Provided by: mdadm_4.2+20230508-7ubuntu1_amd64 bug

NAME

       mdadm - manage MD devices aka Linux Software RAID

SYNOPSIS

       mdadm [mode] <raiddevice> [options] <component-devices>

DESCRIPTION

       RAID devices are virtual devices created from two or more real block devices.  This allows
       multiple devices (typically disk drives or partitions  thereof)  to  be  combined  into  a
       single  device  to  hold  (for  example)  a  single  filesystem.  Some RAID levels include
       redundancy and so can survive some degree of device failure.

       Linux Software RAID devices are implemented  through  the  md  (Multiple  Devices)  device
       driver.

       Currently,  Linux  supports LINEAR md devices, RAID0 (striping), RAID1 (mirroring), RAID4,
       RAID5, RAID6, RAID10, MULTIPATH, FAULTY, and CONTAINER.

       MULTIPATH is not a Software RAID mechanism, but does involve multiple devices: each device
       is  a  path  to  one  common  physical  storage  device.  New installations should not use
       md/multipath as it is not well supported and has no ongoing development.  Use  the  Device
       Mapper based multipath-tools instead.

       FAULTY is also not true RAID, and it only involves one device.  It provides a layer over a
       true device that can be used to inject faults.

       CONTAINER is different again.  A CONTAINER is a collection of devices that are managed  as
       a  set.   This  is  similar to the set of devices connected to a hardware RAID controller.
       The set of devices may contain a number of different RAID arrays each utilising  some  (or
       all) of the blocks from a number of the devices in the set.  For example, two devices in a
       5-device set might form a RAID1 using the whole devices.  The remaining three might have a
       RAID5 over the first half of each device, and a RAID0 over the second half.

       With  a  CONTAINER,  there  is one set of metadata that describes all of the arrays in the
       container.  So when mdadm creates a CONTAINER  device,  the  device  just  represents  the
       metadata.  Other normal arrays (RAID1 etc) can be created inside the container.

MODES

       mdadm has several major modes of operation:

       Assemble
              Assemble  the  components  of  a  previously  created  array  into an active array.
              Components can be explicitly given or can be searched for.  mdadm checks  that  the
              components  do  form  a  bona  fide  array,  and can, on request, fiddle superblock
              information so as to assemble a faulty array.

       Build  Build an array that doesn't have  per-device  metadata  (superblocks).   For  these
              sorts of arrays, mdadm cannot differentiate between initial creation and subsequent
              assembly of  an  array.   It  also  cannot  perform  any  checks  that  appropriate
              components  have  been  requested.   Because of this, the Build mode should only be
              used together with a complete understanding of what you are doing.

       Create Create a new array with per-device metadata (superblocks).  Appropriate metadata is
              written  to  each device, and then the array comprising those devices is activated.
              A 'resync' process is started to make sure that the array is consistent (e.g.  both
              sides  of  a  mirror  contain  the same data) but the content of the device is left
              otherwise untouched.  The array can be used as soon as it has been created.   There
              is no need to wait for the initial resync to finish.

       Follow or Monitor
              Monitor  one  or  more  md  devices  and  act  on  any state changes.  This is only
              meaningful for RAID1, 4,  5,  6,  10  or  multipath  arrays,  as  only  these  have
              interesting state.  RAID0 or Linear never have missing, spare, or failed drives, so
              there is nothing to monitor.

       Grow   Grow (or shrink) an  array,  or  otherwise  reshape  it  in  some  way.   Currently
              supported  growth  options  including changing the active size of component devices
              and changing the number of active devices in  Linear  and  RAID  levels  0/1/4/5/6,
              changing  the RAID level between 0, 1, 5, and 6, and between 0 and 10, changing the
              chunk size and layout for RAID 0,4,5,6,10 as well as adding or  removing  a  write-
              intent bitmap and changing the array's consistency policy.

       Incremental Assembly
              Add  a  single device to an appropriate array.  If the addition of the device makes
              the array runnable,  the  array  will  be  started.   This  provides  a  convenient
              interface  to a hot-plug system.  As each device is detected, mdadm has a chance to
              include it in some array as appropriate.   Optionally,  when  the  --fail  flag  is
              passed in we will remove the device from any active array instead of adding it.

              If  a  CONTAINER  is  passed  to  mdadm  in  this mode, then any arrays within that
              container will be assembled and started.

       Manage This is for doing things to specific components of an  array  such  as  adding  new
              spares and removing faulty devices.

       Misc   This  is  an  'everything  else'  mode  that  supports operations on active arrays,
              operations on component devices such as erasing old superblocks,  and  information-
              gathering operations.

       Auto-detect
              This  mode  does  not act on a specific device or array, but rather it requests the
              Linux Kernel to activate any auto-detected arrays.

OPTIONS

Options for selecting a mode are:

       -A, --assemble
              Assemble a pre-existing array.

       -B, --build
              Build a legacy array without superblocks.

       -C, --create
              Create a new array.

       -F, --follow, --monitor
              Select Monitor mode.

       -G, --grow
              Change the size or shape of an active array.

       -I, --incremental
              Add/remove a single device to/from an appropriate array,  and  possibly  start  the
              array.

       --auto-detect
              Request  that the kernel starts any auto-detected arrays.  This can only work if md
              is compiled into the kernel — not if it is a module.  Arrays can  be  auto-detected
              by the kernel if all the components are in primary MS-DOS partitions with partition
              type FD, and all use v0.90 metadata.  In-kernel autodetect is not  recommended  for
              new  installations.   Using  mdadm  to  detect and assemble arrays — possibly in an
              initrd — is substantially more flexible and should be preferred.

       If a device is given before any options, or if the first option is one of --add, --re-add,
       --add-spare,  --fail,  --remove,  or --replace, then the MANAGE mode is assumed.  Anything
       other than these will cause the Misc mode to be assumed.

Options that are not mode-specific are:

       -h, --help
              Display a general help message or, after one of the above options, a  mode-specific
              help message.

       --help-options
              Display  more  detailed  help  about  command-line  parsing  and some commonly used
              options.

       -V, --version
              Print version information for mdadm.

       -v, --verbose
              Be more verbose about what is happening.  This can  be  used  twice  to  be  extra-
              verbose.   The extra verbosity currently only affects --detail --scan and --examine
              --scan.

       -q, --quiet
              Avoid printing purely informative messages.  With this, mdadm will be silent unless
              there is something really important to report.

       -f, --force
              Be  more  forceful  about  certain operations.  See the various modes for the exact
              meaning of this option in different contexts.

       -c, --config=
              Specify the config file or directory.  If not specified, the  default  config  file
              and default conf.d directory will be used.  See mdadm.conf(5) for more details.

              If  the  config  file given is partitions then nothing will be read, but mdadm will
              act as though the config file contained exactly
                  DEVICE partitions containers
              and will read /proc/partitions to find a list of devices to scan, and  /proc/mdstat
              to  find a list of containers to examine.  If the word none is given for the config
              file, then mdadm will act as though the config file were empty.

              If the name given is of  a  directory,  then  mdadm  will  collect  all  the  files
              contained  in  the  directory with a name ending in .conf, sort them lexically, and
              process all of those files as config files.

       -s, --scan
              Scan config file or /proc/mdstat for missing information.  In general, this  option
              gives  mdadm  permission  to  get  any missing information (like component devices,
              array devices, array identities, and alert destination) from the configuration file
              (see previous option); one exception is MISC mode when using --detail or --stop, in
              which case --scan says to get a list of array devices from /proc/mdstat.

       -e, --metadata=
              Declare the style of RAID metadata (superblock) to be used.  The default is 1.2 for
              --create,  and  to  guess  for  other operations.  The default can be overridden by
              setting the metadata value for the CREATE keyword in mdadm.conf.

              Options are:

              0, 0.90
                     Use the original 0.90 format superblock.  This format limits  arrays  to  28
                     component  devices and limits component devices of levels 1 and greater to 2
                     terabytes.  It is also possible for there to be confusion about whether  the
                     superblock  applies  to  a  whole device or just the last partition, if that
                     partition starts on a 64K boundary.

              1, 1.0, 1.1, 1.2 default
                     Use the new version-1 format superblock.  This has fewer  restrictions.   It
                     can easily be moved between hosts with different endian-ness, and a recovery
                     operation can be checkpointed and  restarted.   The  different  sub-versions
                     store the superblock at different locations on the device, either at the end
                     (for 1.0), at the start (for 1.1) or 4K from the start (for  1.2).   "1"  is
                     equivalent  to  "1.2"  (the  commonly  preferred  1.x format).  "default" is
                     equivalent to "1.2".

              ddf    Use the "Industry Standard" DDF (Disk Data Format) format defined  by  SNIA.
                     When creating a DDF array a CONTAINER will be created, and normal arrays can
                     be created in that container.

              imsm   Use the Intel(R) Matrix Storage Manager metadata  format.   This  creates  a
                     CONTAINER  which  is managed in a similar manner to DDF, and is supported by
                     an option-rom on some platforms:

                     https://www.intel.com/content/www/us/en/support/products/122484/memory-and-
                     storage/ssd-software/intel-virtual-raid-on-cpu-intel-vroc.html

       --homehost=
              This  will  override  any  HOMEHOST  setting  in  the  config file and provides the
              identity of the host which should be considered the home for any arrays.

              When creating an array, the  homehost  will  be  recorded  in  the  metadata.   For
              version-1  superblocks,  it  will  be prefixed to the array name.  For version-0.90
              superblocks, part of the SHA1 hash of the hostname will be  stored  in  the  latter
              half of the UUID.

              When  reporting information about an array, any array which is tagged for the given
              homehost will be reported as such.

              When using Auto-Assemble, only arrays tagged for the given homehost will be allowed
              to  use  'local'  names  (i.e.  not ending in '_' followed by a digit string).  See
              below under Auto-Assembly.

              The special name "any" can be used as a wild card.  If an  array  is  created  with
              --homehost=any  then  the  name  "any"  will  be  stored in the array and it can be
              assembled in the same way on any host.  If an array is assembled with this  option,
              then the homehost recorded on the array will be ignored.

       --prefer=
              When  mdadm needs to print the name for a device it normally finds the name in /dev
              which refers to the device and is the shortest.  When a  path  component  is  given
              with  --prefer  mdadm will prefer a longer name if it contains that component.  For
              example --prefer=by-uuid will prefer a name in a subdirectory of  /dev  called  by-
              uuid.

              This functionality is currently only provided by --detail and --monitor.

       --home-cluster=
              specifies  the  cluster name for the md device. The md device can be assembled only
              on the cluster which matches the name specified. If this option  is  not  provided,
              mdadm tries to detect the cluster name automatically.

For create, build, or grow:

       -n, --raid-devices=
              Specify  the number of active devices in the array.  This, plus the number of spare
              devices (see below) must equal the number of component-devices (including "missing"
              devices) that are listed on the command line for --create.  Setting a value of 1 is
              probably a mistake and so requires that --force be specified first.  A value  of  1
              will  then  be allowed for linear, multipath, RAID0 and RAID1.  It is never allowed
              for RAID4, RAID5 or RAID6.
              This number can only be changed using --grow for  RAID1,  RAID4,  RAID5  and  RAID6
              arrays, and only on kernels which provide the necessary support.

       -x, --spare-devices=
              Specify  the number of spare (eXtra) devices in the initial array.  Spares can also
              be added and removed later.  The number of component devices listed on the  command
              line must equal the number of RAID devices plus the number of spare devices.

