Provided by: python3-pychopper_2.7.3-1_all bug

NAME

       pychopper - package documentation

COMMAND LINE TOOLS

FULL API REFERENCE

   pychopper
   pychopper package
   Subpackages
   pychopper.phmm_data package
   Module contents
   pychopper.primer_data package
   Module contents
   pychopper.scripts package
   Submodules
   pychopper.scripts.pychopper module
       pychopper.scripts.pychopper.main()
              Parse command line arguments.

   Module contents
   pychopper.tests package
   Submodules
   pychopper.tests.test_detector module
       class pychopper.tests.test_detector.TestDetector(methodName='runTest')
              Bases: TestCase

              Create  an instance of the class that will use the named test method when executed.
              Raises a ValueError if the instance does not have a method with the specified name.

              testPairAlign()

              testScoreCutoff()

   pychopper.tests.test_regression_simple module
       class pychopper.tests.test_regression_simple.TestIntegration(methodName='runTest')
              Bases: TestCase

              Create an instance of the class that will use the named test method when  executed.
              Raises a ValueError if the instance does not have a method with the specified name.

              testIntegration()
                     Integration test.

              testIntegration_umi()
                     Integration test.

   Module contents
   Submodules
   pychopper.alignment_hits module
       pychopper.alignment_hits.process_hits(hits, max_score)
              Process alignment hits by removing overlaps

   pychopper.chopper module
       pychopper.chopper.analyse_hits(hits, config)
              Segment  reads based on alignment hits using dynamic programming.  The algorithm is
              based on the rule that each primer alignment hit can be used only once.  Hence if a
              segment is included, the next one has to be excluded.

       pychopper.chopper.chopper_edlib(reads, primers, config, max_ed, cutoff, pool, min_batch)
              Segment using the edlib/parasail backend

       pychopper.chopper.chopper_phmm(reads, phmm_file, config, cutoff, threads, pool, min_batch)
              Segment using the profile HMM backend

       pychopper.chopper.segments_to_reads(read, segments, keep_primers, bam_tags, detect_umis)
              Convert segments to output reads with annotation

   pychopper.common_structures module
       class  pychopper.common_structures.Hit(Ref, RefStart, RefEnd, Query, QueryStart, QueryEnd,
       Score)
              Bases: tuple

              Create new instance of Hit(Ref,  RefStart,  RefEnd,  Query,  QueryStart,  QueryEnd,
              Score)

              Query  Alias for field number 3

              QueryEnd
                     Alias for field number 5

              QueryStart
                     Alias for field number 4

              Ref    Alias for field number 0

              RefEnd Alias for field number 2

              RefStart
                     Alias for field number 1

              Score  Alias for field number 6

       class pychopper.common_structures.Segment(Left, Start, End, Right, Strand, Len)
              Bases: tuple

              Create new instance of Segment(Left, Start, End, Right, Strand, Len)

              End    Alias for field number 2

              Left   Alias for field number 0

              Len    Alias for field number 5

              Right  Alias for field number 3

              Start  Alias for field number 1

              Strand Alias for field number 4

       class pychopper.common_structures.Seq(Id, Name, Seq, Qual, Umi)
              Bases: tuple

              Create new instance of Seq(Id, Name, Seq, Qual, Umi)

              Id     Alias for field number 0

              Name   Alias for field number 1

              Qual   Alias for field number 3

              Seq    Alias for field number 2

              Umi    Alias for field number 4

   pychopper.edlib_backend module
       pychopper.edlib_backend.find_locations(reads, all_primers, max_ed, pool, min_batch)
              Find alignment hits of all primers in all reads using the edlib/parasail backend

       pychopper.edlib_backend.find_umi_single(params)
              Find UMI in a single reads using the edlib/parasail backend

   pychopper.hmmer_backend module
       pychopper.hmmer_backend.find_locations(reads, phmm_file, E, pool, min_batch)
              Find alignment hits of all primers in all reads using the pHMM/nhmmscan backend

   pychopper.parasail_backend module
       pychopper.parasail_backend.first_cigar(cigar)
              Extract details of the first operation in a cigar string.

       pychopper.parasail_backend.pair_align(reference, query, query_name, subs_mat, params)
              Perform pairwise local alignment using parsail-python

       pychopper.parasail_backend.process_alignment(aln, query, query_name, aln_params)
              Process an alignment, extracting score, start and end.

       pychopper.parasail_backend.refine_locations(read,          all_primers,         locations,
       aln_params={'gap_extend':   1,   'gap_open':   1,    'match':    1,    'mismatch':    -2},
       subs_mat=<parasail.bindings_v2.Matrix object>)
              Refine alignment edges based on local alignment

   pychopper.report module
       class pychopper.report.Report(pdf)
              Bases: object

              Class  for  plotting  utilities  on  the  top of matplotlib. Plots are saved in the
              specified file through the PDF backend.

