Provided by: libsc-doc_2.3.1-22_all bug

NAME

       sc::Integral - The Integral abstract class acts as a factory to provide objects that
       compute one and two electron integrals.

SYNOPSIS

       #include <integral.h>

       Inherits sc::SavableState.

       Inherited by sc::IntegralCCA, sc::IntegralCints, and sc::IntegralV3.

   Public Member Functions
       Integral (StateIn &)
           Restore the Integral object from the given StateIn object.
       Integral (const Ref< KeyVal > &)
           Construct the Integral object from the given KeyVal object.
       void save_data_state (StateOut &)
           Save the base classes (with save_data_state) and the members in the same order that
           the StateIn CTOR initializes them.
       virtual Integral * clone ()=0
           Clones the given Integral factory. The new factory may need to have set_basis and
           set_storage to be called on it.
       virtual int equiv (const Ref< Integral > &)
           Returns nonzero if this and the given Integral object have the same integral ordering,
           normalization conventions, etc.
       void set_storage (size_t i)
           Sets the total amount of storage, in bytes, that is available.
       size_t storage_used ()
           Returns how much storage has been used.
       size_t storage_unused ()
           Returns how much storage was not needed.
       virtual size_t storage_required_eri (const Ref< GaussianBasisSet > &b1, const Ref<
           GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref<
           GaussianBasisSet > &b4=0)
           Returns how much storage will be needed to initialize a two-body integrals evaluator
           for electron repulsion integrals.
       virtual size_t storage_required_grt (const Ref< GaussianBasisSet > &b1, const Ref<
           GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref<
           GaussianBasisSet > &b4=0)
           Returns how much storage will be needed to initialize a two-body integrals evaluator
           for linear R12 integrals.
       virtual size_t storage_required_eri_deriv (const Ref< GaussianBasisSet > &b1, const Ref<
           GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref<
           GaussianBasisSet > &b4=0)
           Returns how much storage will be needed to initialize a two-body integrals evaluator
           for derivative electron repulsion integrals.
       void adjust_storage (ptrdiff_t s)
           The specific integral classes use this to tell Integral how much memory they are
           using/freeing.
       Ref< PetiteList > petite_list ()
           Return the PetiteList object.
       Ref< PetiteList > petite_list (const Ref< GaussianBasisSet > &)
           Return the PetiteList object for the given basis set.
       ShellRotation shell_rotation (int am, SymmetryOperation &, int pure=0)
           Return the ShellRotation object for a shell of the given angular momentum.
       virtual void set_basis (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet >
           &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0)
           Set the basis set for each center.
       virtual CartesianIter * new_cartesian_iter (int)=0
           Return a CartesianIter object.
       virtual RedundantCartesianIter * new_redundant_cartesian_iter (int)=0
           Return a RedundantCartesianIter object.
       virtual RedundantCartesianSubIter * new_redundant_cartesian_sub_iter (int)=0
           Return a RedundantCartesianSubIter object.
       virtual SphericalTransformIter * new_spherical_transform_iter (int l, int inv=0, int
           subl=-1)=0
           Return a SphericalTransformIter object.
       virtual const SphericalTransform * spherical_transform (int l, int inv=0, int subl=-1)=0
           Return a SphericalTransform object.
       virtual Ref< OneBodyInt > overlap ()=0
           Return a OneBodyInt that computes the overlap.
       virtual Ref< OneBodyInt > kinetic ()=0
           Return a OneBodyInt that computes the kinetic energy.
       virtual Ref< OneBodyInt > point_charge (const Ref< PointChargeData > &)=0
           Return a OneBodyInt that computes the integrals for interactions with point charges.
       virtual Ref< OneBodyOneCenterInt > point_charge1 (const Ref< PointChargeData > &)
           Return a OneBodyInt that computes the integrals for interactions with point charges.
       virtual Ref< OneBodyInt > nuclear ()=0
           Return a OneBodyInt that computes the nuclear repulsion integrals.
       virtual Ref< OneBodyInt > hcore ()=0
           Return a OneBodyInt that computes the core Hamiltonian integrals.
       virtual Ref< OneBodyInt > efield_dot_vector (const Ref< EfieldDotVectorData > &)=0
           Return a OneBodyInt that computes the electric field integrals dotted with a given
           vector.
       virtual Ref< OneBodyInt > dipole (const Ref< DipoleData > &)=0
           Return a OneBodyInt that computes electric dipole moment integrals.
       virtual Ref< OneBodyInt > quadrupole (const Ref< DipoleData > &)=0
           Return a OneBodyInt that computes electric quadrupole moment integrals.
       virtual Ref< OneBodyDerivInt > overlap_deriv ()=0
           Return a OneBodyDerivInt that computes overlap derivatives.
       virtual Ref< OneBodyDerivInt > kinetic_deriv ()=0
           Return a OneBodyDerivInt that computes kinetic energy derivatives.
       virtual Ref< OneBodyDerivInt > nuclear_deriv ()=0
           Return a OneBodyDerivInt that computes nuclear repulsion derivatives.
       virtual Ref< OneBodyDerivInt > hcore_deriv ()=0
           Return a OneBodyDerivInt that computes core Hamiltonian derivatives.
       virtual Ref< TwoBodyThreeCenterInt > electron_repulsion3 ()
           Return a TwoBodyThreeCenterInt that computes electron repulsion integrals.
       virtual Ref< TwoBodyThreeCenterDerivInt > electron_repulsion3_deriv ()
           Return a TwoBodyThreeCenterInt that computes electron repulsion integrals.
       virtual Ref< TwoBodyTwoCenterInt > electron_repulsion2 ()
           Return a TwoBodyTwoCenterInt that computes electron repulsion integrals.
       virtual Ref< TwoBodyTwoCenterDerivInt > electron_repulsion2_deriv ()
           Return a TwoBodyTwoCenterInt that computes electron repulsion integrals.
       virtual Ref< TwoBodyInt > electron_repulsion ()=0
           Return a TwoBodyInt that computes electron repulsion integrals.
       virtual Ref< TwoBodyDerivInt > electron_repulsion_deriv ()=0
           Return a TwoBodyDerivInt that computes electron repulsion derivatives.
       virtual Ref< TwoBodyInt > grt ()
           Return a TwoBodyInt that computes two-electron integrals specific to linear R12
           methods.
       Ref< MessageGrp > messagegrp ()
           Return the MessageGrp used by the integrals objects.