       -z, --size=
              Amount (in Kilobytes) of space to use from each drive in RAID levels 1/4/5/6/10 and
              for RAID 0 on external metadata.  This must be a multiple of the  chunk  size,  and
              must  leave  about  128Kb of space at the end of the drive for the RAID superblock.
              When specified as ¸max¸ (as it often is) the smallest drive (or partition) sets the
              size.   In  that  case, a warning will follow if the drives, as a group, have sizes
              that differ by more than one percent.

              A suffix of 'K', 'M', 'G' or 'T' can be given  to  indicate  Kilobytes,  Megabytes,
              Gigabytes or Terabytes respectively.

              Sometimes  a  replacement  drive  can  be a little smaller than the original drives
              though this should be minimised by IDEMA standards.  Such a replacement drive  will
              be  rejected by md.  To guard against this it can be useful to set the initial size
              slightly smaller than the smaller device with the aim that it will still be  larger
              than any replacement.

              This option can be used with --create for determining the initial size of an array.
              For external metadata, it can be used on a volume, but not on a  container  itself.
              Setting the initial size of RAID 0 array is only valid for external metadata.

              This  value  can be set with --grow for RAID level 1/4/5/6/10 though DDF arrays may
              not be able to support this.  RAID 0 array size cannot be changed.   If  the  array
              was  created  with a size smaller than the currently active drives, the extra space
              can be accessed using --grow.  The size can be given as max which means  to  choose
              the largest size that fits on all current drives.

              Before  reducing  the  size of the array (with --grow --size=) you should make sure
              that space isn't needed.  If the device holds  a  filesystem,  you  would  need  to
              resize the filesystem to use less space.

              After  reducing  the array size you should check that the data stored in the device
              is still available.  If the device holds  a  filesystem,  then  an  'fsck'  of  the
              filesystem  is  a minimum requirement.  If there are problems the array can be made
              bigger again with no loss with another --grow --size= command.

       -Z, --array-size=
              This is only meaningful with --grow and its effect  is  not  persistent:  when  the
              array is stopped and restarted the default array size will be restored.

              Setting  the  array-size causes the array to appear smaller to programs that access
              the data.  This is particularly needed before reshaping an array so that it will be
              smaller.   As the reshape is not reversible, but setting the size with --array-size
              is, it is required that the array size is reduced as appropriate before the  number
              of devices in the array is reduced.

              Before reducing the size of the array you should make sure that space isn't needed.
              If the device holds a filesystem, you would need to resize the  filesystem  to  use
              less space.

              After  reducing  the array size you should check that the data stored in the device
              is still available.  If the device holds  a  filesystem,  then  an  'fsck'  of  the
              filesystem  is  a minimum requirement.  If there are problems the array can be made
              bigger again with no loss with another --grow --array-size= command.

              A suffix of 'K', 'M', 'G' or 'T' can be given  to  indicate  Kilobytes,  Megabytes,
              Gigabytes  or Terabytes respectively.  A value of max restores the apparent size of
              the array to be whatever the real amount of available space is.

              Clustered arrays do not support this parameter yet.

       -c, --chunk=
              Specify chunk size in kilobytes.  The default when creating an array is 512KB.   To
              ensure compatibility with earlier versions, the default when building an array with
              no persistent metadata is 64KB.  This is only meaningful for RAID0,  RAID4,  RAID5,
              RAID6, and RAID10.

              RAID4,  RAID5,  RAID6,  and  RAID10 require the chunk size to be a power of 2, with
              minimal chunk size being 4KB.

              A suffix of 'K', 'M', 'G' or 'T' can be given  to  indicate  Kilobytes,  Megabytes,
              Gigabytes or Terabytes respectively.

       --rounding=
              Specify the rounding factor for a Linear array.  The size of each component will be
              rounded down to a multiple of this  size.   This  is  a  synonym  for  --chunk  but
              highlights  the different meaning for Linear as compared to other RAID levels.  The
              default is 64K if a kernel earlier than 2.6.16 is  in  use,  and  is  0K  (i.e.  no
              rounding) in later kernels.

       -l, --level=
              Set  RAID  level.   When used with --create, options are: linear, raid0, 0, stripe,
              raid1, 1, mirror, raid4, 4, raid5, 5, raid6, 6, raid10, 10, multipath, mp,  faulty,
              container.  Obviously some of these are synonymous.

              When a CONTAINER metadata type is requested, only the container level is permitted,
              and it does not need to be explicitly given.

              When used with --build, only linear, stripe, raid0, 0, raid1,  multipath,  mp,  and
              faulty are valid.

              Can  be used with --grow to change the RAID level in some cases.  See LEVEL CHANGES
              below.

       -p, --layout=
              This option configures the fine details of data layout for RAID5, RAID6, and RAID10
              arrays, and controls the failure modes for faulty.  It can also be used for working
              around a kernel bug with RAID0, but generally doesn't need to be used explicitly.

              The layout of the RAID5 parity block can be one of left-asymmetric, left-symmetric,
              right-asymmetric, right-symmetric, la, ra, ls, rs.  The default is left-symmetric.

              It  is  also  possible  to  cause  RAID5  to  use  a  RAID4-like layout by choosing
              parity-first, or parity-last.

              Finally   for   RAID5   there   are   DDF-compatible   layouts,   ddf-zero-restart,
              ddf-N-restart, and ddf-N-continue.

              These  same  layouts  are  available for RAID6.  There are also 4 layouts that will
              provide an intermediate stage  for  converting  between  RAID5  and  RAID6.   These
              provide  a layout which is identical to the corresponding RAID5 layout on the first
              N-1 devices, and has the 'Q' syndrome (the second 'parity' block used by RAID6)  on
              the   last   device.    These  layouts  are:  left-symmetric-6,  right-symmetric-6,
              left-asymmetric-6, right-asymmetric-6, and parity-first-6.

              When setting the failure mode for level faulty, the options  are:  write-transient,
              wt,  read-transient,  rt,  write-persistent,  wp,  read-persistent,  rp, write-all,
              read-fixable, rf, clear, flush, none.

              Each failure mode can be followed by a number, which is used as  a  period  between
              fault  generation.   Without  a  number,  the  fault is generated once on the first
              relevant request.  With a number, the fault  will  be  generated  after  that  many
              requests, and will continue to be generated every time the period elapses.

              Multiple  failure modes can be current simultaneously by using the --grow option to
              set subsequent failure modes.

              "clear" or "none" will remove any pending or periodic failure  modes,  and  "flush"
              will clear any persistent faults.

              The layout options for RAID10 are one of 'n', 'o' or 'f' followed by a small number
              signifying the number of copies of each  datablock.   The  default  is  'n2'.   The
              supported options are:

              'n'  signals  'near'  copies.   Multiple  copies  of  one data block are at similar
              offsets in different devices.

              'o' signals 'offset' copies.  Rather than the  chunks  being  duplicated  within  a
              stripe,  whole  stripes  are  duplicated but are rotated by one device so duplicate
              blocks are on different devices.  Thus subsequent copies of a block are in the next
              drive, and are one chunk further down.

              'f'  signals 'far' copies (multiple copies have very different offsets).  See md(4)
              for more detail about 'near', 'offset', and 'far'.

              As for the number of copies of each data block, 2 is normal, 3 can be useful.  This
              number  can  be  at  most equal to the number of devices in the array.  It does not
              need to divide evenly into that number (e.g. it is perfectly legal to have an  'n2'
              layout for an array with an odd number of devices).

              A  bug  introduced  in Linux 3.14 means that RAID0 arrays with devices of differing
              sizes started using a different layout.  This could lead to data corruption.  Since
              Linux  5.4  (and  various stable releases that received backports), the kernel will
              not accept such an array unless a layout is explicitly  set.   It  can  be  set  to
              'original' or 'alternate'.  When creating a new array, mdadm will select 'original'
              by default, so the layout does not normally need to be set.  An array  created  for
              either  'original'  or  'alternate' will not be recognized by an (unpatched) kernel
              prior to 5.4.  To create a RAID0 array with devices of differing sizes that can  be
              used  on  an  older  kernel,  you can set the layout to 'dangerous'.  This will use
              whichever layout the running kernel supports, so the data on the array  may  become
              corrupt when changing kernel from pre-3.14 to a later kernel.

              When  an array is converted between RAID5 and RAID6 an intermediate RAID6 layout is
              used in which the second parity block (Q) is always on the last device.  To convert
              a  RAID5  to  RAID6  and  leave  it  in this new layout (which does not require re-
              striping) use --layout=preserve.  This will try to avoid any restriping.

              The converse of this is --layout=normalise which will change a  non-standard  RAID6
              layout into a more standard arrangement.

       --parity=
              same as --layout (thus explaining the p of -p).

       -b, --bitmap=
              Specify a file to store a write-intent bitmap in.  The file should not exist unless
              --force is also given.  The same file should be provided when assembling the array.
              If  the  word internal is given, then the bitmap is stored with the metadata on the
              array, and so is replicated on all devices.  If the word none is given with  --grow
              mode,  then  any bitmap that is present is removed. If the word clustered is given,
              the array is created for a clustered environment. One bitmap is  created  for  each
              node as defined by the --nodes parameter and are stored internally.

              To  help catch typing errors, the filename must contain at least one slash ('/') if
              it is a real file (not 'internal' or 'none').

              Note: external bitmaps are only known to work on ext2  and  ext3.   Storing  bitmap
              files on other filesystems may result in serious problems.

              When  creating  an  array  on devices which are 100G or larger, mdadm automatically
              adds an internal bitmap as it will usually be beneficial.  This can  be  suppressed
              with   --bitmap=none   or   by   selecting  a  different  consistency  policy  with
              --consistency-policy.

       --bitmap-chunk=
              Set the chunk size of the bitmap.  Each bit corresponds to that many  Kilobytes  of
              storage.   When  using a file-based bitmap, the default is to use the smallest size
              that is at least 4 and requires no more than 2^21 chunks.  When using  an  internal
              bitmap,  the chunk size defaults to 64Meg, or larger if necessary to fit the bitmap
              into the available space.

              A suffix of 'K', 'M', 'G' or 'T' can be given  to  indicate  Kilobytes,  Megabytes,
              Gigabytes or Terabytes respectively.

       -W, --write-mostly
              subsequent  devices listed in a --build, --create, or --add command will be flagged
              as 'write-mostly'.  This is valid for RAID1 only and means  that  the  'md'  driver
              will  avoid  reading  from these devices if at all possible.  This can be useful if
              mirroring over a slow link.

       --write-behind=
              Specify that write-behind mode should be enabled (valid for  RAID1  only).   If  an
              argument  is  specified,  it  will  set  the  maximum  number of outstanding writes
              allowed.  The default value is 256.  A write-intent bitmap is required in order  to
              use  write-behind  mode,  and  write-behind  is  only attempted on drives marked as
              write-mostly.

       --failfast
              subsequent devices listed in a  --create  or  --add  command  will  be  flagged  as
              'failfast'.  This is valid for RAID1 and RAID10 only.  IO requests to these devices
              will be encouraged to fail quickly rather than  cause  long  delays  due  to  error
              handling.  Also no attempt is made to repair a read error on these devices.

              If  an  array  becomes  degraded  so  that the 'failfast' device is the only usable
              device, the 'failfast' flag will then  be  ignored  and  extended  delays  will  be
              preferred to complete failure.