              Parametersself -- object.

                     • pdf -- Output pdf.

              Returns
                     The report object.

              Return type
                     Report

              close()
                     Close PDF backend. Do not forget to call this at the end of your  script  or
                     your output will be damaged!

                     Parameters
                            self -- object

                     Returns
                            None

                     Return type
                            object

              plot_arrays(data_map,  title='',  xlab='',  ylab='', marker='.', legend_loc='best',
              legend=True, vlines=None, vlcolor='green', vlwitdh=0.5)
                     Plot multiple pairs of data arrays.

                     Parametersself -- object.

                            • data_map -- A dictionary with labels as keys and  tupples  of  data
                              arrays (x,y) as values.

                            • title -- Figure title.

                            • xlab -- X axis label.

                            • ylab -- Y axis label.

                            • marker -- Marker passed to the plot function.

                            • legend_loc -- Location of legend.

                            • legend -- Plot legend if True

                            • vlines -- Dictionary with labels and positions of vertical lines to
                              draw.

                            • vlcolor -- Color of vertical lines drawn.

                            • vlwidth -- Width of vertical lines drawn.

                     Returns
                            None

                     Return type
                            object

              plot_bars_simple(data_map,     title='',     xlab='',      ylab='',      alpha=0.6,
              xticks_rotation=0, auto_limit=False)
                     Plot simple bar chart from input dictionary.

                     Parametersself -- object.

                            • data_map -- A dictionary with labels as keys and data as values.

                            • title -- Figure title.

                            • xlab -- X axis label.

                            • ylab -- Y axis label.

                            • alpha -- Alpha value.

                            • xticks_rotation -- Rotation value for x tick labels.

                            • auto_limit -- Set y axis limits automatically.

                     Returns
                            None

                     Return type
                            object

              plot_histograms(data_map,   title='',   xlab='',   ylab='',   bins=50,   alpha=0.7,
              legend_loc='best', legend=True, vlines=None)
                     Plot histograms of multiple data arrays.

                     Parametersself -- object.

                            • data_map -- A dictionary with labels as keys  and  data  arrays  as
                              values.

                            • title -- Figure title.

                            • xlab -- X axis label.

                            • ylab -- Y axis label.

                            • bins -- Number of bins.

                            • alpha -- Transparency value for histograms.

                            • legend_loc -- Location of legend.

                            • legend -- Plot legend if True.

                            • vlines -- Dictionary with labels and positions of vertical lines to
                              draw.

                     Returns
                            None

                     Return type
                            object

              save_close()
                     Utility method to save and close figure.

   pychopper.seq_utils module
       pychopper.seq_utils.base_complement(k)
              Return complement of base.

              Performs the subsitutions: A<=>T, C<=>G, X=>X for both upper and  lower  case.  The
              return value is identical to the argument for all other values.

              Parameters
                     k -- A base.

              Returns
                     Complement of base.

              Return type
                     str

       pychopper.seq_utils.errs_tab(n)
              Generate list of error rates for qualities less than equal than n.

       pychopper.seq_utils.get_primers(primers)
              Load primers from fasta file

       pychopper.seq_utils.get_runid(desc)
              Parse out runid from sequence description.

