lunar (1) pyfr.1.gz

Provided by: pyfr_1.5.0-3_all bug

NAME

       pyfr - PyFR Documentation

       Contents:

HOME

   Overview
   What is PyFR?
       PyFR  is  an  open-source  Python  based  framework  for  solving advection-diffusion type
       problems on streaming architectures using the Flux Reconstruction approach of  Huynh.  The
       framework  is  designed  to solve a range of governing systems on mixed unstructured grids
       containing various element types. It is also  designed  to  target  a  range  of  hardware
       platforms via use of an in-built domain specific language derived from the Mako templating
       engine. The current release (PyFR 1.5.0) has the following capabilities:

       • Governing Equations - Euler, Navier Stokes

       • Dimensionality - 2D, 3D

       • Element Types - Triangles, Quadrilaterals, Hexahedra, Prisms, Tetrahedra, Pyramids

       • Platforms - CPU Clusters, Nvidia GPU Clusters, AMD GPU Clusters, Intel Xeon Phi Clusters

       • Spatial Discretisation - High-Order Flux Reconstruction

       • Temporal Discretisation - Explicit and Implicit (via Dual Time-Stepping)

       • Precision - Single, Double

       • Mesh Files Imported - Gmsh (.msh), CGNS (.cgns)

       • Solution Files Exported - Unstructured VTK (.vtu, .pvtu)

   How do I Cite PyFR?
       To cite PyFR, please reference the following paper:

       • PyFR: An  Open  Source  Framework  for  Solving  Advection-Diffusion  Type  Problems  on
         Streaming  Architectures  using the Flux Reconstruction Approach. F. D. Witherden, A. M.
         Farrington, P. E. Vincent. Computer Physics Communications, Volume 185, Pages 3028-3040,
         2014.

   Who is Funding PyFR?
       Development  of  PyFR  is  supported  by  the  Engineering  and Physical Sciences Research
       Council, Innovate UK, the European Commission, BAE Systems,  Airbus,  and  the  Air  Force
       Office  of  Scientific Research.  We are also grateful for hardware donations from Nvidia,
       Intel, and AMD.

THEORY

   Flux Reconstruction
   Overview
       High-order numerical methods for unstructured  grids  combine  the  superior  accuracy  of
       high-order  spectral  or  finite  difference  methods  with the geometrical flexibility of
       low-order finite volume or finite element schemes. The Flux Reconstruction  (FR)  approach
       unifies  various  high-order  schemes  for  unstructured  grids within a single framework.
       Additionally, the FR approach exhibits a significant degree of element  locality,  and  is
       thus  able  to  run  efficiently  on  modern  streaming  architectures,  such as Graphical
       Processing Units (GPUs). The aforementioned properties of FR mean it  offers  a  promising
       route   to   performing  affordable,  and  hence  industrially  relevant,  scale-resolving
       simulations of hitherto intractable unsteady flows (involving separation, acoustics  etc.)
       within  the  vicinity of real-world engineering geometries. An detailed overview of the FR
       approach is given in:

       • A Flux Reconstruction Approach to High-Order Schemes  Including  Discontinuous  Galerkin
         Methods. H. T. Huynh. AIAA Paper 2007-4079

   Linear Stability
       The  linear  stability  of  an  FR schemes depends on the form of the correction function.
       Linear stability issues are discussed in:

       • A New Class of High-Order Energy Stable Flux Reconstruction Schemes.  P. E. Vincent,  P.
         Castonguay,  A.  Jameson.  Journal  of  Scientific Computing, Volume 47, Number 1, Pages
         50-72, 2011Insights from von Neumann Analysis of High-Order  Flux  Reconstruction  Schemes.  P.  E.
         Vincent,  P. Castonguay, A. Jameson. Journal of Computational Physics, Volume 230, Issue
         22, Pages 8134-8154, 2011A New Class of High-Order Energy  Stable  Flux  Reconstruction  Schemes  for  Triangular
         Elements.  P.  Castonguay,  P.  E. Vincent, A. Jameson. Journal of Scientific Computing,
         Volume 51, Number 1, Pages 224-256, 2012Energy  Stable  Flux  Reconstruction  Schemes  for  Advection-Diffusion  Problems.    P.
         Castonguay,  D.  M.  Williams,  P.  E.  Vincent, A. Jameson. Computer Methods in Applied
         Mechanics and Engineering, Volume 267, Pages 400-417, 2013Energy Stable Flux Reconstruction Schemes for Advection-Diffusion Problems on Triangles.
         D.  M.  Williams,  P.  Castonguay,  P. E. Vincent, A. Jameson.  Journal of Computational
         Physics, Volume 250, Pages 53-76, 2013Energy  Stable  Flux  Reconstruction  Schemes  for   Advection-Diffusion   Problems   on
         Tetrahedra.  D.  M.  Williams,  A.  Jameson. Journal of Scientific Computing, Volume 59,
         Pages 721-759, 2014An  Extended  Range  of  Stable-Symmetric-Conservative  Flux  Reconstruction  Correction
         Functions.  P.  E.  Vincent,  A.  M.  Farrington,  F. D. Witherden, A. Jameson. Computer
         Methods in Applied Mechanics and Engineering, Volume 296, Pages 248-272, 2015

   Non-Linear Stability
       The non-linear stability of an FR schemes depends on the location of the solution  points.
       Non-linear stability issues are discussed in:

       • On  the  Non-Linear Stability of Flux Reconstruction Schemes. A. Jameson, P. E. Vincent,
         P. Castonguay. Journal of Scientific Computing, Volume 50, Number 2, Pages 434-445, 2012An Analysis of Solution Point Coordinates for Flux Reconstruction Schemes on  Triangular
         Elements.  F.  D.  Witherden, P. E. Vincent. Journal of Scientific Computing, Volume 61,
         Pages 398-423, 2014

USER GUIDE

   Getting Started
   Downloading the Source
       PyFR can be obtained here.

   Dependencies
   Overview
       PyFR 1.5.0 has a hard dependency on Python 3.3+ and the following Python packages:

       1. gimmik >= 2.0

       2. h5py >= 2.6

       3. mako >= 1.0.0

       4. mpi4py >= 2.0

       5. numpy >= 1.8

       6. pytools >= 2016.2.1

       Note that due to a bug in numpy PyFR is not compatible with 32-bit Python distributions.

   CUDA Backend
       The CUDA backend targets NVIDIA GPUs with a compute capability  of  2.0  or  greater.  The
       backend requires:

       1. CUDA >= 4.2

       2. pycuda >= 2015.1

   MIC Backend
       The MIC backend targets Intel Xeon Phi co-processors. The backend requires:

       1. ICC >= 14.0

       2. Intel MKL >= 11.1

       3. Intel MPSS >= 3.3

       4. pymic >= 0.7 (post commit 4d8a2da)

   OpenCL Backend
       The OpenCL backend targets a range of accelerators including GPUs from AMD and NVIDIA. The
       backend requires:

       1. OpenCL

       2. pyopencl >= 2015.2.4

       3. clBLAS

   OpenMP Backend
       The OpenMP backend targets multi-core CPUs. The backend requires:

       1. GCC >= 4.9

       2. A BLAS library compiled as a shared library (e.g. OpenBLAS)

   Running in Parallel
       To partition meshes for running in parallel it is  also  necessary  to  have  one  of  the
       following partitioners installed:

       1. metis >= 5.0

       2. scotch >= 6.0

   Importing CGNS Meshes
       To import CGNS meshes it is necessary to have the following installed:

       1. CGNS >= 3.3 (develop branch post commit e0faea6)

   Installation
       Before  running  PyFR 1.5.0 it is first necessary to either install the software using the
       provided setup.py installer or add the root PyFR directory to PYTHONPATH using:

          user@computer ~/PyFR$ export PYTHONPATH=.:$PYTHONPATH

       To manage installation  of  Python  dependencies  we  strongly  recommend  using  pip  and
       virtualenv.