   Static Public Member Functions
       static Integral * initial_integral (int &argc, char **argv)
           Create an integral factory.
       static void set_default_integral (const Ref< Integral > &)
           Specifies a new default Integral factory.
       static Integral * get_default_integral ()
           Returns the default Integral factory.

   Protected Member Functions
       Integral (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2, const Ref<
           GaussianBasisSet > &b3, const Ref< GaussianBasisSet > &b4)
           Initialize the Integral object given a GaussianBasisSet for each center.

   Protected Attributes
       Ref< GaussianBasisSet > bs1_
       Ref< GaussianBasisSet > bs2_
       Ref< GaussianBasisSet > bs3_
       Ref< GaussianBasisSet > bs4_
       size_t storage_
       size_t storage_used_
       Ref< MessageGrp > grp_

Detailed Description

       The Integral abstract class acts as a factory to provide objects that compute one and two
       electron integrals.

Member Function Documentation

   virtual Ref<OneBodyInt> sc::Integral::dipole (const Ref< DipoleData > &) [pure virtual]
       Return a OneBodyInt that computes electric dipole moment integrals. The canonical order of
       integrals in a set is x, y, z.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual Ref<TwoBodyTwoCenterInt> sc::Integral::electron_repulsion2 () [virtual]
       Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. If this is not
       re-implemented it will throw.

       Reimplemented in sc::IntegralV3.

   virtual Ref<TwoBodyTwoCenterDerivInt> sc::Integral::electron_repulsion2_deriv () [virtual]
       Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. If this is not
       re-implemented it will throw.

   virtual Ref<TwoBodyThreeCenterInt> sc::Integral::electron_repulsion3 () [virtual]
       Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. If this is not
       re-implemented it will throw.

       Reimplemented in sc::IntegralV3.

   virtual Ref<TwoBodyThreeCenterDerivInt> sc::Integral::electron_repulsion3_deriv () [virtual]
       Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. If this is not
       re-implemented it will throw.

   virtual int sc::Integral::equiv (const Ref< Integral > &) [virtual]
       Returns nonzero if this and the given Integral object have the same integral ordering,
       normalization conventions, etc.

   virtual Ref<TwoBodyInt> sc::Integral::grt () [virtual]
       Return a TwoBodyInt that computes two-electron integrals specific to linear R12 methods.
       According to the convention in the literature, 'g' stands for electron repulsion integral,
       'r' for the integral of r12 operator, and 't' for the commutator integrals. Implementation
       for this kind of TwoBodyInt is optional.

       Reimplemented in sc::IntegralCints.

   static Integral* sc::Integral::initial_integral (int & argc, char ** argv) [static]
       Create an integral factory. This routine looks for a -integral argument, then the
       environmental variable INTEGRAL. The argument to -integral should be either string for a
       ParsedKeyVal constructor or a classname. This factory is not guaranteed to have its
       storage and basis sets set up properly, hence set_basis and set_storage need to be called
       on it.

   virtual CartesianIter* sc::Integral::new_cartesian_iter (int) [pure virtual]
       Return a CartesianIter object. The caller is responsible for freeing the object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual RedundantCartesianIter* sc::Integral::new_redundant_cartesian_iter (int) [pure
       virtual]
       Return a RedundantCartesianIter object. The caller is responsible for freeing the object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual RedundantCartesianSubIter* sc::Integral::new_redundant_cartesian_sub_iter (int) [pure
       virtual]
       Return a RedundantCartesianSubIter object. The caller is responsible for freeing the
       object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual SphericalTransformIter* sc::Integral::new_spherical_transform_iter (int l, int inv =
       0, int subl = -1) [pure virtual]
       Return a SphericalTransformIter object. The caller is responsible for freeing the object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual Ref<OneBodyInt> sc::Integral::nuclear () [pure virtual]
       Return a OneBodyInt that computes the nuclear repulsion integrals. Charges from the atoms
       on center one are used. If center two is not identical to center one, then the charges on
       center two are included as well.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual Ref<OneBodyInt> sc::Integral::quadrupole (const Ref< DipoleData > &) [pure virtual]
       Return a OneBodyInt that computes electric quadrupole moment integrals. The canonical
       order of integrals in a set is x^2, xy, xz, y^2, yz, z^2.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   void sc::Integral::save_data_state (StateOut &) [virtual]
       Save the base classes (with save_data_state) and the members in the same order that the
       StateIn CTOR initializes them. This must be implemented by the derived class if the class
       has data.

       Reimplemented from sc::SavableState.

       Reimplemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   ShellRotation sc::Integral::shell_rotation (int am, SymmetryOperation &, int pure = 0)
       Return the ShellRotation object for a shell of the given angular momentum. Pass nonzero to
       pure to do solid harmonics.

   virtual const SphericalTransform* sc::Integral::spherical_transform (int l, int inv = 0, int
       subl = -1) [pure virtual]
       Return a SphericalTransform object. The pointer is only valid while this Integral object
       is valid.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

Author

       Generated automatically by Doxygen for MPQC from the source code.