lunar (1) mlpack_preprocess_scale.1.gz
NAME
mlpack_preprocess_scale - scale data
SYNOPSIS
mlpack_preprocess_scale -i string [-r double] [-m unknown] [-f bool] [-e int] [-b int] [-a string] [-s int] [-V bool] [-o string] [-M unknown] [-h -v]
DESCRIPTION
This utility takes a dataset and performs feature scaling using one of the six scaler methods namely: 'max_abs_scaler', 'mean_normalization', ’min_max_scaler' ,'standard_scaler', 'pca_whitening' and 'zca_whitening'. The function takes a matrix as '--input_file (-i)' and a scaling method type which you can specify using '--scaler_method (-a)' parameter; the default is standard scaler, and outputs a matrix with scaled feature. The output scaled feature matrix may be saved with the '--output_file (-o)' output parameters. The model to scale features can be saved using '--output_model_file (-M)' and later can be loaded back using'--input_model_file (-m)'. So, a simple example where we want to scale the dataset 'X.csv' into ’X_scaled.csv' with standard_scaler as scaler_method, we could run $ mlpack_preprocess_scale --input_file X.csv --output_file X_scaled.csv --scaler_method standard_scaler A simple example where we want to whiten the dataset 'X.csv' into ’X_whitened.csv' with PCA as whitening_method and use 0.01 as regularization parameter, we could run $ mlpack_preprocess_scale --input_file X.csv --output_file X_scaled.csv --scaler_method pca_whitening --epsilon 0.01 You can also retransform the scaled dataset back using'--inverse_scaling (-f)'. An example to rescale : 'X_scaled.csv' into 'X.csv'using the saved model '--input_model_file (-m)' is: $ mlpack_preprocess_scale --input_file X_scaled.csv --output_file X.csv --inverse_scaling --input_model_file saved.bin Another simple example where we want to scale the dataset 'X.csv' into ’X_scaled.csv' with min_max_scaler as scaler method, where scaling range is 1 to 3 instead of default 0 to 1. We could run $ mlpack_preprocess_scale --input_file X.csv --output_file X_scaled.csv --scaler_method min_max_scaler --min_value 1 --max_value 3
REQUIRED INPUT OPTIONS
--input_file (-i) [string] Matrix containing data.
OPTIONAL INPUT OPTIONS
--epsilon (-r) [double] regularization Parameter for pcawhitening, or zcawhitening, should be between -1 to 1. Default value 1e-06. --help (-h) [bool] Default help info. --info [string] Print help on a specific option. Default value ''. --input_model_file (-m) [unknown] Input Scaling model. --inverse_scaling (-f) [bool] Inverse Scaling to get original dataset --max_value (-e) [int] Ending value of range for min_max_scaler. Default value 1. --min_value (-b) [int] Starting value of range for min_max_scaler. Default value 0. --scaler_method (-a) [string] method to use for scaling, the default is standard_scaler. Default value 'standard_scaler'. --seed (-s) [int] Random seed (0 for std::time(NULL)). Default value 0. --verbose (-v) [bool] Display informational messages and the full list of parameters and timers at the end of execution. --version (-V) [bool] Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--output_file (-o) [string] Matrix to save scaled data to. --output_model_file (-M) [unknown] Output scaling model.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.