   Running PyFR
   Overview
       PyFR 1.5.0 uses three distinct file formats:

       1. .ini --- configuration file

       2. .pyfrm --- mesh file

       3. .pyfrs --- solution file

       The following commands are available from the pyfr program:

       1. pyfr import --- convert a Gmsh .msh file or CGNS .cgns file into a PyFR .pyfrm file.

          Example:

             pyfr import mesh.msh mesh.pyfrm

       2. pyfr partition --- partition an existing mesh and associated solution files.

          Example:

             pyfr partition 2 mesh.pyfrm solution.pyfrs .

       3. pyfr run --- start a new PyFR simulation. Example:

             pyfr run mesh.pyfrm configuration.ini

       4. pyfr restart --- restart a PyFR simulation from an existing solution file. Example:

             pyfr restart mesh.pyfrm solution.pyfrs

       5. pyfr export --- convert a PyFR .pyfrs file into an unstructured VTK .vtu or .pvtu file.
          Example:

             pyfr export mesh.pyfrm solution.pyfrs solution.vtu

   Running in Parallel
       pyfr can be run in parallel. To do so prefix pyfr with  mpirun  -n  <cores/devices>.  Note
       that the mesh must be pre-partitioned, and the number of cores or devices must be equal to
       the number of partitions.

   Configuration File (.ini)
   Overview
       The .ini configuration file parameterises the simulation. It is written in the INI format.
       Parameters  are  grouped  into  sections.  The  roles of each section and their associated
       parameters are described below.

   [backend]
       Parameterises the backend with

       1. precision --- number precision:
             single | double

       2. rank-allocator --- MPI rank allocator:
             linear | random

       Example:

          [backend]
          precision = double
          rank-allocator = linear

   [backend-cuda]
       Parameterises the CUDA backend with

       1. device-id --- method for selecting which device(s) to run on:
             int | round-robin | local-rank

       2. gimmik-max-nnz --- cutoff for GiMMiK in terms of the number of non-zero  entires  in  a
          constant matrix:
             int

       3. mpi-type --- type of MPI library that is being used:
             standard | cuda-aware

       4. block-1d --- block size for one dimensional pointwise kernels:
             int

       5. block-2d --- block size for two dimensional pointwise kernels:
             int, int

       Example:

          [backend-cuda]
          device-id = round-robin
          gimmik-max-nnz = 512
          mpi-type = standard
          block-1d = 64
          block-2d = 128, 2

   [backend-mic]
       Parameterises the MIC backend with

       1. device-id --- for selecting which device(s) to run on:
             int | local-rank

       2. mkl-root --- path to MKL root directory:
             string

   [backend-opencl]
       Parameterises the OpenCL backend with

       1. platform-id --- for selecting platform id:
             int | string

       2. device-type --- for selecting what type of device(s) to run on:
             all | cpu | gpu | accelerator

       3. device-id --- for selecting which device(s) to run on:
             int | string | local-rank

       4. gimmik-max-nnz  ---  cutoff  for GiMMiK in terms of the number of non-zero entires in a
          constant matrix:
             int

       5. local-size-1d --- local work size for one dimensional pointwise kernels:
             int

       6. local-size-2d --- local work size for two dimensional pointwise kernels:
             int, int

       Example:

          [backend-opencl]
          platform-id = 0
          device-type = gpu
          device-id = local-rank
          gimmik-max-nnz = 512
          local-size-1d = 16
          local-size-2d = 128, 1

   [backend-openmp]
       Parameterises the OpenMP backend with

       1. cc --- C compiler:
             string

       2. cflags --- additional C compiler flags:
             string

       3. cblas --- path to shared C BLAS library:
             string

       4. cblas-type --- type of BLAS library:
             serial | parallel

       Example:

          [backend-openmp]
          cc = gcc
          cblas= example/path/libBLAS.dylib
          cblas-type = parallel

   [constants]
       Sets constants used in the simulation with

       1. gamma --- ratio of specific heats:
             float

       2. mu --- dynamic viscosity:
             float

       3. Pr --- Prandtl number:
             float

       4. cpTref --- product of specific heat at constant pressure and reference temperature  for
          Sutherland's Law:

          float

       5. cpTs  ---  product of specific heat at constant pressure and Sutherland temperature for
          Sutherland's Law:

          float

       Example:

          [constants]
          gamma = 1.4
          mu = 0.001
          Pr = 0.72

   [solver]
       Parameterises the solver with

       1. system --- governing system:
             euler | navier-stokes

       2. order --- order of polynomial solution basis:
             int

       3. anti-alias --- type of anti-aliasing:
             flux | surf-flux | div-flux | flux, surf-flux | flux, div-flux | surf-flux, div-flux
             | flux, surf-flux, div-flux

       4. viscosity-correction --- viscosity correction:
             none | sutherland

       5. shock-capturing --- shock capturing scheme:
             none | artificial-viscosity

       Example:

          [solver]
          system = navier-stokes
          order = 3
          anti-alias = flux
          viscosity-correction = none
          shock-capturing = artificial-viscosity

   [solver-time-integrator]
       Parameterises the time-integration scheme used by the solver with

       1. formulation --- formulation:
             std | dual

             where

             std requires

                 • scheme --- time-integration scheme
                       euler | rk34 | rk4 | rk45 | tvd-rk3tstart --- initial time
                       floattend --- final time
                       floatdt --- time-step
                       floatcontroller --- time-step controller
                       none | pi

                       where

                       pi only works with rk34 and rk45 and requires

                           • atol --- absolute error tolerance
                                floatrtol --- relative error tolerance
                                floaterrest-norm --- norm to use for estimating the error
                                uniform | l2safety-fact  ---  safety  factor  for step size adjustment (suitable
                             range 0.80-0.95)
                                floatmin-fact --- minimum factor that the time-step  can  change  between
                             iterations (suitable range 0.1-0.5)
                                floatmax-fact  ---  maximum  factor that the time-step can change between
                             iterations (suitable range 2.0-6.0)
                                float

             dual requires

                 • scheme --- time-integration scheme
                       backward-euler | bdf2 | bdf3pseudo-scheme --- pseudo-time-integration scheme
                       euler | tvd-rk3 | rk4tstart --- initial time
                       floattend --- final time
                       floatdt --- time-step
                       floatpseudo-dt --- pseudo-time-step
                       floatcontroller --- pseudo-time-step controller
                       none

                       where

                       none requires

                           • pseudo-niters-max --- minimum number of iterations
                                intpseudo-niters-min --- maximum number of iterations
                                intpseudo-aresid --- absolute residual tolerance
                                floatpseudo-rresid --- relative residual tolerance
                                float

