Provided by: dpkg-dev_1.21.21ubuntu1_all bug

NAME

       deb-src-symbols - Debian's extended shared library template file

SYNOPSIS

       debian/package.symbols.arch, debian/symbols.arch, debian/package.symbols, debian/symbols

DESCRIPTION

       The symbol file templates are shipped in Debian source packages, and its format is a
       superset of the symbols files shipped in binary packages, see deb-symbols(5).

   Comments
       Comments are supported in template symbol files. Any line with ‘#’ as the first character
       is a comment except if it starts with ‘#include’ (see section Using includes).  Lines
       starting with ‘#MISSING:’ are special comments documenting symbols that have disappeared.

   Using #PACKAGE# substitution
       In some rare cases, the name of the library varies between architectures.  To avoid
       hardcoding the name of the package in the symbols file, you can use the marker #PACKAGE#.
       It will be replaced by the real package name during installation of the symbols files.
       Contrary to the #MINVER# marker, #PACKAGE# will never appear in a symbols file inside a
       binary package.

   Using symbol tags
       Symbol tagging is useful for marking symbols that are special in some way.  Any symbol can
       have an arbitrary number of tags associated with it. While all tags are parsed and stored,
       only some of them are understood by dpkg-gensymbols and trigger special handling of the
       symbols. See subsection Standard symbol tags for reference of these tags.

       Tag specification comes right before the symbol name (no whitespace is allowed in
       between). It always starts with an opening bracket (, ends with a closing bracket ) and
       must contain at least one tag. Multiple tags are separated by the | character. Each tag
       can optionally have a value which is separated form the tag name by the = character. Tag
       names and values can be arbitrary strings except they cannot contain any of the special )
       | = characters. Symbol names following a tag specification can optionally be quoted with
       either ' or " characters to allow whitespaces in them. However, if there are no tags
       specified for the symbol, quotes are treated as part of the symbol name which continues up
       until the first space.

         (tag1=i am marked|tag name with space)"tagged quoted symbol"@Base 1.0
         (optional)tagged_unquoted_symbol@Base 1.0 1
         untagged_symbol@Base 1.0

       The first symbol in the example is named tagged quoted symbol and has two tags: tag1 with
       value i am marked and tag name with space that has no value. The second symbol named
       tagged_unquoted_symbol is only tagged with the tag named optional. The last symbol is an
       example of the normal untagged symbol.

       Since symbol tags are an extension of the deb-symbols(5) format, they can only be part of
       the symbols files used in source packages (those files should then be seen as templates
       used to build the symbols files that are embedded in binary packages). When dpkg-
       gensymbols is called without the -t option, it will output symbols files compatible to the
       deb-symbols(5) format: it fully processes symbols according to the requirements of their
       standard tags and strips all tags from the output. On the contrary, in template mode (-t)
       all symbols and their tags (both standard and unknown ones) are kept in the output and are
       written in their original form as they were loaded.

   Standard symbol tags
       optional
           A symbol marked as optional can disappear from the library at any time and that will
           never cause dpkg-gensymbols to fail. However, disappeared optional symbols will
           continuously appear as MISSING in the diff in each new package revision.  This
           behaviour serves as a reminder for the maintainer that such a symbol needs to be
           removed from the symbol file or readded to the library. When the optional symbol,
           which was previously declared as MISSING, suddenly reappears in the next revision, it
           will be upgraded back to the “existing” status with its minimum version unchanged.

           This tag is useful for symbols which are private where their disappearance do not
           cause ABI breakage. For example, most of C++ template instantiations fall into this
           category. Like any other tag, this one may also have an arbitrary value: it could be
           used to indicate why the symbol is considered optional.

       arch=architecture-list
       arch-bits=architecture-bits
       arch-endian=architecture-endianness
           These tags allow one to restrict the set of architectures where the symbol is supposed
           to exist. The arch-bits and arch-endian tags are supported since dpkg 1.18.0. When the
           symbols list is updated with the symbols discovered in the library, all arch-specific
           symbols which do not concern the current host architecture are treated as if they did
           not exist. If an arch-specific symbol matching the current host architecture does not
           exist in the library, normal procedures for missing symbols apply and it may cause
           dpkg-gensymbols to fail. On the other hand, if the arch-specific symbol is found when
           it was not supposed to exist (because the current host architecture is not listed in
           the tag or does not match the endianness and bits), it is made arch neutral (i.e. the
           arch, arch-bits and arch-endian tags are dropped and the symbol will appear in the
           diff due to this change), but it is not considered as new.

           When operating in the default non-template mode, among arch-specific symbols only
           those that match the current host architecture are written to the symbols file. On the
           contrary, all arch-specific symbols (including those from foreign arches) are always
           written to the symbol file when operating in template mode.