              The  'failfast' flag is appropriate for storage arrays which have a low probability
              of true failure, but which may sometimes cause unacceptable delays due to  internal
              maintenance functions.

       --assume-clean
              Tell  mdadm  that the array pre-existed and is known to be clean.  It can be useful
              when trying to recover from a major failure as you can be sure that no data will be
              affected unless you actually write to the array.  It can also be used when creating
              a RAID1 or RAID10 if you want to avoid the initial resync, however this practice  —
              while  normally  safe  — is not recommended.  Use this only if you really know what
              you are doing.

              When the devices that will be part of a new array were  filled  with  zeros  before
              creation  the operator knows the array is actually clean. If that is the case, such
              as after running badblocks, this argument can be used to tell mdadm the  facts  the
              operator knows.

              When  an  array  is  resized  to a larger size with --grow --size= the new space is
              normally resynced in that same way that the whole array is  resynced  at  creation.
              From  Linux  version 3.0, --assume-clean can be used with that command to avoid the
              automatic resync.

       --write-zeroes
              When creating an array, send write zeroes requests to all the block devices.   This
              should  zero the data area on all disks such that the initial sync is not necessary
              and, if successfull, will behave as if --assume-clean was specified.

              This is intended for use with devices that have hardware offload for  zeroing,  but
              despite  this  zeroing  can  still  take  several  minutes for large disks.  Thus a
              message is printed before and after zeroing and each disk  is  zeroed  in  parallel
              with the others.

              This is only meaningful with --create.

       --backup-file=
              This  is  needed  when  --grow  is used to increase the number of raid devices in a
              RAID5 or RAID6 if there are no spare devices available, or to shrink,  change  RAID
              level  or  layout.   See  the GROW MODE section below on RAID-DEVICES CHANGES.  The
              file must be stored on a separate device, not on the RAID array being reshaped.

       --data-offset=
              Arrays with 1.x metadata can leave a gap between the start of the  device  and  the
              start of array data.  This gap can be used for various metadata.  The start of data
              is known as the data-offset.  Normally  an  appropriate  data  offset  is  computed
              automatically.   However  it  can  be  useful to set it explicitly such as when re-
              creating an array which was originally created using a different version  of  mdadm
              which computed a different offset.

              Setting  the  offset  explicitly  over-rides  the  default.   The value given is in
              Kilobytes unless a suffix of 'K', 'M', 'G' or 'T' is used  to  explicitly  indicate
              Kilobytes, Megabytes, Gigabytes or Terabytes respectively.

              Since  Linux  3.4,  --data-offset can also be used with --grow for some RAID levels
              (initially on RAID10).  This allows the data-offset to be changed as  part  of  the
              reshape  process.   When  the data offset is changed, no backup file is required as
              the difference in offsets is used to provide the same functionality.

              When the new offset is earlier than the old offset, the number of  devices  in  the
              array cannot shrink.  When it is after the old offset, the number of devices in the
              array cannot increase.

              When creating an array, --data-offset can be specified as variable.   In  the  case
              each member device is expected to have an offset appended to the name, separated by
              a colon.  This makes it possible to recreate exactly an  array  which  has  varying
              data  offsets  (as  can  happen  when  different  versions of mdadm are used to add
              different devices).

       --continue
              This option is complementary to the --freeze-reshape option  for  assembly.  It  is
              needed  when  --grow operation is interrupted and it is not restarted automatically
              due to --freeze-reshape usage during array assembly.  This option is used  together
              with -G , ( --grow ) command and device for a pending reshape to be continued.  All
              parameters required for reshape continuation will be read from array metadata.   If
              initial  --grow  command had required --backup-file= option to be set, continuation
              option will require to have exactly the same backup file given as well.

              Any other parameter passed together with --continue option will be ignored.

       -N, --name=
              Set a name for the array.  This is currently only effective when creating an  array
              with  a version-1 superblock, or an array in a DDF container.  The name is a simple
              textual string that can be used to identify array components when  assembling.   If
              name  is needed but not specified, it is taken from the basename of the device that
              is being created.  e.g. when creating /dev/md/home the name will default  to  home.
              (Does not work in Grow mode.)

       -R, --run
              Insist that mdadm run the array, even if some of the components appear to be active
              in another array or filesystem.  Normally mdadm will ask  for  confirmation  before
              including  such  components  in  an  array.  This option causes that question to be
              suppressed.

       -f, --force
              Insist that mdadm accept  the  geometry  and  layout  specified  without  question.
              Normally  mdadm  will  not allow the creation of an array with only one device, and
              will try to create a RAID5 array with one missing drive (as this makes the  initial
              resync work faster).  With --force, mdadm will not try to be so clever.

       -o, --readonly
              Start  the  array  read  only  rather than read-write as normal.  No writes will be
              allowed to the array, and no resync, recovery, or reshape will be started. It works
              with Create, Assemble, Manage and Misc mode.

       -a, --auto{=yes,md,mdp,part,p}{NN}
              Instruct  mdadm  how  to  create  the device file if needed, possibly allocating an
              unused minor number.  "md" causes a non-partitionable  array  to  be  used  (though
              since  Linux 2.6.28, these array devices are in fact partitionable).  "mdp", "part"
              or "p" causes a partitionable array (2.6 and later) to be used.  "yes" requires the
              named  md device to have a 'standard' format, and the type and minor number will be
              determined from this.  With mdadm 3.0, device creation is normally left up to  udev
              so this option is unlikely to be needed.  See DEVICE NAMES below.

              The argument can also come immediately after "-a".  e.g. "-ap".

              If  --auto is not given on the command line or in the config file, then the default
              will be --auto=yes.

              If --scan is also given, then any auto= entries in the config  file  will  override
              the --auto instruction given on the command line.

              For partitionable arrays, mdadm will create the device file for the whole array and
              for the first 4 partitions.  A different number of partitions can be  specified  at
              the  end  of  this option (e.g.  --auto=p7).  If the device name ends with a digit,
              the partition names add a 'p', and a number, e.g.  /dev/md/home1p3.  If there is no
              trailing   digit,  then  the  partition  names  just  have  a  number  added,  e.g.
              /dev/md/scratch3.

              If the md device name is in a 'standard' format as described in DEVICE NAMES,  then
              it  will be created, if necessary, with the appropriate device number based on that
              name.  If the device name is not in one of these formats,  then  an  unused  device
              number  will be allocated.  The device number will be considered unused if there is
              no active array for that number, and there is no entry in /dev for that number  and
              with a non-standard name.  Names that are not in 'standard' format are only allowed
              in "/dev/md/".

              This is meaningful with --create or --build.

       -a, --add
              This option can be used in Grow mode in two cases.

              If the target array is a Linear array, then --add can be used to add  one  or  more
              devices  to the array.  They are simply catenated on to the end of the array.  Once
              added, the devices cannot be removed.

              If the --raid-disks option is being used to increase the number of  devices  in  an
              array,  then  --add  can  be  used  to add some extra devices to be included in the
              array.  In most cases this is not needed as the  extra  devices  can  be  added  as
              spares first, and then the number of raid disks can be changed.  However, for RAID0
              it is not possible to add spares.  So to increase the number of devices in a RAID0,
              it  is  necessary  to set the new number of devices, and to add the new devices, in
              the same command.

       --nodes
              Only works when the array is created for a clustered environment. It specifies  the
              maximum number of nodes in the cluster that will use this device simultaneously. If
              not specified, this defaults to 4.

       --write-journal
              Specify journal device for the RAID-4/5/6 array. The journal device  should  be  an
              SSD with a reasonable lifetime.

       -k, --consistency-policy=
              Specify  how the array maintains consistency in the case of an unexpected shutdown.
              Only relevant for RAID levels with redundancy.  Currently supported options are:

              resync Full resync is performed and all redundancy is regenerated when the array is
                     started after an unclean shutdown.

              bitmap Resync  assisted  by  a  write-intent bitmap. Implicitly selected when using
                     --bitmap.

              journal
                     For RAID levels 4/5/6, the journal device is used to  log  transactions  and
                     replay   after   an   unclean   shutdown.  Implicitly  selected  when  using
                     --write-journal.

              ppl    For RAID5 only, Partial Parity Log is used  to  close  the  write  hole  and
                     eliminate  resync.  PPL  is  stored  in  the  metadata region of RAID member
                     drives, no additional journal drive is needed.

              Can be used with --grow to change the consistency policy of an active array in some
              cases. See CONSISTENCY POLICY CHANGES below.

For assemble:

       -u, --uuid=
              uuid of array to assemble.  Devices which don't have this uuid are excluded

       -m, --super-minor=
              Minor  number  of device that array was created for.  Devices which don't have this
              minor number  are  excluded.   If  you  create  an  array  as  /dev/md1,  then  all
              superblocks  will  contain the minor number 1, even if the array is later assembled
              as /dev/md2.

              Giving the literal word "dev" for --super-minor will cause mdadm to use  the  minor
              number  of  the  md device that is being assembled.  e.g. when assembling /dev/md0,
              --super-minor=dev will look for super blocks with a minor number of 0.

              --super-minor is only relevant for v0.90 metadata, and should not normally be used.
              Using --uuid is much safer.

       -N, --name=
              Specify  the  name  of  the  array  to  assemble.   This  must be the name that was
              specified when creating the array.  It must either match the  name  stored  in  the
              superblock  exactly,  or  it  must  match with the current homehost prefixed to the
              start of the given name.

       -f, --force
              Assemble the array even if the metadata on some devices appears to be  out-of-date.
              If  mdadm  cannot find enough working devices to start the array, but can find some
              devices that are recorded as having failed, then it  will  mark  those  devices  as
              working  so that the array can be started. This works only for native. For external
              metadata it allows one to start dirty degraded  RAID  4,  5,  6.   An  array  which
              requires --force to be started may contain data corruption.  Use it carefully.

       -R, --run
              Attempt  to  start the array even if fewer drives were given than were present last
              time the array was active.  Normally if not all the expected drives are  found  and
              --scan  is  not used, then the array will be assembled but not started.  With --run
              an attempt will be made to start it anyway.

       --no-degraded
              This is the reverse of --run in that it inhibits the startup of  array  unless  all
              expected  drives  are present.  This is only needed with --scan, and can be used if
              the physical connections to devices are not as reliable as you would like.

       -a, --auto{=no,yes,md,mdp,part}
              See this option under Create and Build options.

       -b, --bitmap=
              Specify the bitmap file that was given when the array was created.  If an array has
              an internal bitmap, there is no need to specify this when assembling the array.

       --backup-file=
              If --backup-file was used while reshaping an array (e.g. changing number of devices
              or chunk size) and the system crashed during the critical section,  then  the  same
              --backup-file  must  be presented to --assemble to allow possibly corrupted data to
              be restored, and the reshape to be completed.

       --invalid-backup
              If the file needed for the above option is not available for any  reason  an  empty
              file  can  be  given  together with this option to indicate that the backup file is
              invalid.  In this case the data that was being rearranged at the time of the  crash
              could  be  irrecoverably  lost, but the rest of the array may still be recoverable.
              This option should only be used as a last resort if there is no way to recover  the
              backup file.

       -U, --update=
              Update  the  superblock  on  each  device while assembling the array.  The argument
              given to this flag can be one of sparc2.2, summaries, uuid, name, nodes,  homehost,
              home-cluster,  resync,  byteorder, devicesize, no-bitmap, bbl, no-bbl, ppl, no-ppl,
              layout-original, layout-alternate, layout-unspecified, metadata, or super-minor.