       Example:

          [solver-time-integrator]
          formulation = std
          scheme = rk45
          controller = pi
          tstart = 0.0
          tend = 10.0
          dt = 0.001
          atol = 0.00001
          rtol = 0.00001
          errest-norm = l2
          safety-fact = 0.9
          min-fact = 0.3
          max-fact = 2.5

   [solver-interfaces]
       Parameterises the interfaces with

       1. riemann-solver --- type of Riemann solver:
             rusanov | hll | hllc | roe | roem

       2. ldg-beta --- beta parameter used for LDG:
             float

       3. ldg-tau --- tau parameter used for LDG:
             float

       Example:

          [solver-interfaces]
          riemann-solver = rusanov
          ldg-beta = 0.5
          ldg-tau = 0.1

   [solver-interfaces-line]
       Parameterises the line interfaces with

       1. flux-pts --- location of the flux points on a line interface:
             gauss-legendre | gauss-legendre-lobatto

       2. quad-deg --- degree of quadrature rule for anti-aliasing on a line interface:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing on a line interface:
             gauss-legendre | gauss-legendre-lobatto

       Example:

          [solver-interfaces-line]
          flux-pts = gauss-legendre
          quad-deg = 10
          quad-pts = gauss-legendre

   [solver-interfaces-tri]
       Parameterises the triangular interfaces with

       1. flux-pts --- location of the flux points on a triangular interface:
             williams-shunn

       2. quad-deg --- degree of quadrature rule for anti-aliasing on a triangular interface:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing on a triangular interface:
             williams-shunn | witherden-vincent

       Example:

          [solver-interfaces-tri]
          flux-pts = williams-shunn
          quad-deg = 10
          quad-pts = williams-shunn

   [solver-interfaces-quad]
       Parameterises the quadrilateral interfaces with

       1. flux-pts --- location of the flux points on a quadrilateral interface:
             gauss-legendre | gauss-legendre-lobatto

       2. quad-deg --- degree of quadrature rule for anti-aliasing on a quadrilateral interface:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing on a quadrilateral interface:
             gauss-legendre | gauss-legendre-lobatto | witherden-vincent

       Example:

          [solver-interfaces-quad]
          flux-pts = gauss-legendre
          quad-deg = 10
          quad-pts = gauss-legendre

   [solver-elements-tri]
       Parameterises the triangular elements with

       1. soln-pts --- location of the solution points in a triangular element:
             williams-shunn

       2. quad-deg --- degree of quadrature rule for anti-aliasing in a triangular element:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing in a triangular element:
             williams-shunn | witherden-vincent

       Example:

          [solver-elements-tri]
          soln-pts = williams-shunn
          quad-deg = 10
          quad-pts = williams-shunn

   [solver-elements-quad]
       Parameterises the quadrilateral elements with

       1. soln-pts --- location of the solution points in a quadrilateral element:
             gauss-legendre | gauss-legendre-lobatto

       2. quad-deg --- degree of quadrature rule for anti-aliasing in a quadrilateral element:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing in a quadrilateral element:
             gauss-legendre | gauss-legendre-lobatto | witherden-vincent

       Example:

          [solver-elements-quad]
          soln-pts = gauss-legendre
          quad-deg = 10
          quad-pts = gauss-legendre

   [solver-elements-hex]
       Parameterises the hexahedral elements with

       1. soln-pts --- location of the solution points in a hexahedral element:
             gauss-legendre | gauss-legendre-lobatto

       2. quad-deg --- degree of quadrature rule for anti-aliasing in a hexahedral element:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing in a hexahedral element:
             gauss-legendre | gauss-legendre-lobatto | witherden-vincent

       Example:

          [solver-elements-hex]
          soln-pts = gauss-legendre
          quad-deg = 10
          quad-pts = gauss-legendre

   [solver-elements-tet]
       Parameterises the tetrahedral elements with

       1. soln-pts --- location of the solution points in a tetrahedral element:
             shunn-ham

       2. quad-deg --- degree of quadrature rule for anti-aliasing in a tetrahedral element:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing in a tetrahedral element:
             shunn-ham | witherden-vincent

       Example:

          [solver-elements-tet]
          soln-pts = shunn-ham
          quad-deg = 10
          quad-pts = shunn-ham

   [solver-elements-pri]
       Parameterises the prismatic elements with

       1. soln-pts --- location of the solution points in a prismatic element:
             williams-shunn~gauss-legendre | williams-shunn~gauss-legendre-lobatto

       2. quad-deg --- degree of quadrature rule for anti-aliasing in a prismatic element:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing in a prismatic element:
             williams-shunn~gauss-legendre     |     williams-shunn~gauss-legendre-lobatto      |
             witherden-vincent

       Example:

          [solver-elements-pri]
          soln-pts = williams-shunn~gauss-legendre
          quad-deg = 10
          quad-pts = williams-shunn~gauss-legendre

   [solver-elements-pyr]
       Parameterises the pyramidal elements with

       1. soln-pts --- location of the solution points in a pyramidal element:
             gauss-legendre | gauss-legendre-lobatto

       2. quad-deg --- degree of quadrature rule for anti-aliasing in a pyramidal element:
             int

       3. quad-pts --- name of quadrature rule for anti-aliasing in a pyramidal element:
             witherden-vincent

       Example:

          [solver-elements-pyr]
          soln-pts = gauss-legendre
          quad-deg = 10
          quad-pts = witherden-vincent

   [solver-source-terms]
       Parameterises solution, space (x, y, [z]), and time (t) dependent source terms with

       1. rho --- density source term:
             string

       2. rhou --- x-momentum source term:
             string

       3. rhov --- y-momentum source term:
             string

       4. rhow --- z-momentum source term:
             string

       5. E --- energy source term:
             string

       Example:

          [solver-source-terms]
          rho = t
          rhou = x*y*sin(y)
          rhov = z*rho
          rhow = 1.0
          E = 1.0/(1.0+x)

   [solver-artificial-viscosity]
       Parameterises artificial viscosity for shock capturing with

       1. max-artvisc --- maximum artificial viscosity:
             float

       2. s0 --- sensor cut-off:
             float

       3. kappa --- sensor range:
             float

       Example:

          [solver-artificial-viscosity]
          max-artvisc = 0.01
          s0 = 0.01
          kappa = 5.0

   [soln-filter]
       Parameterises an exponential solution filter with

       1. nsteps --- apply filter every nsteps:
             int

       2. alpha --- strength of filter:
             float

       3. order --- order of filter:
             int

       4. cutoff --- cutoff frequency below which no filtering is applied:
             int

       Example:

          [soln-filter]
          nsteps = 10
          alpha = 36.0
          order = 16
          cutoff = 1

   [soln-plugin-writer]
       Periodically write the solution to disk in the pyfrs format.  Parameterised with

       1. dt-out --- write to disk every dt-out time units:
             float

       2. basedir --- relative path to directory where outputs will be written:
             string

       3. basename --- pattern of output names:
             string

       4. post-action --- command to execute after writing the file:
             string

       5. post-action-mode --- how the post-action command should be executed:
             blocking | non-blocking

       Example:

          [soln-plugin-writer]
          dt-out = 0.01
          basedir = .
          basename = files-{t:.2f}
          post-action = echo "Wrote file {soln} at time {t} for mesh {mesh}."
          post-action-mode = blocking

