Provided by: libpdl-linearalgebra-perl_0.35-1build1_amd64 bug

NAME

       PDL::LinearAlgebra::Trans - Linear Algebra based transcendental functions for PDL

SYNOPSIS

        use PDL::LinearAlgebra::Trans;

        $a = random (100,100);
        $sqrt = msqrt($a);

DESCRIPTION

       This module provides some transcendental functions for matrices.  Moreover it provides
       sec, asec, sech, asech, cot, acot, acoth, coth, csc, acsc, csch, acsch. Beware, importing
       this module will overwrite the hidden PDL routine sec. If you need to call it specify its
       origin module : PDL::Basic::sec(args) #line 64 "Trans.pm"

FUNCTIONS

   geexp
         Signature: ([io,phys]A(n,n);int deg();scale();[io]trace();int [o]ns();int [o]info(); int [t]ipiv(n); [t]wsp(wspn))

       Computes exp(t*A), the matrix exponential of a general matrix, using the irreducible
       rational Pade approximation to the exponential function exp(x) = r(x) = (+/-)( I +
       2*(q(x)/p(x)) ), combined with scaling-and-squaring and optionally normalization of the
       trace.  The algorithm is described in Roger B. Sidje (rbs.uq.edu.au) "EXPOKIT: Software
       Package for Computing Matrix Exponentials".  ACM - Transactions On Mathematical Software,
       24(1):130-156, 1998

            A:         On input argument matrix. On output exp(t*A).
                       Use Fortran storage type.

            deg:       the degre of the diagonal Pade to be used.
                       a value of 6 is generally satisfactory.

            scale:     time-scale (can be < 0).

            trace:     on input, boolean value indicating whether or not perform
                       a trace normalization. On output value used.

            ns:        on output number of scaling-squaring used.

            info:      exit flag.
                             0 - no problem
                            > 0 - Singularity in LU factorization when solving
                            Pade approximation

         = random(5,5);
         = pdl(1);
        ->t->geexp(6,1,, ( = null), ( = null));

       geexp does not process bad values.  It will set the bad-value flag of all output ndarrays
       if the flag is set for any of the input ndarrays.

   cgeexp
         Signature: (complex [io,phys]A(n,n);int deg();scale();int trace();int [o]ns();int [o]info(); int [t] ipiv(n))

       Complex version of geexp. The value used for trace normalization is not returned.  The
       algorithm is described in Roger B. Sidje (rbs@maths.uq.edu.au) "EXPOKIT: Software Package
       for Computing Matrix Exponentials".  ACM - Transactions On Mathematical Software,
       24(1):130-156, 1998

   ctrsqrt
         Signature: (complex [io,phys]A(n,n);int uplo();complex [phys,o] B(n,n);int [o]info())

       Root square of complex triangular matrix. Uses a recurrence of Björck and Hammarling.
       (See Nicholas J. Higham. A new sqrtm for MATLAB. Numerical Analysis Report No. 336,
       Manchester Centre for Computational Mathematics, Manchester, England, January 1999. It's
       available at http://www.ma.man.ac.uk/~higham/pap-mf.html) If uplo is true, A is lower
       triangular.

   ctrfun
         Signature: (complex [io]A(n,n);int uplo();complex [o] B(n,n);int [o]info(); complex [t]diag(n);SV* func)

       Apply an arbitrary function to a complex triangular matrix. Uses a recurrence of Parlett.
       If uplo is true, A is lower triangular.

   mlog
       Return matrix logarithm of a square matrix.

        PDL = mlog(PDL(A))

        my $a = random(10,10);
        my $log = mlog($a);

   msqrt
       Return matrix square root (principal) of a square matrix.

        PDL = msqrt(PDL(A))

        my $a = random(10,10);
        my $sqrt = msqrt($a);

   mexp
       Return matrix exponential of a square matrix.

        PDL = mexp(PDL(A))

        my $a = random(10,10);
        my $exp = mexp($a);

   mpow
       Return matrix power of a square matrix.

        PDL = mpow(PDL(A), SCALAR(exponent))

        my $a = random(10,10);
        my $powered = mpow($a,2.5);

   mcos
       Return matrix cosine of a square matrix.

        PDL = mcos(PDL(A))

        my $a = random(10,10);
        my $cos = mcos($a);

   macos
       Return matrix inverse cosine of a square matrix.

        PDL = macos(PDL(A))

        my $a = random(10,10);
        my $acos = macos($a);

   msin
       Return matrix sine of a square matrix.

        PDL = msin(PDL(A))

        my $a = random(10,10);
        my $sin = msin($a);

   masin
       Return matrix inverse sine of a square matrix.

