Provided by: librheolef-dev_7.2-2build1_amd64
NAME
form - finite element bilinear form (rheolef-7.2)
DESCRIPTION
The form class groups four sparse matrix, associated to a bilinear form defined on two finite element spaces: a: Uh*Vh ----> IR (uh,vh) +---> a(uh,vh) The A operator associated to the bilinear form is defined by: A: Uh ----> Vh uh +---> A*uh where uh is a field(2), and vh=A*uh in Vh is such that a(uh,vh)=dual(A*uh,vh) for all vh in Vh and where dual(.,.) denotes the duality product between Vh and its dual. Since Vh is a finite dimensional space, its dual is identified to Vh itself and the duality product is the euclidean product in IR^dim(Vh). Also, the linear operator can be represented by a matrix. In practice, bilinear forms are created by using the integrate(3) function.
ALGEBRA
Forms, as matrix, support standard algebra. Adding or subtracting two forms writes a+b and a-b, respectively, while multiplying by a scalar lambda writes lambda*a and multiplying two forms writes a*b. Also, multiplying a form by a field uh writes a*uh. The form inversion is not as direct as e.g. as inv(a), since forms are very large matrix in practice: form inversion can be obtained via the solver(4) class. A notable exception is the case of block-diagonal forms at the element level: in that case, a direct inversion is possible during the assembly process, see integrate_option(3).
REPRESENTATION
The degrees of freedom (see space(2)) are splited between unknowns and blocked, i.e. uh=[uh.u,uh.b] for any field uh in Uh. Conversely, vh=[vh.u,vh.b] for any field vh in Vh. Then, the form-field vh=a*uh operation is formally equivalent to the following matrix- vector block operations: [ vh.u ] [ a.uu a.ub ] [ uh.u ] [ ] = [ ] [ ] [ vh.b ] [ a.bu a.bb ] [ uh.n ] or, after expansion: vh.u = a.uu*uh.u + a.ub*vh.b vh.b = a.bu*uh.b + a.bb*vh.b i.e. the A matrix also admits a 2x2 block structure. Then, the form class is represented by four sparse matrix and the csr(4) compressed format is used. Note that the previous formal relations for vh=a*uh writes equivalently within the Rheolef library as: vh.set_u() = a.uu()*uh.u() + a.ub()*uh.b(); vh.set_b() = a.bu()*uh.u() + a.bb()*uh.b();
IMPLEMENTATION
This documentation has been generated from file main/lib/form.h The form class is simply an alias to the form_basic class typedef form_basic<Float,rheo_default_memory_model> form; The form_basic class provides an interface to four sparse matrix: template<class T, class M> class form_basic { public : // typedefs: typedef typename csr<T,M>::size_type size_type; typedef T value_type; typedef typename scalar_traits<T>::type float_type; typedef geo_basic<float_type,M> geo_type; typedef space_basic<float_type,M> space_type; // allocator/deallocator: form_basic (); form_basic (const form_basic<T,M>&); form_basic<T,M>& operator= (const form_basic<T,M>&); template<class Expr, class Sfinae = typename std::enable_if<details::is_form_lazy<Expr>::value, Expr>::type> form_basic (const Expr&); template<class Expr, class Sfinae = typename std::enable_if<details::is_form_lazy<Expr>::value, Expr>::type> form_basic<T,M>& operator= (const Expr&); // allocators from initializer list (c++ 2011): form_basic (const std::initializer_list<details::form_concat_value<T,M> >& init_list); form_basic (const std::initializer_list<details::form_concat_line <T,M> >& init_list); // accessors: const space_type& get_first_space() const; const space_type& get_second_space() const; const geo_type& get_geo() const; bool is_symmetric() const; void set_symmetry (bool is_symm = true) const; bool is_definite_positive() const; void set_definite_positive (bool is_dp = true) const; bool is_symmetric_definite_positive() const; void set_symmetric_definite_positive() const; const communicator& comm() const; // linear algebra: form_basic<T,M> operator+ (const form_basic<T,M>& b) const; form_basic<T,M> operator- (const form_basic<T,M>& b) const; form_basic<T,M> operator* (const form_basic<T,M>& b) const; form_basic<T,M>& operator*= (const T& lambda); field_basic<T,M> operator* (const field_basic<T,M>& xh) const; field_basic<T,M> trans_mult (const field_basic<T,M>& yh) const; float_type operator () (const field_basic<T,M>& uh, const field_basic<T,M>& vh) const; // io: odiststream& put (odiststream& ops, bool show_partition = true) const; void dump (std::string name) const; // accessors & modifiers to unknown & blocked parts: const csr<T,M>& uu() const { return _uu; } const csr<T,M>& ub() const { return _ub; } const csr<T,M>& bu() const { return _bu; } const csr<T,M>& bb() const { return _bb; } csr<T,M>& set_uu() { return _uu; } csr<T,M>& set_ub() { return _ub; } csr<T,M>& set_bu() { return _bu; } csr<T,M>& set_bb() { return _bb; } }; template<class T, class M> form_basic<T,M> trans (const form_basic<T,M>& a); template<class T, class M> field_basic<T,M> diag (const form_basic<T,M>& a); template<class T, class M> form_basic<T,M> diag (const field_basic<T,M>& dh);
AUTHOR
Pierre Saramito <Pierre.Saramito@imag.fr>
COPYRIGHT
Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito@imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.