   [soln-plugin-fluidforce-name]
       Periodically  integrates the pressure and viscous stress on the boundary labelled name and
       writes out the resulting force vectors to a CSV file. Parameterised with

       1. nsteps --- integrate every nsteps:
             int

       2. file --- output file path; should the file already exist it will be appended to:
             string

       3. header --- if to output a header row or not:
             boolean

       Example:

          [soln-plugin-fluidforce-wing]
          nsteps = 10
          file = wing-forces.csv
          header = true

   [soln-plugin-nancheck]
       Periodically checks the solution for NaN values. Parameterised with

       1. nsteps --- check every nsteps:
             int

       Example:

          [soln-plugin-nancheck]
          nsteps = 10

   [soln-plugin-residual]
       Periodically calculates the residual and writes it out to a CSV file.  Parameterised with

       1. nsteps --- calculate every nsteps:
             int

       2. file --- output file path; should the file already exist it will be appended to:
             string

       3. header --- if to output a header row or not:
             boolean

       Example:

          [soln-plugin-residual]
          nsteps = 10
          file = residual.csv
          header = true

   [soln-plugin-dtstats]
       Write time-step statistics out to a CSV file. Parameterised with

       1. flushsteps --- flush to disk every flushsteps:
             int

       2. file --- output file path; should the file already exist it will be appended to:
             string

       3. header --- if to output a header row or not:
             boolean

       Example:

          [soln-plugin-dtstats]
          flushsteps = 100
          file = dtstats.csv
          header = true

   [soln-plugin-sampler]
       Periodically samples specific points in the volume and writes them out to a CSV file.  The
       plugin  actually  samples  the solution point closest to each sample point, hence a slight
       discrepancy in the output sampling locations  is  to  be  expected.   A  nearest-neighbour
       search  is  used  to  locate the closest solution point to the sample point.  The location
       process  automatically  takes  advantage   of   scipy.spatial.cKDTree   where   available.
       Parameterised with

       1. nsteps --- sample every nsteps:
             int

       2. samp-pts --- list of points to sample:
             [(x, y), (x, y), ...] | [(x, y, z), (x, y, z), ...]

       3. format --- output variable format:
             primitive | conservative

       4. file --- output file path; should the file already exist it will be appended to:
             string

       5. header --- if to output a header row or not:
             boolean

       Example:

          [soln-plugin-sampler]
          nsteps = 10
          samp-pts = [(1.0, 0.7, 0.0), (1.0, 0.8, 0.0)]
          format = primative
          file = point-data.csv
          header = true

   [soln-plugin-tavg]
       Time average quantities. Parameterised with

       1. nsteps --- accumulate the average every nsteps time steps:
             int

       2. dt-out --- write to disk every dt-out time units:
             float

       3. basedir --- relative path to directory where outputs will be written:
             string

       4. basename --- pattern of output names:
             string

       5. avg-name  ---  expression as a function of the primitive variables, time (t), and space
          (x, y, [z]) to time average; multiple expressions, each with their  own  name,  may  be
          specified:
             string

       Example:

          [soln-plugin-tavg]
          nsteps = 10
          dt-out = 2.0
          basedir = .
          basename = files-{t:06.2f}

          avg-p = p
          avg-p2 = p*p
          avg-vel = sqrt(u*u + v*v)

   [soln-bcs-name]
       Parameterises constant, or if available space (x, y, [z]) and time (t) dependent, boundary
       condition labelled name in the .pyfrm file with

       1. type --- type of boundary condition:
             char-riem-inv | no-slp-adia-wall | no-slp-isot-wall | slp-adia-wall |  sub-in-frv  |
             sub-in-ftpttang | sub-out-fp | sup-in-fa | sup-out-fn

             where

             char-riem-inv requires

                 • rho --- density
                       float | stringu --- x-velocity
                       float | stringv --- y-velocity
                       float | stringw --- z-velocity
                       float | stringp --- static pressure
                       float | string

             no-slp-isot-wall requires

                 • u --- x-velocity of wall
                       floatv --- y-velocity of wall
                       floatw --- z-velocity of wall
                       floatcpTw   ---  product  of  specific  heat  capacity  at  constant  pressure  and
                   temperature of wall
                       float

             sub-in-frv requires

                 • rho --- density
                       float | stringu --- x-velocity
                       float | stringv --- y-velocity
                       float | stringw --- z-velocity
                       float | string

             sub-in-ftpttang requires

                 • pt --- total pressure
                       floatcpTt --- product of specific heat capacity  at  constant  pressure  and  total
                   temperature
                       floattheta  ---  azimuth  angle  (in  degrees)  of inflow measured in the x-y plane
                   relative to the positive x-axis
                       floatphi --- inclination angle (in degrees) of  inflow  measured  relative  to  the
                   positive z-axis
                       float

             sub-out-fp requires

                 • p --- static pressure
                       float | string

             sup-in-fa requires

                 • rho --- density
                       float | stringu --- x-velocity
                       float | stringv --- y-velocity
                       float | stringw --- z-velocity
                       float | stringp --- static pressure
                       float | string

       Example:

          [soln-bcs-bcwallupper]
          type = no-slp-isot-wall
          cpTw = 10.0
          u = 1.0

   [soln-ics]
       Parameterises space (x, y, [z]) dependent initial conditions with

       1. rho --- initial density distribution:
             string

       2. u --- initial x-velocity distribution:
             string

       3. v --- initial y-velocity distribution:
             string

       4. w --- initial z-velocity distribution:
             string

       5. p --- initial static pressure distribution:
             string

       Example:

          [soln-ics]
          rho = 1.0
          u = x*y*sin(y)
          v = z
          w = 1.0
          p = 1.0/(1.0+x)

   Example --- 2D Couette Flow
       Proceed  with  the  following  steps to run a serial 2D Couette flow simulation on a mixed
       unstructured mesh:

       1. Create a working directory called couette_flow_2d/

       2. Copy  the  configuration  file  PyFR/examples/couette_flow_2d/couette_flow_2d.ini  into
          couette_flow_2d/

       3. Copy   the   Gmsh   mesh  file  PyFR/examples/couette_flow_2d/couette_flow_2d.msh  into
          couette_flow_2d/

       4. Run  pyfr  to  covert  the  Gmsh   mesh   file   into   a   PyFR   mesh   file   called
          couette_flow_2d.pyfrm:

             pyfr import couette_flow_2d.msh couette_flow_2d.pyfrm

       5. Run  pyfr to solve the Navier-Stokes equations on the mesh, generating a series of PyFR
          solution files called couette_flow_2d-*.pyfrs:

             pyfr run -b cuda -p couette_flow_2d.pyfrm couette_flow_2d.ini

       6. Run  pyfr  on  the  solution  file  couette_flow_2d-040.pyfrs  converting  it  into  an
          unstructured  VTK  file called couette_flow_2d-040.vtu. Note that in order to visualise
          the high-order data,  each  high-order  element  is  sub-divided  into  smaller  linear
          elements.  The  level  of  sub-division  is controlled by the integer at the end of the
          command:

             pyfr export couette_flow_2d.pyfrm couette_flow_2d-040.pyfrs couette_flow_2d-040.vtu -d 4

       7. Visualise the unstructured VTK file in Paraview
         [image: couette flow] [image] Colour map of steady-state density distribution..UNINDENT

   Example --- 2D Euler Vortex
       Proceed with the following steps to run  a  parallel  2D  Euler  vortex  simulation  on  a
       structured mesh:

       1. Create a working directory called euler_vortex_2d/

       2. Copy  the  configuration  file  PyFR/examples/euler_vortex_2d/euler_vortex_2d.ini  into
          euler_vortex_2d/

       3. Copy   the    Gmsh    file    PyFR/examples/euler_vortex_2d/euler_vortex_2d.msh    into
          euler_vortex_2d/

       4. Run   pyfr   to   convert   the   Gmsh   mesh   file  into  a  PyFR  mesh  file  called
          euler_vortex_2d.pyfrm:

             pyfr import euler_vortex_2d.msh euler_vortex_2d.pyfrm

       5. Run pyfr to partition the PyFR mesh file into two pieces:

             pyfr partition 2 euler_vortex_2d.pyfrm .

