lunar (1) mlpack_linear_regression.1.gz
NAME
mlpack_linear_regression - simple linear regression and prediction
SYNOPSIS
mlpack_linear_regression [-m unknown] [-l double] [-T string] [-t string] [-r string] [-V bool] [-M unknown] [-o string] [-h -v]
DESCRIPTION
An implementation of simple linear regression and simple ridge regression using ordinary least squares. This solves the problem y = X * b + e where X (specified by '--training_file (-t)') and y (specified either as the last column of the input matrix '--training_file (-t)' or via the ’--training_responses_file (-r)' parameter) are known and b is the desired variable. If the covariance matrix (X'X) is not invertible, or if the solution is overdetermined, then specify a Tikhonov regularization constant (with '--lambda (-l)') greater than 0, which will regularize the covariance matrix to make it invertible. The calculated b may be saved with the ’--output_predictions_file (-o)' output parameter. Optionally, the calculated value of b is used to predict the responses for another matrix X' (specified by the '--test_file (-T)' parameter): y' = X' * b and the predicted responses y' may be saved with the ’--output_predictions_file (-o)' output parameter. This type of regression is related to least-angle regression, which mlpack implements as the 'lars' program. For example, to run a linear regression on the dataset 'X.csv' with responses ’y.csv', saving the trained model to 'lr_model.bin', the following command could be used: $ mlpack_linear_regression --training_file X.csv --training_responses_file y.csv --output_model_file lr_model.bin Then, to use 'lr_model.bin' to predict responses for a test set 'X_test.csv', saving the predictions to 'X_test_responses.csv', the following command could be used: $ mlpack_linear_regression --input_model_file lr_model.bin --test_file X_test.csv --output_predictions_file X_test_responses.csv
OPTIONAL INPUT OPTIONS
--help (-h) [bool] Default help info. --info [string] Print help on a specific option. Default value ''. --input_model_file (-m) [unknown] Existing LinearRegression model to use. --lambda (-l) [double] Tikhonov regularization for ridge regression. If 0, the method reduces to linear regression. Default value 0. --test_file (-T) [string] Matrix containing X' (test regressors). --training_file (-t) [string] Matrix containing training set X (regressors). --training_responses_file (-r) [string] Optional vector containing y (responses). If not given, the responses are assumed to be the last row of the input file. --verbose (-v) [bool] Display informational messages and the full list of parameters and timers at the end of execution. --version (-V) [bool] Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--output_model_file (-M) [unknown] Output LinearRegression model. --output_predictions_file (-o) [string] If --test_file is specified, this matrix is where the predicted responses will be saved.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.