Provided by: mia-tools_2.4.7-13_amd64
NAME
mia-2dmyoica-nonrigid - Run a registration of a series of 2D images.
SYNOPSIS
mia-2dmyoica-nonrigid -i <in-file> -o <out-file> [options]
DESCRIPTION
mia-2dmyoica-nonrigid This program implements the motion compensation algorithm described in Wollny G, Kellman P, Santos A, Ledesma-Carbayo M-J, "Automatic Motion Compensation of Free Breathing acquired Myocardial Perfusion Data by using Independent Component Analysis" Medical Image Analysis, 2012. ⟨https://doi.org/10.1016/j.media.2012.02.004⟩
OPTIONS
File-IO -i --in-file=(required, input); string input perfusion data set -o --out-file=(required, output); string output perfusion data set -r --registered=reg file name base for registered fiels --save-cropped= save cropped set to this file --save-feature= save the features images resulting from the ICA and some intermediate images used for the RV-LV segmentation with the given file name base to PNG files. Also save the coefficients of the initial best and the final IC mixing matrix. --save-refs= save synthetic reference images --save-regs= save intermediate registered images Help & Info -V --verbose=warning verbosity of output, print messages of given level and higher priorities. Supported priorities starting at lowest level are: trace ‐ Function call trace debug ‐ Debug output info ‐ Low level messages message ‐ Normal messages warning ‐ Warnings fail ‐ Report test failures error ‐ Report errors fatal ‐ Report only fatal errors --copyright print copyright information -h --help print this help -? --usage print a short help --version print the version number and exit ICA --fastica=internal FastICA implementationto be used For supported plugins see PLUGINS:fastica/implementation -C --components=0 ICA components 0 = automatic estimation --normalize normalized ICs --no-meanstrip don't strip the mean from the mixing curves -s --segscale=0 segment and scale the crop box around the LV (0=no segmentation) -k --skip=0 skip images at the beginning of the series e.g. because as they are of other modalities -m --max-ica-iter=400 maximum number of iterations in ICA -E --segmethod=features Segmentation method delta-feature ‐ difference of the feature images delta-peak ‐ difference of the peak enhancement images features ‐ feature images -b --min-breathing-frequency=-1 minimal mean frequency a mixing curve can have to be considered to stem from brething. A healthy rest breating rate is 12 per minute. A negative value disables the test. Processing --threads=-1 Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation). Registration -O --optimizer=gsl:opt=gd,step=0.1 Optimizer used for minimization For supported plugins see PLUGINS:minimizer/singlecost -R --refiner= optimizer used for refinement after the main optimizer was called For supported plugins see PLUGINS:minimizer/singlecost -a --start-c-rate=16 start coefficinet rate in spines, gets divided by --c-rate-divider with every pass --c-rate-divider=2 cofficient rate divider for each pass -d --start-divcurl=10 start divcurl weight, gets divided by --divcurl-divider with every pass --divcurl-divider=2 divcurl weight scaling with each new pass -w --imagecost=image:weight=1,cost=ssd image cost For supported plugins see PLUGINS:2dimage/fullcost -l --mg-levels=3 multi-resolution levels -P --passes=5 registration passes
PLUGINS: 1d/splinekernel
bspline B-spline kernel creation , supported parameters are: d = 3; int in [0, 5] Spline degree. omoms OMoms-spline kernel creation, supported parameters are: d = 3; int in [3, 3] Spline degree.