       6. Run pyfr to solve the Euler equations on the mesh, generating a series of PyFR solution
          files called euler_vortex_2d*.pyfrs:

             mpirun -n 2 pyfr run -b cuda -p euler_vortex_2d.pyfrm euler_vortex_2d.ini

       7. Run  pyfr  on  the  solution  file  euler_vortex_2d-100.0.pyfrs  converting  it into an
          unstructured VTK file called euler_vortex_2d-100.0.vtu. Note that in order to visualise
          the  high-order  data,  each  high-order  element  is  sub-divided  into smaller linear
          elements. The level of sub-division is controlled by the integer  at  the  end  of  the
          command:

             pyfr export euler_vortex_2d.pyfrm euler_vortex_2d-100.0.pyfrs euler_vortex_2d-100.0.vtu -d 4

       8. Visualise the unstructured VTK file in Paraview
         [image:   euler  vortex]  [image]  Colour  map  of  density  distribution  at  100  time
         units..UNINDENT

DEVELOPER GUIDE

   A Brief Overview of the PyFR Framework
   Where to Start
       The symbolic link pyfr.scripts.pyfr points to the script pyfr.scripts.main, which is where
       it  all starts! Specifically, the function process_run calls the function _process_common,
       which in turn calls the function get_solver, returning an Integrator -- a composite  of  a
       Controller  and  a Stepper. The Integrator has a method named run, which is then called to
       run the simulation.

   Controller
       A Controller acts to advance the simulation in time.  Specifically,  a  Controller  has  a
       method named advance_to which advances a System to a specified time. There are three types
       of Controller available in PyFR 1.5.0:

       class pyfr.integrators.std.controllers.StdNoneController(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _accept_step(dt, idxcurr, err=None)

              _add(*args)

              _controller_needs_errest

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _reject_step(dt, idxold, err=None)

              _stepper_has_errest

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              controller_name = 'none'

              formulation = 'std'

              nsteps

              run()

              soln

              step(t, dt)

       class pyfr.integrators.std.controllers.StdPIController(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _accept_step(dt, idxcurr, err=None)

              _add(*args)

              _controller_needs_errest

              _errest(x, y, z)

              _get_axnpby_kerns(n, subdims=None)

              _get_errest_kerns()

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _reject_step(dt, idxold, err=None)

              _stepper_has_errest

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              controller_name = 'pi'

              formulation = 'std'

              nsteps

              run()

              soln

              step(t, dt)

       class pyfr.integrators.dual.controllers.DualNoneController(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _accept_step(dt, idxcurr)

              _add(*args)

              _dual_time_source()

              _get_axnpby_kerns(n, subdims=None)

              _get_errest_kerns()

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _resid(x, y)

              _source_regidx

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              _stepper_regidx

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              controller_name = 'none'

              finalise_step(currsoln)

              formulation = 'dual'

              nsteps

              run()

              soln

              step(t, dt)

       Types of Controller are related via the following inheritance diagram:

   Stepper
       A Stepper acts to advance the simulation by a single time-step.  Specifically,  a  Stepper
       has  a method named step which advances a System by a single time-step. There are 11 types
       of Stepper available in PyFR 1.5.0:

       class pyfr.integrators.std.steppers.StdEulerStepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _controller_needs_errest

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _stepper_has_errest

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              formulation = 'std'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'euler'

       class pyfr.integrators.std.steppers.StdRK4Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _controller_needs_errest

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _stepper_has_errest

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              formulation = 'std'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'rk4'

       class pyfr.integrators.std.steppers.StdRK34Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _controller_needs_errest

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _stepper_has_errest

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              a = [0.32416573882874605, 0.5570978645055429, -0.08605491431272755]

              advance_to(t)

              b     =     [0.10407986927510238,      0.6019391368822611,      2.9750900268840206,
              -2.681109033041384]

              bhat     =     [0.3406814840808433,     0.09091523008632837,     2.866496742725443,
              -2.298093456892615]

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              formulation = 'std'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'rk34'

       class pyfr.integrators.std.steppers.StdRK45Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _controller_needs_errest

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _stepper_has_errest

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              a     =     [0.22502245872571303,     0.5440433129514047,      0.14456824349399464,
              0.7866643421983568]

              advance_to(t)

              b      =     [0.05122930664033915,     0.3809548257264019,     -0.3733525963923833,
              0.5925012850263623, 0.34866717899927996]

              bhat    =    [0.13721732210321927,    0.19188076232938728,     -0.2292067211595315,
              0.6242946765438954, 0.27581396018302956]

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              formulation = 'std'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'rk45'

       class pyfr.integrators.std.steppers.StdTVDRK3Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _controller_needs_errest

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _stepper_has_errest

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              formulation = 'std'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'tvd-rk3'

       class pyfr.integrators.dual.steppers.DualBDF2Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _dual_time_source

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _source_regidx

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              _stepper_regidx

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              finalise_step(currsoln)

              formulation = 'dual'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'bdf2'

       class pyfr.integrators.dual.steppers.DualBDF3Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _dual_time_source

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _source_regidx

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              _stepper_regidx

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              finalise_step(currsoln)

              formulation = 'dual'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'bdf3'

       class pyfr.integrators.dual.steppers.DualBackwardEulerStepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _dual_time_source

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _source_regidx

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              _stepper_regidx

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              finalise_step(currsoln)

              formulation = 'dual'

              nsteps

              run()

              soln

              step(t, dt)

              stepper_name = 'backward-euler'

       class pyfr.integrators.dual.pseudosteppers.DualPseudoRK4Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _add_with_dts(*args, c)

              _dual_time_source()

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _pseudo_stepper_nregs

              _pseudo_stepper_order

              _source_regidx

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              _stepper_regidx

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              finalise_step(currsoln)

              formulation = 'dual'

              nsteps

              pseudo_stepper_name = 'rk4'

              run()

              soln

              step(t, dt, dtau)

       class pyfr.integrators.dual.pseudosteppers.DualPseudoTVDRK3Stepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _add_with_dts(*args, c)

              _dual_time_source()

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _pseudo_stepper_nregs

              _pseudo_stepper_order

              _source_regidx

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              _stepper_regidx