           The format of architecture-list is the same as the one used in the Build-Depends field
           of debian/control (except the enclosing square brackets []). For example, the first
           symbol from the list below will be considered only on alpha, any-amd64 and ia64
           architectures, the second only on linux architectures, while the third one anywhere
           except on armel.

             (arch=alpha any-amd64 ia64)64bit_specific_symbol@Base 1.0
             (arch=linux-any)linux_specific_symbol@Base 1.0
             (arch=!armel)symbol_armel_does_not_have@Base 1.0

           The architecture-bits is either 32 or 64.

             (arch-bits=32)32bit_specific_symbol@Base 1.0
             (arch-bits=64)64bit_specific_symbol@Base 1.0

           The architecture-endianness is either little or big.

             (arch-endian=little)little_endian_specific_symbol@Base 1.0
             (arch-endian=big)big_endian_specific_symbol@Base 1.0

           Multiple restrictions can be chained.

             (arch-bits=32|arch-endian=little)32bit_le_symbol@Base 1.0

       allow-internal
           dpkg-gensymbols has a list of internal symbols that should not appear in symbols files
           as they are usually only side-effects of implementation details of the toolchain
           (since dpkg 1.20.1).  If for some reason, you really want one of those symbols to be
           included in the symbols file, you should tag the symbol with allow-internal.  It can
           be necessary for some low level toolchain libraries like “libgcc”.

       ignore-blacklist
           A deprecated alias for allow-internal (since dpkg 1.20.1, supported since dpkg
           1.15.3).

       c++ Denotes c++ symbol pattern. See Using symbol patterns subsection below.

       symver
           Denotes symver (symbol version) symbol pattern. See Using symbol patterns subsection
           below.

       regex
           Denotes regex symbol pattern. See Using symbol patterns subsection below.

   Using symbol patterns
       Unlike a standard symbol specification, a pattern may cover multiple real symbols from the
       library. dpkg-gensymbols will attempt to match each pattern against each real symbol that
       does not have a specific symbol counterpart defined in the symbol file. Whenever the first
       matching pattern is found, all its tags and properties will be used as a basis
       specification of the symbol. If none of the patterns matches, the symbol will be
       considered as new.

       A pattern is considered lost if it does not match any symbol in the library. By default
       this will trigger a dpkg-gensymbols failure under -c1 or higher level. However, if the
       failure is undesired, the pattern may be marked with the optional tag. Then if the pattern
       does not match anything, it will only appear in the diff as MISSING. Moreover, like any
       symbol, the pattern may be limited to the specific architectures with the arch tag. Please
       refer to Standard symbol tags subsection above for more information.

       Patterns are an extension of the deb-symbols(5) format hence they are only valid in symbol
       file templates. Pattern specification syntax is not any different from the one of a
       specific symbol. However, symbol name part of the specification serves as an expression to
       be matched against name@version of the real symbol. In order to distinguish among
       different pattern types, a pattern will typically be tagged with a special tag.

       At the moment, dpkg-gensymbols supports three basic pattern types:

       c++ This pattern is denoted by the c++ tag. It matches only C++ symbols by their demangled
           symbol name (as emitted by c++filt(1) utility). This pattern is very handy for
           matching symbols which mangled names might vary across different architectures while
           their demangled names remain the same. One group of such symbols is non-virtual thunks
           which have architecture specific offsets embedded in their mangled names. A common
           instance of this case is a virtual destructor which under diamond inheritance needs a
           non-virtual thunk symbol. For example, even if _ZThn8_N3NSB6ClassDD1Ev@Base on 32bit
           architectures will probably be _ZThn16_N3NSB6ClassDD1Ev@Base on 64bit ones, it can be
           matched with a single c++ pattern:

            libdummy.so.1 libdummy1 #MINVER#
             [...]
             (c++)"non-virtual thunk to NSB::ClassD::~ClassD()@Base" 1.0
             [...]

           The demangled name above can be obtained by executing the following command:

             $ echo '_ZThn8_N3NSB6ClassDD1Ev@Base' | c++filt

           Please note that while mangled name is unique in the library by definition, this is
           not necessarily true for demangled names. A couple of distinct real symbols may have
           the same demangled name. For example, that's the case with non-virtual thunk symbols
           in complex inheritance configurations or with most constructors and destructors (since
           g++ typically generates two real symbols for them). However, as these collisions
           happen on the ABI level, they should not degrade quality of the symbol file.

       symver
           This pattern is denoted by the symver tag. Well maintained libraries have versioned
           symbols where each version corresponds to the upstream version where the symbol got
           added. If that's the case, you can use a symver pattern to match any symbol associated
           to the specific version. For example:

            libc.so.6 libc6 #MINVER#
             (symver)GLIBC_2.0 2.0
             [...]
             (symver)GLIBC_2.7 2.7
             access@GLIBC_2.0 2.2

           All symbols associated with versions GLIBC_2.0 and GLIBC_2.7 will lead to minimal
           version of 2.0 and 2.7 respectively with the exception of the symbol access@GLIBC_2.0.
           The latter will lead to a minimal dependency on libc6 version 2.2 despite being in the
           scope of the "(symver)GLIBC_2.0" pattern because specific symbols take precedence over
           patterns.

