
                                    'c54baf809e3036ac',
                                    'ba0db8ce6cd1fe8f',
                                    'c019e4cf08b2ac94'],
                         'running': [],
                         'setting_metadata': [],
                         'upload': []}}

       In this case, because the submitted jobs have not had time  to  run,  the  output  History
       contains 8 datasets in the 'queued' state and has a total size of 0 bytes. If we make this
       call again later we should instead see completed output files.

   View Users
       Methods for managing users are grouped under GalaxyInstance.users.*.  User  management  is
       only  available  to  Galaxy administrators, that is, the API key used to connect to Galaxy
       must be that of an admin account.

       To get a list of users, call:

       >>> gi.users.get_users()
       [{'email': 'userA@example.org',
         'id': '975a9ce09b49502a',
         'quota_percent': None,
         'url': '/api/users/975a9ce09b49502a'},
        {'email': 'userB@example.org',
         'id': '0193a95acf427d2c',
         'quota_percent': None,
         'url': '/api/users/0193a95acf427d2c'}]

   Using BioBlend for raw API calls
       BioBlend can be used to make HTTP requests to the Galaxy API in a more convenient way than
       using e.g. the requests Python library. There are 5 available methods corresponding to the
       most  common  HTTP   methods:   make_get_request,   make_post_request,   make_put_request,
       make_delete_request  and make_patch_request.  One advantage of using these methods is that
       the API keys stored in the GalaxyInstance object is automatically added to the request.

       To make a GET request to the Galaxy API with BioBlend, call:

       >>> gi.make_get_request(gi.base_url + "/api/version").json()
       {'version_major': '19.05',
        'extra': {}}

       To make a POST request to the Galaxy API with BioBlend, call:

       >>> gi.make_post_request(gi.base_url + "/api/histories", payload={"name": "test history"})
       {'importable': False,
        'create_time': '2019-07-05T20:10:04.823716',
        'contents_url': '/api/histories/a77b3f95070d689a/contents',
        'id': 'a77b3f95070d689a',
        'size': 0, 'user_id': '5b732999121d4593',
        'username_and_slug': None,
        'annotation': None,
        'state_details': {'discarded': 0,
                          'ok': 0,
                          'failed_metadata': 0,
                          'upload': 0,
                          'paused': 0,
                          'running': 0,
                          'setting_metadata': 0,
                          'error': 0,
                          'new': 0,
                          'queued': 0,
                          'empty': 0},
        'state': 'new',
        'empty': True,
        'update_time': '2019-07-05T20:10:04.823742',
        'tags': [],
        'deleted': False,
        'genome_build': None,
        'slug': None,
        'name': 'test history',
        'url': '/api/histories/a77b3f95070d689a',
        'state_ids': {'discarded': [],
                      'ok': [],
                      'failed_metadata': [],
                      'upload': [],
                      'paused': [],
                      'running': [],
                      'setting_metadata': [],
                      'error': [],
                      'new': [],
                      'queued': [],
                      'empty': []},
        'published': False,
        'model_class': 'History',
        'purged': False}

   Toolshed API
       API used to interact with the Galaxy Toolshed, including repository management.

   API documentation for interacting with the Galaxy Toolshed
   ToolShedInstance
   Categories
   Repositories
   Tools

CONFIGURATION

       BioBlend  allows  library-wide  configuration  to  be  set  in  external   files.    These
       configuration files can be used to specify access keys, for example.

   Configuration documents for BioBlend
   BioBlend
       exception bioblend.ConnectionError(message: str, body: Optional[Union[bytes, str]] = None,
       status_code: Optional[int] = None)
              An exception class that is raised when unexpected HTTP responses come back.

              Should make it easier to debug when strange HTTP things  happen  such  as  a  proxy
              server  getting  in  the  way  of the request etc.  @see: body attribute to see the
              content of the http response

       class bioblend.NullHandler(level=0)
              Initializes the instance - basically setting the formatter to None and  the  filter
              list to empty.

              emit(record: logging.LogRecord) -> None
                     Do whatever it takes to actually log the specified logging record.

                     This  version  is  intended  to be implemented by subclasses and so raises a
                     NotImplementedError.

       exception bioblend.TimeoutException

       bioblend.get_version() -> str
              Returns a string with the current version of the library (e.g., "0.2.0")

       bioblend.init_logging() -> None
              Initialize BioBlend's logging from a configuration file.

       bioblend.set_file_logger(name:  str,  filepath:  str,  level:  Union[int,   str]   =   20,
       format_string: Optional[str] = None) -> None

       bioblend.set_stream_logger(name:   str,   level:  Union[int,  str]  =  10,  format_string:
       Optional[str] = None) -> None

   Config
       class bioblend.config.Config(path: Optional[str] = None,  fp:  Optional[IO[str]]  =  None,
       do_load: bool = True)
              BioBlend  allows  library-wide  configuration  to  be set in external files.  These
              configuration files can be used to specify access keys, for example.  By default we
              use two locations for the BioBlend configurations:

              • System wide: /etc/bioblend.cfg

              • Individual user: ~/.bioblend (which works on both Windows and Unix)

TESTING

       If  you  would  like  to  do  more than just a mock test, you need to point BioBlend to an
       instance of Galaxy. Do so by exporting the following two variables:

          $ export BIOBLEND_GALAXY_URL=http://127.0.0.1:8080
          $ export BIOBLEND_GALAXY_API_KEY=<API key>

       The unit tests, stored in the tests folder, can be run  using  pytest.  From  the  project
       root:

          $ pytest

GETTING HELP

       If you have run into issues, found a bug, or can't seem to find an answer to your question
       regarding the use and functionality of BioBlend, please use the Github Issues page to  ask
       your question.

       Links to other documentation and libraries relevant to this library:

          • Galaxy API documentationBlend4j: Galaxy API wrapper for Java

          • clj-blend: Galaxy API wrapper for Clojure

INDICES AND TABLES

IndexModule IndexSearch Page

AUTHOR

       Enis Afgan

       2012-2022, Enis Afgan