              The sparc2.2 option will adjust the superblock of an array what was  created  on  a
              Sparc machine running a patched 2.2 Linux kernel.  This kernel got the alignment of
              part of the superblock wrong.  You can use the --examine --sparc2.2 option to mdadm
              to see what effect this would have.

              The  super-minor option will update the preferred minor field on each superblock to
              match the minor number of the  array  being  assembled.   This  can  be  useful  if
              --examine  reports  a  different "Preferred Minor" to --detail.  In some cases this
              update will be performed automatically by the kernel driver.   In  particular,  the
              update  happens  automatically at the first write to an array with redundancy (RAID
              level 1 or greater) on a 2.6 (or later) kernel.

              The uuid option will change the uuid of the array.  If a UUID  is  given  with  the
              --uuid  option  that  UUID  will be used as a new UUID and will NOT be used to help
              identify the devices in the array.  If no --uuid is given, a random UUID is chosen.

              The name option will change the name of the array  as  stored  in  the  superblock.
              This is only supported for version-1 superblocks.

              The  nodes  option  will  change  the  nodes  of  the array as stored in the bitmap
              superblock. This option only works for a clustered environment.

              The homehost option will change the homehost as recorded in  the  superblock.   For
              version-0  superblocks,  this  is  the  same  as  updating the UUID.  For version-1
              superblocks, this involves updating the name.

              The home-cluster option will change the cluster name as recorded in the  superblock
              and bitmap. This option only works for a clustered environment.

              The  resync  option  will  cause  the  array  to  be  marked dirty meaning that any
              redundancy in the array (e.g. parity for RAID5, copies for RAID1) may be incorrect.
              This  will  cause  the RAID system to perform a "resync" pass to make sure that all
              redundant information is correct.

              The byteorder option allows arrays to be  moved  between  machines  with  different
              byte-order,  such  as from a big-endian machine like a Sparc or some MIPS machines,
              to a little-endian x86_64 machine.  When assembling such an  array  for  the  first
              time after a move, giving --update=byteorder will cause mdadm to expect superblocks
              to have their byteorder reversed, and will correct that order before assembling the
              array.  This is only valid with original (Version 0.90) superblocks.

              The  summaries  option  will  correct the summaries in the superblock.  That is the
              counts of total, working, active, failed, and spare devices.

              The devicesize option will rarely be of use.  It applies to  version  1.1  and  1.2
              metadata only (where the metadata is at the start of the device) and is only useful
              when the component device has changed size (typically become larger).  The  version
              1 metadata records the amount of the device that can be used to store data, so if a
              device in a version 1.1 or 1.2 array becomes larger, the  metadata  will  still  be
              visible, but the extra space will not.  In this case it might be useful to assemble
              the array with --update=devicesize.  This will cause mdadm to determine the maximum
              usable  amount  of  space  on  each  device  and  update  the relevant field in the
              metadata.

              The metadata option only works on v0.90 metadata arrays and will  convert  them  to
              v1.0  metadata.   The array must not be dirty (i.e. it must not need a sync) and it
              must not have a write-intent bitmap.

              The old metadata will remain on the devices, but will appear  older  than  the  new
              metadata  and  so  will  usually  be  ignored.  The old metadata (or indeed the new
              metadata)  can  be  removed  by  giving  the  appropriate  --metadata=  option   to
              --zero-superblock.

              The  no-bitmap  option  can  be  used when an array has an internal bitmap which is
              corrupt in some way so that assembling the array normally fails.  It will cause any
              internal bitmap to be ignored.

              The  bbl  option will reserve space in each device for a bad block list.  This will
              be 4K in size and positioned near the end of any free space between the  superblock
              and the data.

              The  no-bbl  option  will cause any reservation of space for a bad block list to be
              removed.  If the bad block list contains entries, this will fail, as  removing  the
              list could cause data corruption.

              The  ppl option will enable PPL for a RAID5 array and reserve space for PPL on each
              device. There must be enough free space between  the  data  and  superblock  and  a
              write-intent bitmap or journal must not be used.

              The no-ppl option will disable PPL in the superblock.

              The  layout-original  and  layout-alternate  options are for RAID0 arrays with non-
              uniform devices size that were in use before Linux 5.4.  If  the  array  was  being
              used  with  Linux  3.13  or  earlier,  then  to assemble the array on a new kernel,
              --update=layout-original must be given.  If the array was created and used  with  a
              kernel  from Linux 3.14 to Linux 5.3, then --update=layout-alternate must be given.
              This only needs to be given once.  Subsequent assembly of  the  array  will  happen
              normally.  For more information, see md(4).

              The   layout-unspecified   option   reverts   the   effect   of  layout-orignal  or
              layout-alternate and allows the array to be again used on a kernel prior  to  Linux
              5.3.  This option should be used with great caution.

       --freeze-reshape
              This  option  is  intended  to  be  used in start-up scripts during the initrd boot
              phase.  When the array under reshape is assembled during  the  initrd  phase,  this
              option stops the reshape after the reshape-critical section has been restored. This
              happens before the file system  pivot  operation  and  avoids  loss  of  filesystem
              context.  Losing file system context would cause reshape to be broken.

              Reshape can be continued later using the --continue option for the grow command.

For Manage mode:

       -t, --test
              Unless  a  more  serious  error  occurred, mdadm will exit with a status of 2 if no
              changes were made to the array and 0 if at least one change was made.  This can  be
              useful  when  an  indirect specifier such as missing, detached or faulty is used in
              requesting an operation  on  the  array.   --test  will  report  failure  if  these
              specifiers didn't find any match.

       -a, --add
              hot-add  listed  devices.   If  a  device appears to have recently been part of the
              array (possibly it failed or was removed) the device is re-added  as  described  in
              the  next  point.   If  that  fails  or the device was never part of the array, the
              device is added as a hot-spare.  If the array  is  degraded,  it  will  immediately
              start to rebuild data onto that spare.

              Note  that  this  and  the  following  options  are  only  meaningful on array with
              redundancy.  They don't apply to RAID0 or Linear.

       --re-add
              re-add a device that was previously removed from an array.  If the metadata on  the
              device reports that it is a member of the array, and the slot that it used is still
              vacant, then the device will be added back to the array in the same position.  This
              will  normally  cause  the data for that device to be recovered.  However, based on
              the event count on the device, the recovery may  only  require  sections  that  are
              flagged by a write-intent bitmap to be recovered or may not require any recovery at
              all.

              When used on an array that has no metadata (i.e. it was built with --build) it will
              be assumed that bitmap-based recovery is enough to make the device fully consistent
              with the array.

              --re-add  can  also  be  accompanied  by  --update=devicesize,   --update=bbl,   or
              --update=no-bbl.   See descriptions of these options when used in Assemble mode for
              an explanation of their use.

              If the device name given is missing then mdadm will try to  find  any  device  that
              looks like it should be part of the array but isn't and will try to re-add all such
              devices.

              If the device name given is faulty then mdadm will find all devices  in  the  array
              that  are  marked faulty, remove them and attempt to immediately re-add them.  This
              can be useful if you are certain that the reason for failure has been resolved.

       --add-spare
              Add a device as a spare.  This is similar to --add except that it does not  attempt
              --re-add first.  The device will be added as a spare even if it looks like it could
              be a recent member of the array.

       -r, --remove
              remove listed devices.  They must not be active.  i.e. they  should  be  failed  or
              spare devices.

              As  well  as the name of a device file (e.g.  /dev/sda1) the words failed, detached
              and names like set-A can be given to --remove.  The first causes all failed devices
              to  be  removed.   The second causes any device which is no longer connected to the
              system (i.e an 'open' returns ENXIO) to be removed.  The third will remove a set as
              described below under --fail.

       -f, --fail
              Mark  listed  devices  as  faulty.   As well as the name of a device file, the word
              detached or a set name like set-A can be given.  The former will cause  any  device
              that  has  been  detached  from  the system to be marked as failed.  It can then be
              removed.

              For RAID10 arrays where the number of copies evenly divides the number of  devices,
              the  devices can be conceptually divided into sets where each set contains a single
              complete copy of the  data  on  the  array.   Sometimes  a  RAID10  array  will  be
              configured  so  that these sets are on separate controllers.  In this case, all the
              devices in one set can be failed by giving a name like set-A or  set-B  to  --fail.
              The appropriate set names are reported by --detail.

       --set-faulty
              same as --fail.

       --replace
              Mark  listed devices as requiring replacement.  As soon as a spare is available, it
              will be rebuilt and will replace the marked device.  This is similar to  marking  a
              device  as faulty, but the device remains in service during the recovery process to
              increase resilience  against  multiple  failures.   When  the  replacement  process
              finishes, the replaced device will be marked as faulty.

       --with This  can follow a list of --replace devices.  The devices listed after --with will
              preferentially be used to  replace  the  devices  listed  after  --replace.   These
              devices must already be spare devices in the array.

       --write-mostly
              Subsequent  devices  that  are  added or re-added will have the 'write-mostly' flag
              set.  This is only valid for RAID1 and  means  that  the  'md'  driver  will  avoid
              reading from these devices if possible.

       --readwrite
              Subsequent  devices  that  are  added or re-added will have the 'write-mostly' flag
              cleared.

       --cluster-confirm
              Confirm the existence of the device. This is issued in response to an --add request
              by  a  node in a cluster. When a node adds a device it sends a message to all nodes
              in the cluster to look for a  device  with  a  UUID.  This  translates  to  a  udev
              notification  with  the  UUID  of  the  device to be added and the slot number. The
              receiving  node  must  acknowledge  this  message  with  --cluster-confirm.   Valid
              arguments  are <slot>:<devicename> in case the device is found or <slot>:missing in
              case the device is not found.

       --add-journal
              Add a journal to an existing array, or recreate journal for a RAID-4/5/6 array that
              lost  a  journal  device.  To  avoid  interrupting ongoing write operations, --add-
              journal only works for array in Read-Only state.

       --failfast
              Subsequent devices that are added or re-added will have the  'failfast'  flag  set.
              This  is  only valid for RAID1 and RAID10 and means that the 'md' driver will avoid
              long timeouts on error handling where possible.

       --nofailfast
              Subsequent devices that are re-added will be re-added without the  'failfast'  flag
              set.

       Each of these options requires that the first device listed is the array to be acted upon,
       and the remainder are component devices to be  added,  removed,  marked  as  faulty,  etc.
       Several different operations can be specified for different devices, e.g.
            mdadm /dev/md0 --add /dev/sda1 --fail /dev/sdb1 --remove /dev/sdb1
       Each operation applies to all devices listed until the next operation.

       If  an  array  is using a write-intent bitmap, then devices which have been removed can be
       re-added in a way that avoids a full reconstruction but instead just  updates  the  blocks
       that  have  changed  since  the  device  was removed.  For arrays with persistent metadata
       (superblocks) this is done automatically.  For arrays created with --build mdadm needs  to
       be told that this device we removed recently with --re-add.

       Devices can only be removed from an array if they are not in active use, i.e. that must be
       spares or failed devices.  To remove an active device, it must first be marked as faulty.

For Misc mode:

       -Q, --query
              Examine a device to see (1) if it is an md device and (2) if it is a  component  of
              an md array.  Information about what is discovered is presented.

       -D, --detail
              Print details of one or more md devices.