PLUGINS: 2dimage/cost
lncc local normalized cross correlation with masking support., supported parameters are: w = 5; uint in [1, 256] half width of the window used for evaluating the localized cross correlation. lsd Least-Squares Distance measure (no parameters) mi Spline parzen based mutual information., supported parameters are: cut = 0; float in [0, 40] Percentage of pixels to cut at high and low intensities to remove outliers. mbins = 64; uint in [1, 256] Number of histogram bins used for the moving image. mkernel = [bspline:d=3]; factory Spline kernel for moving image parzen hinstogram. For supported plug-ins see PLUGINS:1d/splinekernel rbins = 64; uint in [1, 256] Number of histogram bins used for the reference image. rkernel = [bspline:d=0]; factory Spline kernel for reference image parzen hinstogram. For supported plug- ins see PLUGINS:1d/splinekernel ncc normalized cross correlation. (no parameters) ngf This function evaluates the image similarity based on normalized gradient fields. Various evaluation kernels are available., supported parameters are: eval = ds; dict plugin subtype. Supported values are: sq ‐ square of difference ds ‐ square of scaled difference dot ‐ scalar product kernel cross ‐ cross product kernel ssd 2D imaga cost: sum of squared differences, supported parameters are: autothresh = 0; float in [0, 1000] Use automatic masking of the moving image by only takeing intensity values into accound that are larger than the given threshold. norm = 0; bool Set whether the metric should be normalized by the number of image pixels. ssd-automask 2D image cost: sum of squared differences, with automasking based on given thresholds, supported parameters are: rthresh = 0; double Threshold intensity value for reference image. sthresh = 0; double Threshold intensity value for source image.
PLUGINS: 2dimage/fullcost
image Generalized image similarity cost function that also handles multi-resolution processing. The actual similarity measure is given es extra parameter., supported parameters are: cost = ssd; factory Cost function kernel. For supported plug-ins see PLUGINS:2dimage/cost debug = 0; bool Save intermediate resuts for debugging. ref =(input, io) Reference image. For supported file types see PLUGINS:2dimage/io src =(input, io) Study image. For supported file types see PLUGINS:2dimage/io weight = 1; float weight of cost function. labelimage Similarity cost function that maps labels of two images and handles label- preserving multi-resolution processing., supported parameters are: debug = 0; int in [0, 1] write the distance transforms to a 3D image. maxlabel = 256; int in [2, 32000] maximum number of labels to consider. ref =(input, io) Reference image. For supported file types see PLUGINS:2dimage/io src =(input, io) Study image. For supported file types see PLUGINS:2dimage/io weight = 1; float weight of cost function. maskedimage Generalized masked image similarity cost function that also handles multi- resolution processing. The provided masks should be densly filled regions in multi-resolution procesing because otherwise the mask information may get lost when downscaling the image. The reference mask and the transformed mask of the study image are combined by binary AND. The actual similarity measure is given es extra parameter., supported parameters are: cost = ssd; factory Cost function kernel. For supported plug-ins see PLUGINS:2dimage/maskedcost ref =(input, io) Reference image. For supported file types see PLUGINS:2dimage/io ref-mask =(input, io) Reference image mask (binary). For supported file types see PLUGINS:2dimage/io src =(input, io) Study image. For supported file types see PLUGINS:2dimage/io src-mask =(input, io) Study image mask (binary). For supported file types see PLUGINS:2dimage/io weight = 1; float weight of cost function.
PLUGINS: 2dimage/io
