Provided by: pktools_2.6.7.6+ds-4build1_amd64
NAME
pkregann - regression with artificial neural network (multi-layer perceptron)
SYNOPSIS
pkregann -i input -t training [-ic col] [-oc col] -o output [options] [advanced options]
DESCRIPTION
pkregann performs a regression based on an artificial neural network. The regression is trained from the input (-ic) and output (-oc) columns in a training text file. Each row in the training file represents one sampling unit. Multi-dimensional input features can be defined with multiple input options (e.g., -ic 0 -ic 1 -ic 2 for three dimensional features).
OPTIONS
-i filename, --input filename input ASCII file -t filename, --training filename training ASCII file (each row represents one sampling unit. Input features should be provided as columns, followed by output) -o filename, --output filename output ASCII file for result -ic col, --inputCols col input columns (e.g., for three dimensional input data in first three columns use: -ic 0 -ic 1 -ic 2 -oc col, --outputCols col output columns (e.g., for two dimensional output in columns 3 and 4 (starting from 0) use: -oc 3 -oc 4 -from row, --from row start from this row in training file (start from 0) -to row, --to row read until this row in training file (start from 0 or set leave 0 as default to read until end of file) -cv size, --cv size n-fold cross validation mode -nn number, --nneuron number number of neurons in hidden layers in neural network (multiple hidden layers are set by defining multiple number of neurons: -n 15 -n 1, default is one hidden layer with 5 neurons) -v level, --verbose level set to: 0 (results only), 1 (confusion matrix), 2 (debug) Advanced options --offset value offset value for each spectral band input features: refl[band]=(DN[band]-offset[band])/scale[band] --scale value scale value for each spectral band input features: refl=(DN[band]-offset[band])/scale[band] (use 0 if scale min and max in each band to -1.0 and 1.0) --connection rate connection rate (default: 1.0 for a fully connected network) -l rate, --learning rate learning rate (default: 0.7) --maxit number number of maximum iterations (epoch) (default: 500) 27 June 2023 pkregann(1)