       --detail-platform
              Print  details  of  the platform's RAID capabilities (firmware / hardware topology)
              for a given metadata format. If used without  an  argument,  mdadm  will  scan  all
              controllers  looking for their capabilities. Otherwise, mdadm will only look at the
              controller specified by the argument in the form of an absolute filepath or a link,
              e.g.  /sys/devices/pci0000:00/0000:00:1f.2.

       -Y, --export
              When used with --detail, --detail-platform, --examine, or --incremental output will
              be formatted as key=value pairs for easy import into the environment.

              With --incremental The value MD_STARTED indicates  whether  an  array  was  started
              (yes)  or  not,  which  may include a reason (unsafe, nothing, no).  Also the value
              MD_FOREIGN indicates if the array is expected on this host (no),  or  seems  to  be
              from elsewhere (yes).

       -E, --examine
              Print  contents  of  the metadata stored on the named device(s).  Note the contrast
              between --examine and --detail.  --examine applies to devices which are  components
              of an array, while --detail applies to a whole array which is currently active.

       --sparc2.2
              If  an  array  was  created on a SPARC machine with a 2.2 Linux kernel patched with
              RAID support, the superblock will  have  been  created  incorrectly,  or  at  least
              incompatibly  with 2.4 and later kernels.  Using the --sparc2.2 flag with --examine
              will fix the superblock before displaying it.  If this  appears  to  do  the  right
              thing,   then   the   array   can   be   successfully  assembled  using  --assemble
              --update=sparc2.2.

       -X, --examine-bitmap
              Report information about a bitmap file.  The argument is either an external  bitmap
              file  or  an array component in case of an internal bitmap.  Note that running this
              on an array device (e.g.  /dev/md0) does not report the bitmap for that array.

       --examine-badblocks
              List the bad-blocks recorded  for  the  device,  if  a  bad-blocks  list  has  been
              configured. Currently only 1.x and IMSM metadata support bad-blocks lists.

       --dump=directory

       --restore=directory
              Save metadata from lists devices, or restore metadata to listed devices.

       -R, --run
              start  a  partially  assembled array.  If --assemble did not find enough devices to
              fully start the array, it might leaving it partially assembled.  If you  wish,  you
              can then use --run to start the array in degraded mode.

       -S, --stop
              deactivate array, releasing all resources.

       -o, --readonly
              mark array as readonly.

       -w, --readwrite
              mark array as readwrite.

       --zero-superblock
              If  the device contains a valid md superblock, the block is overwritten with zeros.
              With --force the block where the superblock would be  is  overwritten  even  if  it
              doesn't appear to be valid.

              Note:  Be careful when calling --zero-superblock with clustered raid. Make sure the
              array isn't used or assembled in another cluster node before executing it.

       --kill-subarray=
              If the device is a container and  the  argument  to  --kill-subarray  specifies  an
              inactive  subarray  in  the  container, then the subarray is deleted.  Deleting all
              subarrays will leave an 'empty-container' or spare superblock on the  drives.   See
              --zero-superblock  for  completely  removing  a superblock.  Note that some formats
              depend on the subarray index for generating a UUID, this command will  fail  if  it
              would change the UUID of an active subarray.

       --update-subarray=
              If  the  device  is  a  container and the argument to --update-subarray specifies a
              subarray in the container, then attempt to update the given superblock field in the
              subarray. See below in MISC MODE for details.

       -t, --test
              When  used  with --detail, the exit status of mdadm is set to reflect the status of
              the device.  See below in MISC MODE for details.

       -W, --wait
              For each md device given, wait for any resync, recovery,  or  reshape  activity  to
              finish  before returning.  mdadm will return with success if it actually waited for
              every device listed, otherwise it will return failure.

       --wait-clean
              For each md device given, or each  device  in  /proc/mdstat  if  --scan  is  given,
              arrange  for  the  array to be marked clean as soon as possible.  mdadm will return
              with success if the array uses external metadata and we successfully  waited.   For
              native   arrays,  this  returns  immediately  as  the  kernel  handles  dirty-clean
              transitions at shutdown.  No action is taken if safe-mode handling is disabled.

       --action=
              Set the "sync_action" for all md devices given  to  one  of  idle,  frozen,  check,
              repair.   Setting  to  idle  will  abort  any  currently running action though some
              actions will automatically restart.  Setting  to  frozen  will  abort  any  current
              action and ensure no other action starts automatically.

              Details of check and repair can be found in md(4) under SCRUBBING AND MISMATCHES.

For Incremental Assembly mode:

       --rebuild-map, -r
              Rebuild  the  map  file (/run/mdadm/map) that mdadm uses to help track which arrays
              are currently being assembled.

       --run, -R
              Run any array assembled as soon as a minimal number of devices is available, rather
              than waiting until all expected devices are present.

       --scan, -s
              Only  meaningful  with  -R  this  will  scan the map file for arrays that are being
              incrementally assembled and will try to start any that are not already started.  If
              any such array is listed in mdadm.conf as requiring an external bitmap, that bitmap
              will be attached first.

       --fail, -f
              This allows the hot-plug system to remove devices that have fully disappeared  from
              the  kernel.   It  will  first  fail  and  then remove the device from any array it
              belongs to.  The device name given should be a kernel device name  such  as  "sda",
              not a name in /dev.

       --path=
              Only  used  with --fail.  The 'path' given will be recorded so that if a new device
              appears at the same location it can be automatically added to the same array.  This
              allows  the  failed  device  to  be  automatically replaced by a new device without
              metadata if it appears at specified path.   This option is normally only set by  an
              udev script.

For Monitor mode:

       -m, --mail
              Give a mail address to send alerts to.

       -p, --program, --alert
              Give a program to be run whenever an event is detected.

       -y, --syslog
              Cause  all  events  to be reported through 'syslog'.  The messages have facility of
              'daemon' and varying priorities.

       -d, --delay
              Give a delay in seconds.  mdadm polls the  md  arrays  and  then  waits  this  many
              seconds  before  polling again.  The default is 60 seconds.  Since 2.6.16, there is
              no need to reduce this as the kernel alerts mdadm immediately  when  there  is  any
              change.

       -r, --increment
              Give  a  percentage increment.  mdadm will generate RebuildNN events with the given
              percentage increment.

       -f, --daemonise
              Tell mdadm to run as a background daemon if it decides to monitor  anything.   This
              causes  it  to fork and run in the child, and to disconnect from the terminal.  The
              process id of the child is written to stdout.  This is  useful  with  --scan  which
              will  only  continue  monitoring if a mail address or alert program is found in the
              config file.

       -i, --pid-file
              When mdadm is running in daemon mode, write the pid of the daemon  process  to  the
              specified file, instead of printing it on standard output.

       -1, --oneshot
              Check  arrays only once.  This will generate NewArray events and more significantly
              DegradedArray and SparesMissing events.  Running
                      mdadm --monitor --scan -1
              from a cron script will ensure regular notification of any degraded arrays.

       -t, --test
              Generate a TestMessage alert for every array found at  startup.   This  alert  gets
              mailed  and  passed  to the alert program.  This can be used for testing that alert
              message do get through successfully.

       --no-sharing
              This inhibits the  functionality  for  moving  spares  between  arrays.   Only  one
              monitoring  process started with --scan but without this flag is allowed, otherwise
              the two could interfere with each other.

ASSEMBLE MODE

       Usage: mdadm --assemble md-device options-and-component-devices...

       Usage: mdadm --assemble --scan md-devices-and-options...

       Usage: mdadm --assemble --scan options...

       This usage assembles one or more RAID  arrays  from  pre-existing  components.   For  each
       array,  mdadm  needs  to  know the md device, the identity of the array, and the number of
       component devices.  These can be found in a number of ways.

       In the first usage example (without the --scan) the first device given is the  md  device.
       In  the second usage example, all devices listed are treated as md devices and assembly is
       attempted.  In the third (where no devices are listed) all md devices that are  listed  in
       the  configuration  file  are  assembled.  If no arrays are described by the configuration
       file, then any arrays that can be found on unused devices will be assembled.

       If precisely one device is listed, but --scan is not given,  then  mdadm  acts  as  though
       --scan was given and identity information is extracted from the configuration file.

       The  identity can be given with the --uuid option, the --name option, or the --super-minor
       option, will be taken from the md-device record in the config file, or will be taken  from
       the super block of the first component-device listed on the command line.

       Devices  can  be given on the --assemble command line or in the config file.  Only devices
       which have an md superblock which contains the right identity will be considered  for  any
       array.

       The  config  file  is  only  used  if  explicitly named with --config or requested with (a
       possibly implicit) --scan.  In the latter case, the default  config  file  is  used.   See
       mdadm.conf(5) for more details.

       If  --scan is not given, then the config file will only be used to find the identity of md
       arrays.

       Normally the array will be started after it is assembled.  However if --scan is not  given
       and  not  all expected drives were listed, then the array is not started (to guard against
       usage errors).  To insist that the array be started in this case (as may work  for  RAID1,
       4, 5, 6, or 10), give the --run flag.

       If  udev is active, mdadm does not create any entries in /dev but leaves that to udev.  It
       does record information in /run/mdadm/map which will allow  udev  to  choose  the  correct
       name.

       If mdadm detects that udev is not configured, it will create the devices in /dev itself.

       In  Linux kernels prior to version 2.6.28 there were two distinct types of md devices that
       could be created: one that could be partitioned using standard partitioning tools and  one
       that  could  not.   Since  2.6.28  that distinction is no longer relevant as both types of
       devices can be partitioned.  mdadm will normally create the type that originally could not
       be partitioned as it has a well-defined major number (9).

       Prior  to  2.6.28,  it is important that mdadm chooses the correct type of array device to
       use.  This can be controlled with the --auto option.  In particular, a value of  "mdp"  or
       "part" or "p" tells mdadm to use a partitionable device rather than the default.

       In  the  no-udev  case, the value given to --auto can be suffixed by a number.  This tells
       mdadm to create that number of partition devices rather than the default of 4.

       The value given to --auto can also be given in the configuration file as a  word  starting
       auto= on the ARRAY line for the relevant array.

   Auto-Assembly
       When --assemble is used with --scan and no devices are listed, mdadm will first attempt to
       assemble all the arrays listed in the config file.

       If no arrays are listed in the config (other than those  marked  <ignore>)  it  will  look
       through  the  available devices for possible arrays and will try to assemble anything that
       it finds.  Arrays which are tagged as belonging to the given homehost  will  be  assembled
       and  started  normally.  Arrays which do not obviously belong to this host are given names
       that are expected not to conflict with anything local, and are started "read-auto" so that
       nothing is written to any device until the array is written to. i.e.  automatic resync etc
       is delayed.

       If mdadm finds a consistent set of devices that look like they should comprise  an  array,
       and if the superblock is tagged as belonging to the given home host, it will automatically
       choose a device name and try to assemble  the  array.   If  the  array  uses  version-0.90
       metadata,  then the minor number as recorded in the superblock is used to create a name in
       /dev/md/ so for example /dev/md/3.  If the array uses version-1 metadata,  then  the  name
       from the superblock is used to similarly create a name in /dev/md/ (the name will have any
       'host' prefix stripped first).

       This behaviour can be modified by the AUTO line  in  the  mdadm.conf  configuration  file.
       This line can indicate that specific metadata type should, or should not, be automatically
       assembled.  If an array is found which is not listed in  mdadm.conf  and  has  a  metadata
       format  that is denied by the AUTO line, then it will not be assembled.  The AUTO line can
       also request that all arrays identified as being for this  homehost  should  be  assembled
       regardless of their metadata type.  See mdadm.conf(5) for further details.