        PDL = masin(PDL(A))

        my $a = random(10,10);
        my $asin = masin($a);

   mtan
       Return matrix tangent of a square matrix.

        PDL = mtan(PDL(A))

        my $a = random(10,10);
        my $tan = mtan($a);

   matan
       Return matrix inverse tangent of a square matrix.

        PDL = matan(PDL(A))

        my $a = random(10,10);
        my $atan = matan($a);

   mcot
       Return matrix cotangent of a square matrix.

        PDL = mcot(PDL(A))

        my $a = random(10,10);
        my $cot = mcot($a);

   macot
       Return matrix inverse cotangent of a square matrix.

        PDL = macot(PDL(A))

        my $a = random(10,10);
        my $acot = macot($a);

   msec
       Return matrix secant of a square matrix.

        PDL = msec(PDL(A))

        my $a = random(10,10);
        my $sec = msec($a);

   masec
       Return matrix inverse secant of a square matrix.

        PDL = masec(PDL(A))

        my $a = random(10,10);
        my $asec = masec($a);

   mcsc
       Return matrix cosecant of a square matrix.

        PDL = mcsc(PDL(A))

        my $a = random(10,10);
        my $csc = mcsc($a);

   macsc
       Return matrix inverse cosecant of a square matrix.

        PDL = macsc(PDL(A))

        my $a = random(10,10);
        my $acsc = macsc($a);

   mcosh
       Return matrix hyperbolic cosine of a square matrix.

        PDL = mcosh(PDL(A))

        my $a = random(10,10);
        my $cos = mcosh($a);

   macosh
       Return matrix hyperbolic inverse cosine of a square matrix.

        PDL = macosh(PDL(A))

        my $a = random(10,10);
        my $acos = macosh($a);

   msinh
       Return matrix hyperbolic sine of a square matrix.

        PDL = msinh(PDL(A))

        my $a = random(10,10);
        my $sinh = msinh($a);

   masinh
       Return matrix hyperbolic inverse sine of a square matrix.

        PDL = masinh(PDL(A))

        my $a = random(10,10);
        my $asinh = masinh($a);

   mtanh
       Return matrix hyperbolic tangent of a square matrix.

        PDL = mtanh(PDL(A))

        my $a = random(10,10);
        my $tanh = mtanh($a);

   matanh
       Return matrix hyperbolic inverse tangent of a square matrix.

        PDL = matanh(PDL(A))

        my $a = random(10,10);
        my $atanh = matanh($a);

   mcoth
       Return matrix hyperbolic cotangent of a square matrix.

        PDL = mcoth(PDL(A))

        my $a = random(10,10);
        my $coth = mcoth($a);

   macoth
       Return matrix hyperbolic inverse cotangent of a square matrix.

        PDL = macoth(PDL(A))

        my $a = random(10,10);
        my $acoth = macoth($a);

   msech
       Return matrix hyperbolic secant of a square matrix.

        PDL = msech(PDL(A))

        my $a = random(10,10);
        my $sech = msech($a);

   masech
       Return matrix hyperbolic inverse secant of a square matrix.

        PDL = masech(PDL(A))

        my $a = random(10,10);
        my $asech = masech($a);

   mcsch
       Return matrix hyperbolic cosecant of a square matrix.

        PDL = mcsch(PDL(A))

        my $a = random(10,10);
        my $csch = mcsch($a);

   macsch
       Return matrix hyperbolic inverse cosecant of a square matrix.

        PDL = macsch(PDL(A))

        my $a = random(10,10);
        my $acsch = macsch($a);

   mfun
       Return matrix function of second argument of a square matrix.  Function will be applied on
       a complex ndarray.

        PDL = mfun(PDL(A),'cos')

        my $a = random(10,10);
        my $fun = mfun($a,'cos');
        sub sinbycos2{
               $_[0]->set_inplace(0);
               $_[0] .= $_[0]->Csin/$_[0]->Ccos**2;
        }
        # Try diagonalization
        $fun = mfun($a, \&sinbycos2,1);
        # Now try Schur/Parlett
        $fun = mfun($a, \&sinbycos2);
        # Now with function.
        scalar msolve($a->mcos->mpow(2), $a->msin);

TODO

       Improve error return and check singularity.  Improve (msqrt,mlog) / r2C

AUTHOR

       Copyright (C) Grégory Vanuxem 2005-2018.

       This library is free software; you can redistribute it and/or modify it under the terms of
       the Perl Artistic License as in the file Artistic_2 in this distribution.