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              finalise_step(currsoln)

              formulation = 'dual'

              nsteps

              pseudo_stepper_name = 'tvd-rk3'

              run()

              soln

              step(t, dt, dtau)

       class pyfr.integrators.dual.pseudosteppers.DualPseudoEulerStepper(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _add(*args)

              _add_with_dts(*args, c)

              _dual_time_source()

              _get_axnpby_kerns(n, subdims=None)

              _get_gndofs()

              _get_kernels(name, nargs, **kwargs)

              _get_plugins()

              _get_reg_banks(nreg)

              _prepare_reg_banks(*bidxes)

              _pseudo_stepper_nregs

              _pseudo_stepper_order

              _source_regidx

              _stepper_nfevals

              _stepper_nregs

              _stepper_order

              _stepper_regidx

              advance_to(t)

              call_plugin_dt(dt)

              cfgmeta

              collect_stats(stats)

              finalise_step(currsoln)

              formulation = 'dual'

              nsteps

              pseudo_stepper_name = 'euler'

              run()

              soln

              step(t, dt, dtau)

       Types of Stepper are related via the following inheritance diagram:

   System
       A  System  holds  information/data for the system, including Elements, Interfaces, and the
       Backend with which the simulation is to run. A  System  has  a  method  named  rhs,  which
       obtains  the  divergence  of  the flux (the 'right-hand-side') at each solution point. The
       method rhs invokes various kernels which have been pre-generated and loaded into queues. A
       System  also  has  a  method  named  _gen_kernels  which  acts to generate all the kernels
       required by a particular System. A kernel is an instance  of  a  'one-off'  class  with  a
       method named run that implements the required kernel functionality. Individual kernels are
       produced by a kernel provider.  PyFR  1.5.0  has  various  types  of  kernel  provider.  A
       Pointwise  Kernel  Provider  produces  point-wise kernels such as Riemann solvers and flux
       functions   etc.   These   point-wise   kernels   are   specified   using   an    in-built
       platform-independent  templating  language  derived  from  Mako, henceforth referred to as
       PyFR-Mako. There are two types of System available in PyFR 1.5.0:

       class pyfr.solvers.euler.system.EulerSystem(backend, rallocs, mesh, initsoln, nreg, cfg)

              _abc_impl = <_abc_data object>

              _gen_kernels(eles, iint, mpiint, bcint)

              _gen_queues()

              _load_bc_inters(rallocs, mesh, elemap)

              _load_eles(rallocs, mesh, initsoln, nreg, nonce)

              _load_int_inters(rallocs, mesh, elemap)

              _load_mpi_inters(rallocs, mesh, elemap)

              _nonce_seq = count(0)

              _nqueues = 2

              bbcinterscls
                     alias of pyfr.solvers.euler.inters.EulerBaseBCInters

              ele_scal_upts(idx)

              elementscls
                     alias of pyfr.solvers.euler.elements.EulerElements

              filt(uinoutbank)

              intinterscls
                     alias of pyfr.solvers.euler.inters.EulerIntInters

              mpiinterscls
                     alias of pyfr.solvers.euler.inters.EulerMPIInters

              name = 'euler'

              rhs(t, uinbank, foutbank)

       class pyfr.solvers.navstokes.system.NavierStokesSystem(backend, rallocs,  mesh,  initsoln,
       nreg, cfg)

              _abc_impl = <_abc_data object>

              _gen_kernels(eles, iint, mpiint, bcint)

              _gen_queues()

              _load_bc_inters(rallocs, mesh, elemap)

              _load_eles(rallocs, mesh, initsoln, nreg, nonce)

              _load_int_inters(rallocs, mesh, elemap)

              _load_mpi_inters(rallocs, mesh, elemap)

              _nonce_seq = count(0)

              _nqueues = 2

              bbcinterscls
                     alias of pyfr.solvers.navstokes.inters.NavierStokesBaseBCInters

              ele_scal_upts(idx)

              elementscls
                     alias of pyfr.solvers.navstokes.elements.NavierStokesElements

              filt(uinoutbank)

              intinterscls
                     alias of pyfr.solvers.navstokes.inters.NavierStokesIntInters

              mpiinterscls
                     alias of pyfr.solvers.navstokes.inters.NavierStokesMPIInters

              name = 'navier-stokes'

              rhs(t, uinbank, foutbank)

       Types of System are related via the following inheritance diagram:

   Elements
       An  Elements  holds  information/data  for  a  group  of  elements. There are two types of
       Elements available in PyFR 1.5.0:

       class pyfr.solvers.euler.elements.EulerElements(basiscls, eles, cfg)

              _abc_impl = <_abc_data object>

              _gen_pnorm_fpts()

              _mag_pnorm_fpts = None

              _norm_pnorm_fpts = None

              _ploc_in_src_exprs = None

              _scratch_bufs

              _smats_djacs_mpts = None

              _soln_in_src_exprs = None

              _src_exprs = None

              _srtd_face_fpts = None

              static con_to_pri(cons, cfg)

              convarmap = {2: ['rho', 'rhou', 'rhov', 'E'], 3: ['rho',  'rhou',  'rhov',  'rhow',
              'E']}

              dualcoeffs  =  {2: ['rho', 'rhou', 'rhov', 'E'], 3: ['rho', 'rhou', 'rhov', 'rhow',
              'E']}

              formulations = ['std', 'dual']

              get_mag_pnorms(eidx, fidx)

              get_mag_pnorms_for_inter(eidx, fidx)

              get_norm_pnorms(eidx, fidx)

              get_norm_pnorms_for_inter(eidx, fidx)

              get_ploc_for_inter(eidx, fidx)

              get_scal_fpts_for_inter(eidx, fidx)

              get_vect_fpts_for_inter(eidx, fidx)

              opmat(expr)

              ploc_at(name)

              ploc_at_np(name)

              plocfpts = None

              static pri_to_con(pris, cfg)

              privarmap = {2: ['rho', 'u', 'v', 'p'], 3: ['rho', 'u', 'v', 'w', 'p']}

              rcpdjac_at(name)

              rcpdjac_at_np(name)

              set_backend(backend, nscalupts, nonce)

              set_ics_from_cfg()

              set_ics_from_soln(solnmat, solncfg)

              smat_at(name)

              smat_at_np(name)

              visvarmap = {2: {'density': ['rho'], 'pressure': ['p'], 'velocity': ['u', 'v']}, 3:
              {'density': ['rho'], 'pressure': ['p'], 'velocity': ['u', 'v', 'w']}}

       class pyfr.solvers.navstokes.elements.NavierStokesElements(basiscls, eles, cfg)

              _abc_impl = <_abc_data object>

              _gen_pnorm_fpts()