       Note:  Auto-assembly  cannot  be  used for assembling and activating some arrays which are
       undergoing reshape.  In particular as the backup-file cannot be given, any  reshape  which
       requires  a backup file to continue cannot be started by auto-assembly.  An array which is
       growing to more devices and has passed the critical section can be assembled  using  auto-
       assembly.

BUILD MODE

       Usage: mdadm --build md-device --chunk=X --level=Y --raid-devices=Z devices

       This  usage  is similar to --create.  The difference is that it creates an array without a
       superblock.  With these arrays there is no difference between initially creating the array
       and subsequently assembling the array, except that hopefully there is useful data there in
       the second case.

       The level may raid0, linear,  raid1,  raid10,  multipath,  or  faulty,  or  one  of  their
       synonyms.   All  devices  must  be listed and the array will be started once complete.  It
       will often be appropriate to use --assume-clean with levels raid1 or raid10.

CREATE MODE

       Usage: mdadm --create md-device --chunk=X --level=Y
                   --raid-devices=Z devices

       This usage will initialise a new md array, associate some devices with  it,  and  activate
       the array.

       The  named  device will normally not exist when mdadm --create is run, but will be created
       by udev once the array becomes active.

       The max length md-device name is limited to 32 characters.  Different metadata types  have
       more strict limitation (like IMSM where only 16 characters are allowed).  For that reason,
       long name could be truncated or rejected, it depends on metadata policy.

       As devices are added, they are  checked  to  see  if  they  contain  RAID  superblocks  or
       filesystems.  They are also checked to see if the variance in device size exceeds 1%.

       If  any discrepancy is found, the array will not automatically be run, though the presence
       of a --run can override this caution.

       To create a "degraded" array in which some devices  are  missing,  simply  give  the  word
       "missing"  in  place  of  a device name.  This will cause mdadm to leave the corresponding
       slot in the array empty.  For a RAID4 or RAID5 array at most one slot  can  be  "missing";
       for  a RAID6 array at most two slots.  For a RAID1 array, only one real device needs to be
       given.  All of the others can be "missing".

       When creating a RAID5 array, mdadm will automatically create  a  degraded  array  with  an
       extra spare drive.  This is because building the spare into a degraded array is in general
       faster than resyncing the parity on a non-degraded, but not clean,  array.   This  feature
       can be overridden with the --force option.

       When  creating an array with version-1 metadata a name for the array is required.  If this
       is not given with the --name option, mdadm will choose a name based on the last  component
       of the name of the device being created.  So if /dev/md3 is being created, then the name 3
       will be chosen.  If /dev/md/home is being created, then the name home will be used.

       When creating a  partition  based  array,  using  mdadm  with  version-1.x  metadata,  the
       partition  type  should  be  set to 0xDA (non fs-data).  This type of selection allows for
       greater precision since using any other [RAID auto-detect (0xFD) or a GNU/Linux  partition
       (0x83)], might create problems in the event of array recovery through a live cdrom.

       A  new  array will normally get a randomly assigned 128bit UUID which is very likely to be
       unique.  If you have a specific need, you can choose a UUID for the array  by  giving  the
       --uuid=  option.   Be  warned  that creating two arrays with the same UUID is a recipe for
       disaster.  Also, using --uuid= when creating a v0.90  array  will  silently  override  any
       --homehost= setting.

       If  the  array type supports a write-intent bitmap, and if the devices in the array exceed
       100G is size, an internal write-intent bitmap will  automatically  be  added  unless  some
       other  option  is explicitly requested with the --bitmap option or a different consistency
       policy is selected with the --consistency-policy option. In any case, space for  a  bitmap
       will be reserved so that one can be added later with --grow --bitmap=internal.

       If  the  metadata  type  supports it (currently only 1.x and IMSM metadata), space will be
       allocated to store a bad block list.  This allows a modest number  of  bad  blocks  to  be
       recorded, allowing the drive to remain in service while only partially functional.

       When creating an array within a CONTAINER mdadm can be given either the list of devices to
       use, or simply the name of the container.   The  former  case  gives  control  over  which
       devices  in  the  container  will  be used for the array.  The latter case allows mdadm to
       automatically choose which devices to use based on how much spare space is available.

       The General Management options that are valid with --create are:

       --run  insist on running the array even if some devices look like they might be in use.

       --readonly
              start the array in readonly mode.

MANAGE MODE

       Usage: mdadm device options... devices...

       This usage will allow individual devices in an array to be failed, removed or  added.   It
       is possible to perform multiple operations with on command.  For example:
         mdadm /dev/md0 -f /dev/hda1 -r /dev/hda1 -a /dev/hda1
       will  firstly  mark /dev/hda1 as faulty in /dev/md0 and will then remove it from the array
       and finally add it back in as a spare.  However, only one md array can be  affected  by  a
       single command.

       When  a  device  is added to an active array, mdadm checks to see if it has metadata on it
       which suggests that it was recently a member of the  array.   If  it  does,  it  tries  to
       "re-add"  the  device.   If there have been no changes since the device was removed, or if
       the array has a write-intent bitmap which has recorded whatever changes there  were,  then
       the  device  will  immediately  become  a  full  member of the array and those differences
       recorded in the bitmap will be resolved.

MISC MODE

       Usage: mdadm options ...  devices ...

       MISC mode includes a number of distinct operations that operate on distinct devices.   The
       operations are:

       --query
              The  device  is examined to see if it is (1) an active md array, or (2) a component
              of an md array.  The information discovered is reported.

       --detail
              The device  should  be  an  active  md  device.   mdadm  will  display  a  detailed
              description  of  the  array.   --brief  or  --scan will cause the output to be less
              detailed and the format to be suitable  for  inclusion  in  mdadm.conf.   The  exit
              status  of  mdadm  will normally be 0 unless mdadm failed to get useful information
              about the device(s); however, if the --test option is given, then the  exit  status
              will be:

              0      The array is functioning normally.

              1      The array has at least one failed device.

              2      The array has multiple failed devices such that it is unusable.

              4      There was an error while trying to get information about the device.

       --detail-platform
              Print  detail  of  the platform's RAID capabilities (firmware / hardware topology).
              If the metadata is specified with -e or --metadata= then the return status will be:

              0      metadata successfully enumerated its platform components on this system

              1      metadata is platform independent

              2      metadata failed to find its platform components on this system

       --update-subarray=
              If the device is a container and the  argument  to  --update-subarray  specifies  a
              subarray in the container, then attempt to update the given superblock field in the
              subarray.  Similar to updating an array in "assemble" mode, the field to update  is
              selected  by  -U  or --update= option. The supported options are name, ppl, no-ppl,
              bitmap and no-bitmap.

              The name option updates the subarray name in the metadata, it may  not  affect  the
              device node name or the device node symlink until the subarray is re-assembled.  If
              updating name would change the  UUID  of  an  active  subarray  this  operation  is
              blocked, and the command will end in an error.

              The  ppl  and  no-ppl  options  enable  and  disable PPL in the metadata. Currently
              supported only for IMSM subarrays.

              The bitmap and no-bitmap options enable and  disable  write-intent  bitmap  in  the
              metadata. Currently supported only for IMSM subarrays.

       --examine
              The device should be a component of an md array.  mdadm will read the md superblock
              of the device and display the contents.   If  --brief  or  --scan  is  given,  then
              multiple  devices  that  are  components  of the one array are grouped together and
              reported in a single entry suitable for inclusion in mdadm.conf.

              Having --scan without listing any devices will cause  all  devices  listed  in  the
              config file to be examined.

       --dump=directory
              If  the  device contains RAID metadata, a file will be created in the directory and
              the metadata will be written to it.  The file will be the same size as  the  device
              and will have the metadata written at the same location as it exists in the device.
              However, the file will be "sparse" so that only those  blocks  containing  metadata
              will be allocated. The total space used will be small.

              The  filename used in the directory will be the base name of the device.   Further,
              if any links appear in /dev/disk/by-id which point to the device, then  hard  links
              to the file will be created in directory based on these by-id names.

              Multiple  devices  can  be  listed and their metadata will all be stored in the one
              directory.

       --restore=directory
              This is the reverse of --dump.  mdadm will locate a file in the directory that  has
              a  name  appropriate for the given device and will restore metadata from it.  Names
              that match /dev/disk/by-id names are preferred, however if two of  those  refer  to
              different files, mdadm will not choose between them but will abort the operation.

              If  a  file  name is given instead of a directory then mdadm will restore from that
              file to a single device, always provided the size of the file matches that  of  the
              device, and the file contains valid metadata.

       --stop The  devices  should be active md arrays which will be deactivated, as long as they
              are not currently in use.

       --run  This will fully activate a partially assembled md array.

       --readonly
              This will mark an active array as read-only, providing that  it  is  not  currently
              being used.

       --readwrite
              This will change a readonly array back to being read/write.

       --scan For  all operations except --examine, --scan will cause the operation to be applied
              to all arrays listed in /proc/mdstat.  For --examine,  --scan  causes  all  devices
              listed in the config file to be examined.

       -b, --brief
              Be  less  verbose.   This  is used with --detail and --examine.  Using --brief with
              --verbose gives an intermediate level of verbosity.

MONITOR MODE

       Usage: mdadm --monitor options... devices...

       Monitor option can work in two modes:

       •   system wide mode, follow all md devices based on /proc/mdstat,

       •   follow only specified MD devices in command line.

       --scan - indicates system wide mode. Option causes the monitor to  track  all  md  devices
       that  appear  in  /proc/mdstat.   If  it  is  not  set,  then  at least one device must be
       specified.

       Monitor usage causes mdadm to periodically poll a number of md arrays and to report on any
       events noticed.

       In  both  modes, monitor will work as long as there is an active array with redundancy and
       it is defined to follow (for --scan every array is followed).

       As well as reporting events, mdadm may move a spare drive from one  array  to  another  if
       they are in the same spare-group or domain and if the destination array has a failed drive
       but no spares.

       The result of monitoring the arrays is the generation of events.  These events are  passed
       to a separate program (if specified) and may be mailed to a given E-mail address.

       When  passing  events to a program, the program is run once for each event, and is given 2
       or 3 command-line arguments: the first is the name of the event (see below), the second is
       the name of the md device which is affected, and the third is the name of a related device
       if relevant (such as a component device that has failed).

       If --scan is given, then a program or an e-mail address must be specified on  the  command
       line  or  in  the  config  file.  If  neither  are  available, then mdadm will not monitor
       anything.  For devices given directly in command line, without program or email specified,
       each event is reported to stdout.

       Note:  For systems where is configured via systemd, mdmonitor(mdmonitor.service) should be
       configured. The service is designed to be primary solution for  array  monitoring,  it  is
       configured to work in system wide mode.  It is automatically started and stopped according
       to current state and types of MD arrays in system.  The  service  may  require  additional
       configuration, like e-mail or delay.  That should be done in mdadm.conf.

       The different events are:

           DeviceDisappeared
                  An md array which previously was configured appears to no longer be configured.
                  (syslog priority: Critical)

                  If mdadm was told to monitor an array which is RAID0 or Linear,  then  it  will
                  report  DeviceDisappeared  with  the  extra  information  Wrong-Level.  This is
                  because RAID0 and Linear do not support the device-failed, hot-spare and resync
                  operations which are monitored.