bmp BMP 2D-image input/output support. The plug-in supports reading and writing of binary images and 8-bit gray scale images. read-only support is provided for 4-bit gray scale images. The color table is ignored and the pixel values are taken as literal gray scale values. Recognized file extensions: .BMP, .bmp Supported element types: binary data, unsigned 8 bit datapool Virtual IO to and from the internal data pool Recognized file extensions: .@ dicom 2D image io for DICOM Recognized file extensions: .DCM, .dcm Supported element types: signed 16 bit, unsigned 16 bit exr a 2dimage io plugin for OpenEXR images Recognized file extensions: .EXR, .exr Supported element types: unsigned 32 bit, floating point 32 bit jpg a 2dimage io plugin for jpeg gray scale images Recognized file extensions: .JPEG, .JPG, .jpeg, .jpg Supported element types: unsigned 8 bit png a 2dimage io plugin for png images Recognized file extensions: .PNG, .png Supported element types: binary data, unsigned 8 bit, unsigned 16 bit raw RAW 2D-image output support Recognized file extensions: .RAW, .raw Supported element types: binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit tif TIFF 2D-image input/output support Recognized file extensions: .TIF, .TIFF, .tif, .tiff Supported element types: binary data, unsigned 8 bit, unsigned 16 bit, unsigned 32 bit vista a 2dimage io plugin for vista images Recognized file extensions: .-, .V, .VISTA, .v, .vista Supported element types: binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit
PLUGINS: 2dimage/maskedcost
lncc local normalized cross correlation with masking support., supported parameters are: w = 5; uint in [1, 256] half width of the window used for evaluating the localized cross correlation. mi Spline parzen based mutual information with masking., supported parameters are: cut = 0; float in [0, 40] Percentage of pixels to cut at high and low intensities to remove outliers. mbins = 64; uint in [1, 256] Number of histogram bins used for the moving image. mkernel = [bspline:d=3]; factory Spline kernel for moving image parzen hinstogram. For supported plug-ins see PLUGINS:1d/splinekernel rbins = 64; uint in [1, 256] Number of histogram bins used for the reference image. rkernel = [bspline:d=0]; factory Spline kernel for reference image parzen hinstogram. For supported plug- ins see PLUGINS:1d/splinekernel ncc normalized cross correlation with masking support. (no parameters) ssd Sum of squared differences with masking. (no parameters)
PLUGINS: fastica/implementation
internal This is the MIA implementation of the FastICA algorithm. (no parameters) itpp This is the IT++ implementation of the FastICA algorithm. (no parameters)
PLUGINS: minimizer/singlecost
gdas Gradient descent with automatic step size correction., supported parameters are: ftolr = 0; double in [0, inf) Stop if the relative change of the criterion is below.. max-step = 2; double in (0, inf) Maximal absolute step size. maxiter = 200; uint in [1, inf) Stopping criterion: the maximum number of iterations. min-step = 0.1; double in (0, inf) Minimal absolute step size. xtola = 0.01; double in [0, inf) Stop if the inf-norm of the change applied to x is below this value.. gdsq Gradient descent with quadratic step estimation, supported parameters are: ftolr = 0; double in [0, inf) Stop if the relative change of the criterion is below.. gtola = 0; double in [0, inf) Stop if the inf-norm of the gradient is below this value.. maxiter = 100; uint in [1, inf) Stopping criterion: the maximum number of iterations. scale = 2; double in (1, inf) Fallback fixed step size scaling. step = 0.1; double in (0, inf) Initial step size. xtola = 0; double in [0, inf) Stop if the inf-norm of x-update is below this value.. gsl optimizer plugin based on the multimin optimizers of the GNU Scientific Library (GSL) https://www.gnu.org/software/gsl/, supported parameters are: eps = 0.01; double in (0, inf) gradient based optimizers: stop when |grad| < eps, simplex: stop when simplex size < eps.. iter = 100; uint in [1, inf) maximum number of iterations. opt = gd; dict Specific optimizer to be used.. Supported values are: simplex ‐ Simplex algorithm of Nelder and Mead cg-fr ‐ Flecher-Reeves conjugate gradient algorithm cg-pr ‐ Polak-Ribiere conjugate gradient algorithm bfgs ‐ Broyden-Fletcher-Goldfarb-Shann bfgs2 ‐ Broyden-Fletcher-Goldfarb-Shann (most efficient version) gd ‐ Gradient descent. step = 0.001; double in (0, inf) initial step size. tol = 0.1; double in (0, inf) some tolerance parameter. nlopt Minimizer algorithms using the NLOPT library, for a description of the optimizers please see 'http://ab- initio.mit.edu/wiki/index.php/NLopt_Algorithms', supported parameters are: ftola = 0; double in [0, inf) Stopping criterion: the absolute change of the objective value is below this value. ftolr = 0; double in [0, inf) Stopping criterion: the relative change of the objective value is below this value. higher = inf; double Higher boundary (equal for all parameters). local-opt = none; dict local minimization algorithm that may be