              _mag_pnorm_fpts = None

              _norm_pnorm_fpts = None

              _ploc_in_src_exprs = None

              _scratch_bufs

              _smats_djacs_mpts = None

              _soln_in_src_exprs = None

              _src_exprs = None

              _srtd_face_fpts = None

              static con_to_pri(cons, cfg)

              convarmap  =  {2:  ['rho', 'rhou', 'rhov', 'E'], 3: ['rho', 'rhou', 'rhov', 'rhow',
              'E']}

              dualcoeffs = {2: ['rho', 'rhou', 'rhov', 'E'], 3: ['rho', 'rhou',  'rhov',  'rhow',
              'E']}

              formulations = ['std', 'dual']

              get_artvisc_fpts_for_inter(eidx, fidx)

              get_mag_pnorms(eidx, fidx)

              get_mag_pnorms_for_inter(eidx, fidx)

              get_norm_pnorms(eidx, fidx)

              get_norm_pnorms_for_inter(eidx, fidx)

              get_ploc_for_inter(eidx, fidx)

              get_scal_fpts_for_inter(eidx, fidx)

              get_vect_fpts_for_inter(eidx, fidx)

              opmat(expr)

              ploc_at(name)

              ploc_at_np(name)

              plocfpts = None

              static pri_to_con(pris, cfg)

              privarmap = {2: ['rho', 'u', 'v', 'p'], 3: ['rho', 'u', 'v', 'w', 'p']}

              rcpdjac_at(name)

              rcpdjac_at_np(name)

              set_backend(backend, nscalupts, nonce)

              set_ics_from_cfg()

              set_ics_from_soln(solnmat, solncfg)

              shockvar = 'rho'

              smat_at(name)

              smat_at_np(name)

              visvarmap = {2: {'density': ['rho'], 'pressure': ['p'], 'velocity': ['u', 'v']}, 3:
              {'density': ['rho'], 'pressure': ['p'], 'velocity': ['u', 'v', 'w']}}

       Types of Elements are related via the following inheritance diagram:

   Interfaces
       An Interfaces holds information/data for a group of interfaces. There are  four  types  of
       (non-boundary) Interfaces available in PyFR 1.5.0:

       class pyfr.solvers.euler.inters.EulerIntInters(*args, **kwargs)

              _const_mat(inter, meth)

              _gen_perm(lhs, rhs)

              _scal_view(inter, meth)

              _scal_xchg_view(inter, meth)

              _vect_view(inter, meth)

              _vect_xchg_view(inter, meth)

              _view(inter, meth, vshape=())

              _xchg_view(inter, meth, vshape=())

       class pyfr.solvers.euler.inters.EulerMPIInters(*args, **kwargs)

              MPI_TAG = 2314

              _const_mat(inter, meth)

              _scal_view(inter, meth)

              _scal_xchg_view(inter, meth)

              _vect_view(inter, meth)

              _vect_xchg_view(inter, meth)

              _view(inter, meth, vshape=())

              _xchg_view(inter, meth, vshape=())

       class pyfr.solvers.navstokes.inters.NavierStokesIntInters(be, lhs, rhs, elemap, cfg)

              _const_mat(inter, meth)

              _gen_perm(lhs, rhs)

              _scal_view(inter, meth)

              _scal_xchg_view(inter, meth)

              _vect_view(inter, meth)

              _vect_xchg_view(inter, meth)

              _view(inter, meth, vshape=())

              _xchg_view(inter, meth, vshape=())

       class   pyfr.solvers.navstokes.inters.NavierStokesMPIInters(be,   lhs,  rhsrank,  rallocs,
       elemap, cfg)

              MPI_TAG = 2314

              _const_mat(inter, meth)

              _scal_view(inter, meth)

              _scal_xchg_view(inter, meth)

              _vect_view(inter, meth)

              _vect_xchg_view(inter, meth)

              _view(inter, meth, vshape=())

              _xchg_view(inter, meth, vshape=())

       Types of (non-boundary) Interfaces are related via the following inheritance diagram:

   Backend
       A Backend holds information/data for a backend. There are four types of Backend  available
       in PyFR 1.5.0:

       class pyfr.backends.cuda.base.CUDABackend(cfg)

              _abc_impl = <_abc_data object>

              _malloc_impl(nbytes)

              alias(obj, aobj)

              commit()

              const_matrix(initval, extent=None, tags={})

              kernel(name, *args, **kwargs)

              lookup = None

              malloc(obj, extent)

              matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              matrix_bank(mats, initbank=0, tags={})

              matrix_rslice(mat, p, q)

              name = 'cuda'

              queue()

              runall(sequence)

              view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

              xchg_matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              xchg_matrix_for_view(view, tags={})

              xchg_view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

       class pyfr.backends.mic.base.MICBackend(cfg)

              _abc_impl = <_abc_data object>

              _malloc_impl(nbytes)

              alias(obj, aobj)

              commit()

              const_matrix(initval, extent=None, tags={})

              kernel(name, *args, **kwargs)

              lookup = None

              malloc(obj, extent)

              matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              matrix_bank(mats, initbank=0, tags={})

              matrix_rslice(mat, p, q)

              name = 'mic'

              queue()

              runall(sequence)

              view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

              xchg_matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              xchg_matrix_for_view(view, tags={})

              xchg_view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

       class pyfr.backends.opencl.base.OpenCLBackend(cfg)

              _abc_impl = <_abc_data object>

              _malloc_impl(nbytes)

              alias(obj, aobj)

              commit()

              const_matrix(initval, extent=None, tags={})

              kernel(name, *args, **kwargs)

              lookup = None

              malloc(obj, extent)

              matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              matrix_bank(mats, initbank=0, tags={})

              matrix_rslice(mat, p, q)

              name = 'opencl'

              queue()

              runall(sequence)

              view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

              xchg_matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              xchg_matrix_for_view(view, tags={})

              xchg_view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

       class pyfr.backends.openmp.base.OpenMPBackend(cfg)

              _abc_impl = <_abc_data object>

              _malloc_impl(nbytes)

              alias(obj, aobj)

              commit()

              const_matrix(initval, extent=None, tags={})

              kernel(name, *args, **kwargs)

              lookup = None

              malloc(obj, extent)

              matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              matrix_bank(mats, initbank=0, tags={})

              matrix_rslice(mat, p, q)

              name = 'openmp'

              queue()

              runall(sequence)

              view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

              xchg_matrix(ioshape, initval=None, extent=None, aliases=None, tags={})

              xchg_matrix_for_view(view, tags={})

              xchg_view(matmap, rmap, cmap, rstridemap=None, vshape=(), tags={})

       Types of Backend are related via the following inheritance diagram:

   Pointwise Kernel Provider
       A Pointwise Kernel Provider produces point-wise kernels.  Specifically, a Pointwise Kernel
       Provider has a method named register, which  adds  a  new  method  to  an  instance  of  a
       Pointwise  Kernel Provider. This new method, when called, returns a kernel. A kernel is an
       instance of a 'one-off' class with a method named run that implements the required  kernel
       functionality.   The  kernel  functionality  itself is specified using PyFR-Mako. Hence, a
       Pointwise Kernel Provider also has a method named _render_kernel, which renders  PyFR-Mako
       into  low-level  platform-specific  code. The _render_kernel method first sets the context
       for Mako (i.e. details about the Backend etc.) and then uses Mako to begin  rendering  the
       PyFR-Mako  specification.  When  Mako  encounters  a  pyfr:kernel  an instance of a Kernel
       Generator is created, which is used to render the body of the pyfr:kernel. There are  four
       types of Pointwise Kernel Provider available in PyFR 1.5.0:

       class pyfr.backends.cuda.provider.CUDAPointwiseKernelProvider(backend)

              _abc_impl = <_abc_data object>

              _build_arglst(dims, argn, argt, argdict)

              _build_kernel(name, src, argtypes)

              _instantiate_kernel(dims, fun, arglst)