           RebuildStarted
                  An  md  array  started  reconstruction  (e.g. recovery, resync, reshape, check,
                  repair). (syslog priority: Warning)

           RebuildNN
                  Where NN is a two-digit number (eg. 05, 48). This indicates  that  the  rebuild
                  has  reached  that percentage of the total. The events are generated at a fixed
                  increment from 0. The increment size  may  be  specified  with  a  command-line
                  option (the default is 20). (syslog priority: Warning)

           RebuildFinished
                  An  md  array  that  was rebuilding, isn't any more, either because it finished
                  normally or was aborted. (syslog priority: Warning)

           Fail   An active component device of an array  has  been  marked  as  faulty.  (syslog
                  priority: Critical)

           FailSpare
                  A spare component device which was being rebuilt to replace a faulty device has
                  failed. (syslog priority: Critical)

           SpareActive
                  A spare component device which was being rebuilt to replace a faulty device has
                  been successfully rebuilt and has been made active.  (syslog priority: Info)

           NewArray
                  A  new  md array has been detected in the /proc/mdstat file.  (syslog priority:
                  Info)

           DegradedArray
                  A newly noticed array appears to be degraded.  This message  is  not  generated
                  when  mdadm  notices  a  drive  failure which causes degradation, but only when
                  mdadm notices that an array is degraded when it first sees the array.   (syslog
                  priority: Critical)

           MoveSpare
                  A  spare  drive  has  been  moved  from one array in a spare-group or domain to
                  another to allow a failed drive to be replaced.  (syslog priority: Info)

           SparesMissing
                  If mdadm has been told, via the config  file,  that  an  array  should  have  a
                  certain  number of spare devices, and mdadm detects that it has fewer than this
                  number when it first sees the array, it will report  a  SparesMissing  message.
                  (syslog priority: Warning)

           TestMessage
                  An  array  was  found  at  startup,  and  the  --test  flag was given.  (syslog
                  priority: Info)

       Only Fail, FailSpare, DegradedArray, SparesMissing and TestMessage cause Email to be sent.
       All  events  cause the program to be run.  The program is run with two or three arguments:
       the event name, the array device and possibly a second device.

       Each event has an associated array device (e.g.  /dev/md1) and possibly a  second  device.
       For  Fail,  FailSpare, and SpareActive the second device is the relevant component device.
       For MoveSpare the second device is the array that the spare was moved from.

       For mdadm to move spares from one array to  another,  the  different  arrays  need  to  be
       labeled  with  the  same  spare-group  or  the  spares  must be allowed to migrate through
       matching POLICY domains in the configuration  file.   The  spare-group  name  can  be  any
       string; it is only necessary that different spare groups use different names.

       When  mdadm detects that an array in a spare group has fewer active devices than necessary
       for the complete array, and has no spare devices, it will look for another  array  in  the
       same  spare  group that has a full complement of working drives and a spare.  It will then
       attempt to remove the spare from the second array and add it to the first.  If the removal
       succeeds but the adding fails, then it is added back to the original array.

       If  the  spare  group for a degraded array is not defined, mdadm will look at the rules of
       spare migration specified by POLICY lines in mdadm.conf and then follow similar  steps  as
       above if a matching spare is found.

GROW MODE

       The GROW mode is used for changing the size or shape of an active array.

       During the kernel 2.6 era the following changes were added:

       •   change the "size" attribute for RAID1, RAID4, RAID5 and RAID6.

       •   increase  or  decrease the "raid-devices" attribute of RAID0, RAID1, RAID4, RAID5, and
           RAID6.

       •   change the chunk-size and layout of RAID0, RAID4, RAID5, RAID6 and RAID10.

       •   convert between RAID1 and RAID5, between RAID5 and RAID6, between  RAID0,  RAID4,  and
           RAID5, and between RAID0 and RAID10 (in the near-2 mode).

       •   add  a  write-intent  bitmap  to  any  array which supports these bitmaps, or remove a
           write-intent bitmap from such an array.

       •   change the array's consistency policy.

       Using GROW on containers is currently supported only for Intel's  IMSM  container  format.
       The  number  of  devices in a container can be increased - which affects all arrays in the
       container - or an array in a container can be converted between levels where those  levels
       are supported by the container, and the conversion is on of those listed above.

       Notes:

       •   Intel's  native  checkpointing  doesn't use --backup-file option and it is transparent
           for assembly feature.

       •   Roaming between Windows(R) and Linux systems for IMSM metadata is not supported during
           grow process.

       •   When  growing  a  raid0  device, the new component disk size (or external backup size)
           should be larger than LCM(old, new) * chunk-size * 2, where LCM() is the least  common
           multiple  of  the  old and new count of component disks, and "* 2" comes from the fact
           that mdadm refuses to use more than half of a spare device for backup space.

   SIZE CHANGES
       Normally when an array is built the "size" is taken from the smallest of the  drives.   If
       all the small drives in an arrays are, over time, removed and replaced with larger drives,
       then you could have an array of large drives with only  a  small  amount  used.   In  this
       situation,  changing the "size" with "GROW" mode will allow the extra space to start being
       used.  If the size is increased in this way, a "resync" process will start  to  make  sure
       the new parts of the array are synchronised.

       Note  that when an array changes size, any filesystem that may be stored in the array will
       not automatically grow or shrink to use or vacate the space.  The filesystem will need  to
       be  explicitly  told  to use the extra space after growing, or to reduce its size prior to
       shrinking the array.

       Also, the size of an array cannot be changed while it has an active bitmap.  If  an  array
       has  a  bitmap,  it  must  be  removed  before the size can be changed. Once the change is
       complete a new bitmap can be created.

       Note: --grow --size is not yet supported for external file bitmap.

   RAID-DEVICES CHANGES
       A RAID1 array can work with any number of devices from 1 upwards (though  1  is  not  very
       useful).   There  may be times which you want to increase or decrease the number of active
       devices.  Note that this is different to hot-add or hot-remove which changes the number of
       inactive devices.

       When  reducing  the  number of devices in a RAID1 array, the slots which are to be removed
       from the array must already be vacant.  That is, the devices which  were  in  those  slots
       must be failed and removed.

       When the number of devices is increased, any hot spares that are present will be activated
       immediately.

       Changing the number of active devices in a RAID5 or RAID6  is  much  more  effort.   Every
       block  in the array will need to be read and written back to a new location.  From 2.6.17,
       the Linux Kernel is able to increase the number of devices in a  RAID5  safely,  including
       restarting an interrupted "reshape".  From 2.6.31, the Linux Kernel is able to increase or
       decrease the number of devices in a RAID5 or RAID6.

       From 2.6.35, the Linux Kernel is able to convert a RAID0 in to a RAID4  or  RAID5.   mdadm
       uses  this  functionality and the ability to add devices to a RAID4 to allow devices to be
       added to a RAID0.  When requested to do this, mdadm will convert the RAID0 to a RAID4, add
       the necessary disks and make the reshape happen, and then convert the RAID4 back to RAID0.

       When decreasing the number of devices, the size of the array will also decrease.  If there
       was data in the array, it could get destroyed and this is not reversible,  so  you  should
       firstly  shrink  the  filesystem on the array to fit within the new size.  To help prevent
       accidents, mdadm requires that the size of the array be decreased first with mdadm  --grow
       --array-size.   This  is  a  reversible  change  which  simply  makes the end of the array
       inaccessible.  The integrity of any data can then be  checked  before  the  non-reversible
       reduction in the number of devices is request.

       When  relocating the first few stripes on a RAID5 or RAID6, it is not possible to keep the
       data on disk completely consistent and crash-proof.  To provide the required safety, mdadm
       disables writes to the array while this "critical section" is reshaped, and takes a backup
       of the data that is in that section.  For grows, this backup may be stored  in  any  spare
       devices  that  the  array  has, however it can also be stored in a separate file specified
       with the --backup-file option, and is required to be specified  for  shrinks,  RAID  level
       changes  and layout changes.  If this option is used, and the system does crash during the
       critical period, the same file must be passed to --assemble  to  restore  the  backup  and
       reassemble  the  array.  When shrinking rather than growing the array, the reshape is done
       from the end towards the beginning, so the  "critical  section"  is  at  the  end  of  the
       reshape.

   LEVEL CHANGES
       Changing  the  RAID  level  of any array happens instantaneously.  However in the RAID5 to
       RAID6 case this requires a non-standard layout of the RAID6 data,  and  in  the  RAID6  to
       RAID5 case that non-standard layout is required before the change can be accomplished.  So
       while the level change is instant, the accompanying layout change can take  quite  a  long
       time.   A  --backup-file  is  required.  If the array is not simultaneously being grown or
       shrunk, so that the array size will remain the same - for  example,  reshaping  a  3-drive
       RAID5  into  a  4-drive  RAID6  -  the  backup  file will be used not just for a "critical
       section" but throughout the reshape operation, as described below under LAYOUT CHANGES.

   CHUNK-SIZE AND LAYOUT CHANGES
       Changing the chunk-size or layout without also changing the number of devices as the  same
       time will involve re-writing all blocks in-place.  To ensure against data loss in the case
       of a crash, a --backup-file must be provided for these changes.   Small  sections  of  the
       array  will be copied to the backup file while they are being rearranged.  This means that
       all the data is copied twice, once to the backup and once to the new layout on the  array,
       so this type of reshape will go very slowly.

       If  the  reshape is interrupted for any reason, this backup file must be made available to
       mdadm --assemble so the array can be reassembled.  Consequently, the file cannot be stored
       on the device being reshaped.

   BITMAP CHANGES
       A  write-intent bitmap can be added to, or removed from, an active array.  Either internal
       bitmaps, or bitmaps stored in a separate file, can be added.   Note  that  if  you  add  a
       bitmap stored in a file which is in a filesystem that is on the RAID array being affected,
       the system will deadlock.  The bitmap must be on a separate filesystem.

   CONSISTENCY POLICY CHANGES
       The consistency policy of an active array can be changed by using the --consistency-policy
       option  in Grow mode. Currently this works only for the ppl and resync policies and allows
       one to enable or disable the RAID5 Partial Parity Log (PPL).

INCREMENTAL MODE

       Usage:  mdadm  --incremental  [--run]  [--quiet]  component-device  [optional-aliases-for-
                   device]

       Usage: mdadm --incremental --fail component-device

       Usage: mdadm --incremental --rebuild-map

       Usage: mdadm --incremental --run --scan

       This  mode  is  designed  to  be  used  in conjunction with a device discovery system.  As
       devices are found  in  a  system,  they  can  be  passed  to  mdadm  --incremental  to  be
       conditionally added to an appropriate array.

       Conversely,  it  can  also  be  used with the --fail flag to do just the opposite and find
       whatever array a particular device is part of and remove the device from that array.

       If the device passed is a CONTAINER device created by  a  previous  call  to  mdadm,  then
       rather  than  trying  to  add  that  device  to  an array, all the arrays described by the
       metadata of the container will be started.

       mdadm performs a number of tests to determine if the device is part of an array, and which
       array  it  should  be part of.  If an appropriate array is found, or can be created, mdadm
       adds the device to the array and conditionally starts the array.

       Note that mdadm will normally only add devices to an array which were  previously  working
       (active or spare) parts of that array.  The support for automatic inclusion of a new drive
       as a spare in some array requires a configuration through POLICY in config file.