required for the main minimization algorithm.. Supported values are: gn-direct ‐ Dividing Rectangles gn-direct-l ‐ Dividing Rectangles (locally biased) gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized) gn-direct-noscal ‐ Dividing Rectangles (unscaled) gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased) gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized) gn-orig-direct ‐ Dividing Rectangles (original implementation) gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased) ld-lbfgs-nocedal ‐ None ld-lbfgs ‐ Low-storage BFGS ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1 ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2 ld-tnewton ‐ Truncated Newton ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting ld-tnewton-precond ‐ Preconditioned Truncated Newton ld-tnewton-precond-restart ‐ Preconditioned Truncated Newton with steepest-descent restarting gn-crs2-lm ‐ Controlled Random Search with Local Mutation ld-mma ‐ Method of Moving Asymptotes ln-cobyla ‐ Constrained Optimization BY Linear Approximation ln-newuoa ‐ Derivative-free Unconstrained Optimization by Iteratively Constructed Quadratic Approximation ln-newuoa-bound ‐ Derivative-free Bound-constrained Optimization by Iteratively Constructed Quadratic Approximation ln-neldermead ‐ Nelder-Mead simplex algorithm ln-sbplx ‐ Subplex variant of Nelder-Mead ln-bobyqa ‐ Derivative-free Bound-constrained Optimization gn-isres ‐ Improved Stochastic Ranking Evolution Strategy none ‐ don't specify algorithm lower = -inf; double Lower boundary (equal for all parameters). maxiter = 100; int in [1, inf) Stopping criterion: the maximum number of iterations. opt = ld-lbfgs; dict main minimization algorithm. Supported values are: gn-direct ‐ Dividing Rectangles gn-direct-l ‐ Dividing Rectangles (locally biased) gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized) gn-direct-noscal ‐ Dividing Rectangles (unscaled) gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased) gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized) gn-orig-direct ‐ Dividing Rectangles (original implementation) gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased) ld-lbfgs-nocedal ‐ None ld-lbfgs ‐ Low-storage BFGS ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1 ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2 ld-tnewton ‐ Truncated Newton ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting ld-tnewton-precond ‐ Preconditioned Truncated Newton ld-tnewton-precond-restart ‐ Preconditioned Truncated Newton with steepest-descent restarting gn-crs2-lm ‐ Controlled Random Search with Local Mutation ld-mma ‐ Method of Moving Asymptotes ln-cobyla ‐ Constrained Optimization BY Linear Approximation ln-newuoa ‐ Derivative-free Unconstrained Optimization by Iteratively Constructed Quadratic Approximation ln-newuoa-bound ‐ Derivative-free Bound-constrained Optimization by Iteratively Constructed Quadratic Approximation ln-neldermead ‐ Nelder-Mead simplex algorithm ln-sbplx ‐ Subplex variant of Nelder-Mead ln-bobyqa ‐ Derivative-free Bound-constrained Optimization gn-isres ‐ Improved Stochastic Ranking Evolution Strategy auglag ‐ Augmented Lagrangian algorithm auglag-eq ‐ Augmented Lagrangian algorithm with equality constraints only g-mlsl ‐ Multi-Level Single-Linkage (require local optimization and bounds) g-mlsl-lds ‐ Multi-Level Single-Linkage (low-discrepancy-sequence, require local gradient based optimization and bounds) ld-slsqp ‐ Sequential Least-Squares Quadratic Programming step = 0; double in [0, inf) Initial step size for gradient free methods. stop = -inf; double Stopping criterion: function value falls below this value. xtola = 0; double in [0, inf) Stopping criterion: the absolute change of all x-values is below this value. xtolr = 0; double in [0, inf) Stopping criterion: the relative change of all x-values is below this value.
EXAMPLE
Register the perfusion series given in 'segment.set' by using automatic ICA estimation. Skip two images at the beginning and otherwiese use the default parameters. Store the result in 'registered.set'. mia-2dmyoica-nonrigid -i segment.set -o registered.set -k 2
AUTHOR(s)
Gert Wollny
COPYRIGHT
This software is Copyright (c) 1999‐2015 Leipzig, Germany and Madrid, Spain. It comes with ABSOLUTELY NO WARRANTY and you may redistribute it under the terms of the GNU GENERAL PUBLIC LICENSE Version 3 (or later). For more information run the program with the option '--copyright'.