              _render_kernel(name, mod, tplargs)

              kernel_generator_cls
                     alias of pyfr.backends.cuda.generator.CUDAKernelGenerator

              register(mod)

       class pyfr.backends.mic.provider.MICPointwiseKernelProvider(backend)

              _abc_impl = <_abc_data object>

              _build_arglst(dims, argn, argt, argdict)

              _build_kernel(name, src, argtypes, restype=None)

              _instantiate_kernel(dims, fun, arglst)

              _render_kernel(name, mod, tplargs)

              kernel_generator_cls
                     alias of pyfr.backends.mic.generator.MICKernelGenerator

              register(mod)

       class pyfr.backends.opencl.provider.OpenCLPointwiseKernelProvider(backend)

              _abc_impl = <_abc_data object>

              _build_arglst(dims, argn, argt, argdict)

              _build_kernel(name, src, argtypes)

              _instantiate_kernel(dims, fun, arglst)

              _render_kernel(name, mod, tplargs)

              kernel_generator_cls
                     alias of pyfr.backends.opencl.generator.OpenCLKernelGenerator

              register(mod)

       class pyfr.backends.openmp.provider.OpenMPPointwiseKernelProvider(backend)

              _abc_impl = <_abc_data object>

              _build_arglst(dims, argn, argt, argdict)

              _build_kernel(name, src, argtypes, restype=None)

              _instantiate_kernel(dims, fun, arglst)

              _render_kernel(name, mod, tplargs)

              kernel_generator_cls
                     alias of pyfr.backends.openmp.generator.OpenMPKernelGenerator

              register(mod)

       Types of Pointwise Kernel Provider are related via the following inheritance diagram:

   Kernel Generator
       A Kernel Generator renders the PyFR-Mako in a pyfr:kernel into low-level platform-specific
       code. Specifically, a Kernel Generator has a method named render,  which  applies  Backend
       specific  regex  and  adds  Backend  specific 'boiler plate' code to produce the low-level
       platform-specific source -- which is compiled, linked, and loaded. There are four types of
       Kernel Generator available in PyFR 1.5.0:

       class pyfr.backends.cuda.generator.CUDAKernelGenerator(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _deref_arg_array_1d(arg)

              _deref_arg_array_2d(arg)

              _deref_arg_view(arg)

              _render_body(body)

              _render_spec()

              argspec()

              needs_ldim(arg)

              render()

       class pyfr.backends.mic.generator.MICKernelGenerator(name, ndim, args, body, fpdtype)

              _abc_impl = <_abc_data object>

              _deref_arg_array_1d(arg)

              _deref_arg_array_2d(arg)

              _deref_arg_view(arg)

              _render_body(body)

              _render_spec_unpack()

              argspec()

              needs_ldim(arg)

              render()

       class pyfr.backends.opencl.generator.OpenCLKernelGenerator(*args, **kwargs)

              _abc_impl = <_abc_data object>

              _deref_arg_array_1d(arg)

              _deref_arg_array_2d(arg)

              _deref_arg_view(arg)

              _render_body(body)

              _render_spec()

              argspec()

              needs_ldim(arg)

              render()

       class   pyfr.backends.openmp.generator.OpenMPKernelGenerator(name,   ndim,   args,   body,
       fpdtype)

              _abc_impl = <_abc_data object>

              _deref_arg_array_1d(arg)

              _deref_arg_array_2d(arg)

              _deref_arg_view(arg)

              _render_body(body)

              _render_spec()

              argspec()

              needs_ldim(arg)

              render()

       Types of Kernel Generator are related via the following inheritance diagram:

   PyFR-Mako
   PyFR-Mako Kernels
       PyFR-Mako kernels are specifications of  point-wise  functionality  that  can  be  invoked
       directly from within PyFR. They are opened with a header of the form:

          <%pyfr:kernel name='kernel-name' ndim='data-dimensionality' [argument-name='argument-intent argument-attribute argument-data-type' ...]>

       where

       1. kernel-name --- name of kernel
             string

       2. data-dimensionality --- dimensionality of data
             int

       3. argument-name --- name of argument
             string

       4. argument-intent --- intent of argument
             in | out | inout

       5. argument-attribute --- attribute of argument
             mpi | scalar | view

       6. argument-data-type --- data type of argument
             string

       and are closed with a footer of the form:

          </%pyfr:kernel>

   PyFR-Mako Macros
       PyFR-Mako  macros  are  specifications  of point-wise functionality that cannot be invoked
       directly from within PyFR, but can be embedded into PyFR-Mako  kernels.  PyFR-Mako  macros
       can  be  viewed as building blocks for PyFR-mako kernels. They are opened with a header of
       the form:

          <%pyfr:macro name='macro-name' params='[parameter-name, ...]'>

       where

       1. macro-name --- name of macro
             string

       2. parameter-name --- name of parameter
             string

       and are closed with a footer of the form:

          </%pyfr:macro>

       PyFR-Mako macros are embedded within a kernel using an expression of the following form:

          ${pyfr.expand('macro-name', ['parameter-name', ...])};

       where

       1. macro-name --- name of the macro
             string

       2. parameter-name --- name of parameter
             string

   Syntax
   Basic Functionality
       Basic functionality can be expressed using  a  restricted  subset  of  the  C  programming
       language. Specifically, use of the following is allowed:

       1. +,-,*,/ --- basic arithmetic

       2. sin, cos, tan --- basic trigonometric functions

       3. exp --- exponential

       4. pow --- power

       5. fabs --- absolute value

       6. output = ( condition ? satisfied : unsatisfied ) --- ternary if

       7. min --- minimum

       8. max --- maximum

       However, conditional if statements, as well as for/while loops, are not allowed.

   Expression Substitution
       Mako  expression  substitution can be used to facilitate PyFR-Mako kernel specification. A
       Python expression expression prescribed thus ${expression} is substituted for  the  result
       when the PyFR-Mako kernel specification is interpreted at runtime.

       Example:

          E = s[${ndims - 1}]

   Conditionals
       Mako  conditionals  can be used to facilitate PyFR-Mako kernel specification. Conditionals
       are opened with % if condition: and closed with % endif. Note that such  conditionals  are
       evaluated  when the PyFR-Mako kernel specification is interpreted at runtime, they are not
       embedded into the low-level kernel.

       Example:

          % if ndims == 2:
              fout[0][1] += t_xx;     fout[1][1] += t_xy;
              fout[0][2] += t_xy;     fout[1][2] += t_yy;
              fout[0][3] += u*t_xx + v*t_xy + ${-c['mu']*c['gamma']/c['Pr']}*T_x;
              fout[1][3] += u*t_xy + v*t_yy + ${-c['mu']*c['gamma']/c['Pr']}*T_y;
          % endif

   Loops
       Mako loops can be used to facilitate PyFR-Mako kernel  specification.   Loops  are  opened
       with % for condition: and closed with % endfor. Note that such loops are unrolled when the
       PyFR-Mako kernel specification is interpreted at runtime, they are not embedded  into  the
       low-level kernel.

       Example:

          % for i in range(ndims):
              rhov[${i}] = s[${i + 1}];
              v[${i}] = invrho*rhov[${i}];
          % endfor

INDICES AND TABLES

       • genindex

       • modindex

       • search

AUTHOR

       Imperial College London

       2013-2019, Imperial College London