       The tests that mdadm makes are as follow:

       +      Is the device permitted by mdadm.conf?  That is, is it listed in a DEVICES line  in
              that  file.   If  DEVICES  is  absent  then  the  default  it  to allow any device.
              Similarly if DEVICES contains the  special  word  partitions  then  any  device  is
              allowed.  Otherwise the device name given to mdadm, or one of the aliases given, or
              an alias found in the filesystem, must match one of the  names  or  patterns  in  a
              DEVICES line.

              This  is the only context where the aliases are used.  They are usually provided by
              a udev rules mentioning $env{DEVLINKS}.

       +      Does the device have a valid md superblock?  If  a  specific  metadata  version  is
              requested  with  --metadata  or  -e  then  only that style of metadata is accepted,
              otherwise mdadm finds any known version of metadata.  If no md metadata  is  found,
              the device may be still added to an array as a spare if POLICY allows.

       mdadm  keeps  a  list  of arrays that it has partially assembled in /run/mdadm/map.  If no
       array exists which matches the metadata on the new device, mdadm must choose a device name
       and  unit  number.   It  does  this  based  on  any  name  given in mdadm.conf or any name
       information stored in the metadata.  If this name suggests a unit number, that number will
       be  used,  otherwise  a  free  unit  number will be chosen.  Normally mdadm will prefer to
       create a partitionable array, however if the CREATE line in  mdadm.conf  suggests  that  a
       non-partitionable array is preferred, that will be honoured.

       If  the  array  is  not  found in the config file and its metadata does not identify it as
       belonging to the "homehost", then mdadm will choose a name for the array which is  certain
       not  to conflict with any array which does belong to this host.  It does this be adding an
       underscore and a small number to the name preferred by the metadata.

       Once an appropriate array is found or created and the device is added, mdadm  must  decide
       if  the  array  is  ready to be started.  It will normally compare the number of available
       (non-spare) devices to the number of devices that the metadata suggests need to be active.
       If  there  are  at  least  that  many,  the array will be started.  This means that if any
       devices are missing the array will not be restarted.

       As an alternative, --run may be passed to mdadm in which case the array  will  be  run  as
       soon as there are enough devices present for the data to be accessible.  For a RAID1, that
       means one device will start the array.  For a clean RAID5, the array will  be  started  as
       soon as all but one drive is present.

       Note that neither of these approaches is really ideal.  If it can be known that all device
       discovery has completed, then
          mdadm -IRs
       can be run which will try to start all arrays  that  are  being  incrementally  assembled.
       They  are  started  in  "read-auto" mode in which they are read-only until the first write
       request.  This means that no metadata updates  are  made  and  no  attempt  at  resync  or
       recovery  happens.   Further  devices  that  are found before the first write can still be
       added safely.

ENVIRONMENT

       This section describes environment variables that affect how mdadm operates.

       MDADM_NO_MDMON
              Setting this value to 1 will prevent  mdadm  from  automatically  launching  mdmon.
              This variable is intended primarily for debugging mdadm/mdmon.

       MDADM_NO_UDEV
              Normally,  mdadm  does not create any device nodes in /dev, but leaves that task to
              udev.  If udev appears not to be configured, or if this environment variable is set
              to '1', the mdadm will create and devices that are needed.

       MDADM_NO_SYSTEMCTL
              If  mdadm  detects that systemd is in use it will normally request systemd to start
              various background tasks (particularly mdmon) rather than forking and running  them
              in the background.  This can be suppressed by setting MDADM_NO_SYSTEMCTL=1.

       IMSM_NO_PLATFORM
              A  key  value of IMSM metadata is that it allows interoperability with boot ROMs on
              Intel platforms, and with other major operating systems.  Consequently, mdadm  will
              only allow an IMSM array to be created or modified if detects that it is running on
              an Intel platform which supports IMSM, and supports the particular configuration of
              IMSM that is being requested (some functionality requires newer OROM support).

              These  checks  can  be suppressed by setting IMSM_NO_PLATFORM=1 in the environment.
              This can be useful for testing or for disaster recovery.  You should be aware  that
              interoperability may be compromised by setting this value.

              These  change  can  also  be  suppressed  by adding mdadm.imsm.test=1 to the kernel
              command line. This makes it easy to test  IMSM  code  in  a  virtual  machine  that
              doesn't have IMSM virtual hardware.

       MDADM_GROW_ALLOW_OLD
              If an array is stopped while it is performing a reshape and that reshape was making
              use of a backup file, then when the array  is  re-assembled  mdadm  will  sometimes
              complain  that  the backup file is too old.  If this happens and you are certain it
              is  the  right  backup  file,   you   can   over-ride   this   check   by   setting
              MDADM_GROW_ALLOW_OLD=1 in the environment.

       MDADM_CONF_AUTO
              Any  string  given  in  this variable is added to the start of the AUTO line in the
              config file, or treated as the whole AUTO line if none is given.  It can be used to
              disable  certain  metadata  types  when  mdadm  is  called from a boot script.  For
              example
                  export MDADM_CONF_AUTO='-ddf -imsm'
              will make sure that mdadm does not automatically assemble any DDF  or  IMSM  arrays
              that  are  found.   This  can be useful on systems configured to manage such arrays
              with dmraid.

EXAMPLES

         mdadm --query /dev/name-of-device
       This will find out if a given device is a RAID array, or is part of one, and will  provide
       brief information about the device.

         mdadm --assemble --scan
       This  will assemble and start all arrays listed in the standard config file.  This command
       will typically go in a system startup file.

         mdadm --stop --scan
       This will shut down all arrays that can be shut down (i.e.  are  not  currently  in  use).
       This will typically go in a system shutdown script.

         mdadm --follow --scan --delay=120
       If  (and  only if) there is an Email address or program given in the standard config file,
       then monitor the status of all arrays listed in that file by polling them ever 2 minutes.

         mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/hd[ac]1
       Create /dev/md0 as a RAID1 array consisting of /dev/hda1 and /dev/hdc1.

         echo 'DEVICE /dev/hd*[0-9] /dev/sd*[0-9]' > mdadm.conf
         mdadm --detail --scan >> mdadm.conf
       This will create a prototype config file that describes currently active arrays  that  are
       known  to  be  made  from  partitions of IDE or SCSI drives.  This file should be reviewed
       before being used as it may contain unwanted detail.

         echo 'DEVICE /dev/hd[a-z] /dev/sd*[a-z]' > mdadm.conf
         mdadm --examine --scan --config=mdadm.conf >> mdadm.conf
       This will find arrays which could be assembled from existing IDE  and  SCSI  whole  drives
       (not  partitions), and store the information in the format of a config file.  This file is
       very likely to contain unwanted detail, particularly the devices= entries.  It  should  be
       reviewed and edited before being used as an actual config file.

         mdadm --examine --brief --scan --config=partitions
         mdadm -Ebsc partitions
       Create a list of devices by reading /proc/partitions, scan these for RAID superblocks, and
       printout a brief listing of all that were found.

         mdadm -Ac partitions -m 0 /dev/md0
       Scan all partitions and devices listed in /proc/partitions and assemble  /dev/md0  out  of
       all such devices with a RAID superblock with a minor number of 0.

         mdadm --monitor --scan --daemonise > /run/mdadm/mon.pid
       If  config  file  contains a mail address or alert program, run mdadm in the background in
       monitor  mode  monitoring  all  md  devices.   Also  write  pid   of   mdadm   daemon   to
       /run/mdadm/mon.pid.

         mdadm -Iq /dev/somedevice
       Try to incorporate newly discovered device into some array as appropriate.

         mdadm --incremental --rebuild-map --run --scan
       Rebuild the array map from any current arrays, and then start any that can be started.

         mdadm /dev/md4 --fail detached --remove detached
       Any devices which are components of /dev/md4 will be marked as faulty and then remove from
       the array.

         mdadm --grow /dev/md4 --level=6 --backup-file=/root/backup-md4
       The array /dev/md4 which is currently a RAID5 array will be  converted  to  RAID6.   There
       should  normally  already be a spare drive attached to the array as a RAID6 needs one more
       drive than a matching RAID5.

         mdadm --create /dev/md/ddf --metadata=ddf --raid-disks 6 /dev/sd[a-f]
       Create a DDF array over 6 devices.

         mdadm --create /dev/md/home -n3 -l5 -z 30000000 /dev/md/ddf
       Create a RAID5 array over any 3 devices in the given DDF set.  Use only  30  gigabytes  of
       each device.

         mdadm -A /dev/md/ddf1 /dev/sd[a-f]
       Assemble a pre-exist ddf array.

         mdadm -I /dev/md/ddf1
       Assemble all arrays contained in the ddf array, assigning names as appropriate.

         mdadm --create --help
       Provide help about the Create mode.

         mdadm --config --help
       Provide help about the format of the config file.

         mdadm --help
       Provide general help.

FILES

   /proc/mdstat
       If  you're  using  the  /proc  filesystem,  /proc/mdstat  lists all active md devices with
       information about them.  mdadm uses this to find arrays when --scan is given in Misc mode,
       and to monitor array reconstruction on Monitor mode.

   /etc/mdadm.conf (or /etc/mdadm/mdadm.conf)
       Default config file.  See mdadm.conf(5) for more details.

   /etc/mdadm.conf.d (or /etc/mdadm/mdadm.conf.d)
       Default directory containing configuration files.  See mdadm.conf(5) for more details.

   /run/mdadm/map
       When --incremental mode is used, this file gets a list of arrays currently being created.

DEVICE NAMES

       mdadm understand two sorts of names for array devices.

       The  first  is  the  so-called 'standard' format name, which matches the names used by the
       kernel and which appear in /proc/mdstat.

       The second sort can be freely chosen, but must reside in /dev/md/.  When giving  a  device
       name  to  mdadm  to create or assemble an array, either full path name such as /dev/md0 or
       /dev/md/home can be given, or just the suffix of the second sort of name, such as home can
       be given.

       When  mdadm  chooses  device  names  during auto-assembly or incremental assembly, it will
       sometimes add a small sequence number to the end of the name to avoid  conflicted  between
       multiple arrays that have the same name.  If mdadm can reasonably determine that the array
       really is meant for this host, either by a hostname in the metadata, or by the presence of
       the  array  in  mdadm.conf,  then  it  will leave off the suffix if possible.  Also if the
       homehost is specified as <ignore> mdadm will only use a suffix if a different array of the
       same name already exists or is listed in the config file.

       The  standard names for non-partitioned arrays (the only sort of md array available in 2.4
       and earlier) are of the form

              /dev/mdNN

       where NN is a number.  The standard names for partitionable arrays (as available from  2.6
       onwards) are of the form:

              /dev/md_dNN

       Partition numbers should be indicated by adding "pMM" to these, thus "/dev/md/d1p2".

       From  kernel  version  2.6.28 the "non-partitioned array" can actually be partitioned.  So
       the "md_dNN" names are no  longer  needed,  and  partitions  such  as  "/dev/mdNNpXX"  are
       possible.

       From kernel version 2.6.29 standard names can be non-numeric following the form:

              /dev/md_XXX

       where  XXX  is  any string.  These names are supported by mdadm since version 3.3 provided
       they are enabled in mdadm.conf.

NOTE

       mdadm was previously known as mdctl.

SEE ALSO

       For further information on mdadm usage, MD and the various levels of RAID, see:

              https://raid.wiki.kernel.org/

       (based upon Jakob Østergaard's Software-RAID.HOWTO)

       The latest version of mdadm should always be available from

              https://www.kernel.org/pub/linux/utils/raid/mdadm/

       Related man pages:

       mdmon(8), mdadm.conf(5), md(4).