lunar (1) i.pca.1grass.gz

Provided by: grass-doc_8.2.1-1build1_all bug

NAME

       i.pca  - Principal components analysis (PCA) for image processing.

KEYWORDS

       imagery, transformation, PCA, principal components analysis

SYNOPSIS

       i.pca
       i.pca --help
       i.pca  [-nf]  input=name[,name,...] output=basename  [rescale=min,max]   [percent=integer]
       [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -n
           Normalize (center and scale) input maps
           Default: center only

       -f
           Output will be filtered input bands
           Apply inverse PCA after PCA

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name[,name,...] [required]
           Name of two or more input raster maps or imagery group

       output=basename [required]
           Name for output basename raster map(s)
           A numerical suffix will be added for each component map

       rescale=min,max
           Rescaling range for output maps
           For no rescaling use 0,0
           Default: 0,255

       percent=integer
           Cumulative percent importance for filtering
           Options: 50-99
           Default: 99

DESCRIPTION

       i.pca is an image processing program based on the algorithm provided by Vali (1990),  that
       processes  n  (n >= 2)  input  raster  map  layers and produces n output raster map layers
       containing the principal components of the input data  in  decreasing  order  of  variance
       ("contrast").   The  output  raster  map  layers  are  assigned  names with .1, .2, ... .n
       suffixes. The numbers used as suffix correspond to percent importance with  .1  being  the
       scores of the principal component with the highest importance.

       The  current geographic region definition and MASK settings are respected when reading the
       input raster map layers. When the rescale option is used, the output files are rescaled to
       fit the min,max range.

       The  order  of  the  input bands does not matter for the output maps (PC scores), but does
       matter for the vectors (loadings), since each loading refers to a specific input band.

       If the output is not rescaled (rescale=0,0, the output raster maps will be of type  DCELL,
       otherwise the output raster maps will be of type CELL.

       By  default, the values of the input raster maps are centered for each map separately with
       x - mean. With -n, the input raster maps are normalized for each map separately with (x  -
       mean)  /  stddev.   Normalizing  is  highly  recommended  when  the input raster maps have
       different units, e.g. represent different environmental parameters.

       The -f flag, together with the percent option, can be used  to  remove  noise  from  input
       bands. Input bands will be recalculated from a subset of the principal components (inverse
       PCA).  The subset is selected by  using  only  the  most  important  (highest  eigenvalue)
       principal components which explain together percent percent variance observed in the input
       bands.

NOTES

       Richards (1986) gives a good example of the application of principal  components  analysis
       (PCA) to a time series of LANDSAT images of a burned region in Australia.

       Eigenvalue  and  eigenvector information is stored in the output maps’ history files. View
       with r.info.

EXAMPLE

       PCA calculation using Landsat7 imagery in the North Carolina sample dataset:
       g.region raster=lsat7_2002_10 -p
       i.pca in=lsat7_2002_10,lsat7_2002_20,lsat7_2002_30,lsat7_2002_40,lsat7_2002_50,lsat7_2002_70 \
           out=lsat7_2002_pca
       r.info -h lsat7_2002_pca.1
          Eigen values, (vectors), and [percent importance]:
          PC1   4334.35 ( 0.2824, 0.3342, 0.5092,-0.0087, 0.5264, 0.5217) [83.04%]
          PC2    588.31 ( 0.2541, 0.1885, 0.2923,-0.7428,-0.5110,-0.0403) [11.27%]
          PC3    239.22 ( 0.3801, 0.3819, 0.2681, 0.6238,-0.4000,-0.2980) [ 4.58%]
          PC4     32.85 ( 0.1752,-0.0191,-0.4053, 0.1593,-0.4435, 0.7632) [ 0.63%]
          PC5     20.73 (-0.6170,-0.2514, 0.6059, 0.1734,-0.3235, 0.2330) [ 0.40%]
          PC6      4.08 (-0.5475, 0.8021,-0.2282,-0.0607,-0.0208, 0.0252) [ 0.08%]
       d.mon wx0
       d.rast lsat7_2002_pca.1
       # ...
       d.rast lsat7_2002_pca.6
       In this example, the first two PCAs (PCA1 and PCA2) already explain 94.31% of the variance
       in the six input channels.

       Resulting PCA maps calculated from the Landsat7 imagery (NC, USA)

SEE ALSO

       Richards, John A., Remote Sensing Digital Image Analysis, Springer-Verlag, 1986.

       Vali,  Ali R., Personal communication, Space Research Center, University of Texas, Austin,
       1990.

        i.cca, g.gui.iclass, i.fft, i.ifft, m.eigensystem, r.covar, r.mapcalc

        Principal Components Analysis article (GRASS Wiki)

AUTHORS

       David Satnik, GIS Laboratory

       Major modifications for GRASS 4.1 were made by
       Olga  Waupotitsch  and  Michael  Shapiro,  U.S.Army  Construction   Engineering   Research
       Laboratory

       Rewritten for GRASS 6.x and major modifications by
       Brad Douglas

SOURCE CODE

       Available at: i.pca source code (history)

       Accessed: Sunday Feb 05 04:09:22 2023

       Main index | Imagery index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2023 GRASS Development Team, GRASS GIS 8.2.1 Reference Manual