Provided by: libpcl1-dev_1.12-2_amd64 bug

NAME

       co_thread_init, co_thread_cleanup, co_create, co_call, co_resume, co_delete, co_exit_to,
       co_exit, co_current, co_get_data, co_set_data - C coroutine management

SYNOPSIS

       #include <pcl.h>

       int co_thread_init(void);

       void co_thread_cleanup(void);
       coroutine_t co_create(void *func, void *data, void *stack, int stacksize);
       void co_delete(coroutine_t co);
       void co_call(coroutine_t co);
       void co_resume(void);
       void co_exit_to(coroutine_t co);
       void co_exit(void);
       coroutine_t co_current(void);
       void *co_get_data(coroutine_t co);
       void *co_set_data(coroutine_t co, void *data);

       Link with -lpthread if you are using a multi-thread version of PCL.

DESCRIPTION

       The Portable Coroutine Library (PCL) implements the low level functionality for
       coroutines. For a definition of the term coroutine see The Art of Computer Programming by
       Donald E. Knuth.  Coroutines are a very simple cooperative multitasking environment where
       the switch from one task to another is done explicitly by a function call.  Coroutines are
       a lot faster than processes or threads switch, since there is no OS kernel involvement for
       the operation. This document defines an API for the low level handling of coroutines i.e.
       creating and deleting coroutines and switching between them.  Higher level functionality
       (scheduler, etc.) is not covered.

   Functions
       The following functions are defined:

       int co_thread_init(void);

              If the PCL library is built in multi-thread mode, and if multi threads are actually
              used, this function should be called before calling any PCL function.  If the PCL
              library is built in multi-thread mode, but it is used only from one thread (the
              main one, likely), then it is possible to avoid to call co_thread_init().  Returns
              0 in case of success, or an negative error code in case of error.

       void co_thread_cleanup(void);
              If the PCL library is built in multi-thread mode, and if multi threads are actually
              used, this function should be called before the thread exits, or whenever the
              thread decides it won't call the PCL functions anymore.  A failure in calling
              co_thread_cleanup() will result in resource leakage by the calling application.

       coroutine_t co_create(void *func, void *data, void *stack, int stacksize);

              This function creates a new coroutine.  func is the entry point of the coroutine.
              It will be called with one arg, a void *, which holds the data passed through the
              data parameter. If func terminates, the associated coroutine is deleted.  stack is
              the base of the stack this coroutine will use and stacksize its size in bytes.  You
              may pass a NULL pointer for stack in which case the memory will be allocated by
              co_create itself.  Both, stack and stacksize are aligned to system requirements.  A
              stacksize of less then 4096 bytes will be rejected.  You have to make sure, that
              the stack is large enough for your coroutine and possible signal handlers (see
              below).  The stack will not grow!  (Exception: the main coroutine uses the standard
              system stack which may still grow) On success, a handle (coroutine_t) for a new
              coroutine is returned, otherwise NULL.

       void co_delete(coroutine_t co);

              This function deletes the given coroutine co.  If the stack for this coroutine was
              allocated by co_create it will be freed.  After a coroutine handle was passed to
              co_delete it is invalid and may not be used any more.  It is invalid for a
              coroutine to delete itself with this function.

       void co_call(coroutine_t co);

              This function passes execution to the given coroutine co.  The first time the
              coroutine is executed, its entry point func is called, and the data parameter used
              during the call to co_create is passed to func.  The current coroutine is suspended
              until another one restarts it with a co_call or co_resume call. Calling oneself
              returns immediately.

       void co_resume(void);

              This function passes execution back to the coroutine which either initially started
              this one or restarted it after a prior co_resume.

       void co_exit_to(coroutine_t co);

              This function does the same a co_delete(co_current()) followed by a co_call would
              do.  That is, it deletes itself and then passes execution to another coroutine co.

       void co_exit(void);

              This function does the same a co_delete(co_current()) followed by a co_resume would
              do.  That is, it deletes itself and then passes execution back to the coroutine
              which either initially started this one or restarted it after a prior co_resume.

       coroutine_t co_current(void);

              This function returns the currently running coroutine.

       void *co_get_data(coroutine_t co);

              This function returns the data associated with the co
               coroutine. The data associated with a coroutine is the data parameter passed to
              co_create().

       void *co_set_data(coroutine_t co, void *data);

              Sets the data associated with the co coroutine, and returns the previously
              associated data.

   Notes
       Some interactions with other parts of the system are covered here.

       Threads
              If the PCL library has been built in multi-thread mode, then it is possible to use
              it in multi-thread software.  A thread should call co_thread_init() before using
              the PCL APIs, and call co_thread_cleanup() before exiting, or when it has done
              using the PCL APIs.
              WARNING: For no reason should two different threads run the same coroutine at the
              same time.

       Signals
              First, a signal handler is not defined to run in any specific coroutine. The only
              way to leave the signal handler is by a return statement.

              Second, the signal handler may run with the stack of any coroutine, even with the
              stack of library internal coroutines which have an undefined stack size (just
              enough to perform a kernel call).  Using and alternate stack for signal processing
              (see sigaltstack(2)) is recommended!

              Conclusion: avoid signals like a plague.  The only thing you may do reliable is
              setting some global variables and return.  Simple kernel calls may work too, but
              nowadays it's pretty hairy to tell, which function really is a kernel call.  (Btw,
              all this applies to normal C programs, too.  The coroutines just add one more
              problem)

       setjmp/longjmp
              The use of setjmp(2)/longjmp(2) is limited to jumping inside one coroutine.  Never
              try to jump from one coroutine to another with longjmp(2).

DIAGNOSTICS

       Some fatal errors are caught by the library.  If one occurs, a short message is written to
       file descriptor 2 (stderr) and a segmentation violation is generated.

       [PCL]: Cannot delete itself
              A coroutine has called co_delete with it's own handle.

       [PCL]: Resume to deleted coroutine
              A coroutine has deleted itself with co_exit or co_exit_to and the coroutine that
              was activated by the exit tried a co_resume.

       [PCL]: Stale coroutine called
              Someone tried to active a coroutine that has already been deleted.  This error is
              only detected, if the stack of the deleted coroutine is still resident in memory.

       [PCL]: Context switch failed
              Low level error generated by the library in case a context switch between two
              coroutines failes.

SEE ALSO

       Original coroutine library at http://www.goron.de/~froese/coro/coro.html .  GNU Pth
       library at http://www.gnu.org/software/pth/ .

AUTHOR

       Developed by Davide Libenzi < davidel@xmailserver.org >.
       Ideas and man page base source taken by the coroutine library developed by E. Toernig <
       froese@gmx.de >.
       Also some code and ideas comes from the GNU Pth library available at
       http://www.gnu.org/software/pth/ .

BUGS

       There are no known bugs.  But, this library is still in development even if it results
       very stable and pretty much ready for production use.

       Bug reports and comments to Davide Libenzi < davidel@xmailserver.org >.