           Please note that while old style wildcard patterns (denoted by "*@version" in the
           symbol name field) are still supported, they have been deprecated by new style syntax
           "(symver|optional)version". For example, "*@GLIBC_2.0 2.0" should be written as
           "(symver|optional)GLIBC_2.0 2.0" if the same behaviour is needed.

       regex
           Regular expression patterns are denoted by the regex tag. They match by the perl
           regular expression specified in the symbol name field. A regular expression is matched
           as it is, therefore do not forget to start it with the ^ character or it may match any
           part of the real symbol name@version string. For example:

            libdummy.so.1 libdummy1 #MINVER#
             (regex)"^mystack_.*@Base$" 1.0
             (regex|optional)"private" 1.0

           Symbols like "mystack_new@Base", "mystack_push@Base", "mystack_pop@Base", etc., will
           be matched by the first pattern while "ng_mystack_new@Base" would not.  The second
           pattern will match all symbols having the string "private" in their names and matches
           will inherit optional tag from the pattern.

       Basic patterns listed above can be combined where it makes sense. In that case, they are
       processed in the order in which the tags are specified. For example, both:

         (c++|regex)"^NSA::ClassA::Private::privmethod\d\(int\)@Base" 1.0
         (regex|c++)N3NSA6ClassA7Private11privmethod\dEi@Base 1.0

       will match symbols "_ZN3NSA6ClassA7Private11privmethod1Ei@Base" and
       "_ZN3NSA6ClassA7Private11privmethod2Ei@Base". When matching the first pattern, the raw
       symbol is first demangled as C++ symbol, then the demangled name is matched against the
       regular expression. On the other hand, when matching the second pattern, regular
       expression is matched against the raw symbol name, then the symbol is tested if it is C++
       one by attempting to demangle it. A failure of any basic pattern will result in the
       failure of the whole pattern.  Therefore, for example,
       "__N3NSA6ClassA7Private11privmethod\dEi@Base" will not match either of the patterns
       because it is not a valid C++ symbol.

       In general, all patterns are divided into two groups: aliases (basic c++ and symver) and
       generic patterns (regex, all combinations of multiple basic patterns). Matching of basic
       alias-based patterns is fast (O(1)) while generic patterns are O(N) (N - generic pattern
       count) for each symbol.  Therefore, it is recommended not to overuse generic patterns.

       When multiple patterns match the same real symbol, aliases (first c++, then symver) are
       preferred over generic patterns. Generic patterns are matched in the order they are found
       in the symbol file template until the first success.  Please note, however, that manual
       reordering of template file entries is not recommended because dpkg-gensymbols generates
       diffs based on the alphanumerical order of their names.

   Using includes
       When the set of exported symbols differ between architectures, it may become inefficient
       to use a single symbol file. In those cases, an include directive may prove to be useful
       in a couple of ways:

       •   You can factorize the common part in some external file and include that file in your
           package.symbols.arch file by using an include directive like this:

            #include "I<packages>.symbols.common"

       •   The include directive may also be tagged like any symbol:

            (tag|...|tagN)#include "file-to-include"

           As a result, all symbols included from file-to-include will be considered to be tagged
           with tag ... tagN by default. You can use this feature to create a common
           package.symbols file which includes architecture specific symbol files:

             common_symbol1@Base 1.0
            (arch=amd64 ia64 alpha)#include "package.symbols.64bit"
            (arch=!amd64 !ia64 !alpha)#include "package.symbols.32bit"
             common_symbol2@Base 1.0

       The symbols files are read line by line, and include directives are processed as soon as
       they are encountered. This means that the content of the included file can override any
       content that appeared before the include directive and that any content after the
       directive can override anything contained in the included file. Any symbol (or even
       another #include directive) in the included file can specify additional tags or override
       values of the inherited tags in its tag specification. However, there is no way for the
       symbol to remove any of the inherited tags.

       An included file can repeat the header line containing the SONAME of the library. In that
       case, it overrides any header line previously read.  However, in general it's best to
       avoid duplicating header lines. One way to do it is the following:

        #include "libsomething1.symbols.common"
         arch_specific_symbol@Base 1.0

SEE ALSO

       deb-symbols(5), dpkg-shlibdeps(1), dpkg-gensymbols(1).