       pychopper.seq_utils.mean_qual(quals,     qround=False,    tab=[1.0,    0.7943282347242815,
       0.6309573444801932,    0.5011872336272722,    0.3981071705534972,     0.31622776601683794,
       0.251188643150958,  0.19952623149688797,  0.15848931924611134,  0.12589254117941673,  0.1,
       0.07943282347242814,   0.06309573444801933,   0.05011872336272722,   0.039810717055349734,
       0.03162277660168379,   0.025118864315095794,   0.0199526231496888,   0.015848931924611134,
       0.012589254117941675,       0.01,        0.007943282347242814,        0.00630957344480193,
       0.005011872336272725,  0.003981071705534973, 0.0031622776601683794, 0.0025118864315095794,
       0.001995262314968879,      0.001584893192461114,       0.0012589254117941675,       0.001,
       0.0007943282347242813,             0.000630957344480193,            0.0005011872336272725,
       0.00039810717055349735,          0.00031622776601683794,           0.00025118864315095795,
       0.00019952623149688788,     0.00015848931924611142,     0.00012589254117941674,    0.0001,
       7.943282347242822e-05,            6.309573444801929e-05,            5.011872336272725e-05,
       3.9810717055349695e-05,           3.1622776601683795e-05,          2.5118864315095822e-05,
       1.9952623149688786e-05,     1.584893192461114e-05,     1.2589254117941661e-05,      1e-05,
       7.943282347242822e-06, 6.30957344480193e-06, 5.011872336272725e-06, 3.981071705534969e-06,
       3.162277660168379e-06,           2.5118864315095823e-06,           1.9952623149688787e-06,
       1.584893192461114e-06,      1.2589254117941661e-06,      1e-06,     7.943282347242822e-07,
       6.30957344480193e-07, 5.011872336272725e-07, 3.981071705534969e-07, 3.162277660168379e-07,
       2.5118864315095823e-07,           1.9952623149688787e-07,           1.584893192461114e-07,
       1.2589254117941662e-07,      1e-07,      7.943282347242822e-08,      6.30957344480193e-08,
       5.011872336272725e-08,            3.981071705534969e-08,            3.162277660168379e-08,
       2.511886431509582e-08,           1.9952623149688786e-08,           1.5848931924611143e-08,
       1.2589254117941661e-08,      1e-08,      7.943282347242822e-09,     6.309573444801943e-09,
       5.011872336272715e-09,           3.981071705534969e-09,            3.1622776601683795e-09,
       2.511886431509582e-09,            1.9952623149688828e-09,           1.584893192461111e-09,
       1.2589254117941663e-09,     1e-09,      7.943282347242822e-10,      6.309573444801942e-10,
       5.011872336272714e-10,           3.9810717055349694e-10,           3.1622776601683795e-10,
       2.511886431509582e-10,           1.9952623149688828e-10,            1.584893192461111e-10,
       1.2589254117941662e-10,      1e-10,      7.943282347242822e-11,     6.309573444801942e-11,
       5.011872336272715e-11,           3.9810717055349695e-11,           3.1622776601683794e-11,
       2.5118864315095823e-11,           1.9952623149688828e-11,          1.5848931924611107e-11,
       1.2589254117941662e-11,     1e-11,      7.943282347242821e-12,      6.309573444801943e-12,
       5.011872336272715e-12,           3.9810717055349695e-12,           3.1622776601683794e-12,
       2.5118864315095823e-12,           1.9952623149688827e-12,           1.584893192461111e-12,
       1.258925411794166e-12,      1e-12,      7.943282347242822e-13,      6.309573444801942e-13,
       5.011872336272715e-13,            3.981071705534969e-13,            3.162277660168379e-13,
       2.511886431509582e-13, 1.9952623149688827e-13, 1.584893192461111e-13])
              Calculate  average basecall quality of a read.  Receive the ascii quality scores of
              a read and return the average quality for that read First convert Phred  scores  to
              probabilities,  calculate  average  error probability convert average back to Phred
              scale

       pychopper.seq_utils.random(size=None)
              Return random floats in the half-open interval [0.0, 1.0). Alias for  random_sample
              to ease forward-porting to the new random API.

       pychopper.seq_utils.readfq(fp, sample=None, min_qual=None, rfq_sup={})
              Below  function taken from https://github.com/lh3/readfq/blob/master/readfq.py Much
              faster parsing of large files compared to Biopyhton.

       pychopper.seq_utils.record_size(read, in_format='fastq')
              Calculate record size.

       pychopper.seq_utils.revcomp_seq(seq)
              Reverse complement sequence record

       pychopper.seq_utils.reverse_complement(seq)
              Return reverse complement of a string (base) sequence.

              Parameters
                     seq -- Input sequence.

              Returns
                     Reverse complement of input sequence.

              Return type
                     str

       pychopper.seq_utils.writefq(r, fh)
              Write read to fastq file

   pychopper.utils module
       pychopper.utils.batch(iterable, size)

       pychopper.utils.check_command(cmd)

       pychopper.utils.check_min_hmmer_version(major, minor)

       pychopper.utils.count_fastq_records(fname,   size=128000000,   opener=<built-in   function
       open>)

       pychopper.utils.hit2bed(hit, read)

       pychopper.utils.parse_config_string(s)

   Module contentsIndexModule IndexSearch Page

AUTHOR

       ONT Applications Group

COPYRIGHT

       2023, Oxford Nanopore Technologies Ltd.