Provided by: python3-pychopper_2.7.3-1_all
NAME
pychopper - package documentation
COMMAND LINE TOOLS
FULL API REFERENCE
pychopper pychopper package Subpackages pychopper.phmm_data package Module contents pychopper.primer_data package Module contents pychopper.scripts package Submodules pychopper.scripts.pychopper module pychopper.scripts.pychopper.main() Parse command line arguments. Module contents pychopper.tests package Submodules pychopper.tests.test_detector module class pychopper.tests.test_detector.TestDetector(methodName='runTest') Bases: TestCase Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name. testPairAlign() testScoreCutoff() pychopper.tests.test_regression_simple module class pychopper.tests.test_regression_simple.TestIntegration(methodName='runTest') Bases: TestCase Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name. testIntegration() Integration test. testIntegration_umi() Integration test. Module contents Submodules pychopper.alignment_hits module pychopper.alignment_hits.process_hits(hits, max_score) Process alignment hits by removing overlaps pychopper.chopper module pychopper.chopper.analyse_hits(hits, config) Segment reads based on alignment hits using dynamic programming. The algorithm is based on the rule that each primer alignment hit can be used only once. Hence if a segment is included, the next one has to be excluded. pychopper.chopper.chopper_edlib(reads, primers, config, max_ed, cutoff, pool, min_batch) Segment using the edlib/parasail backend pychopper.chopper.chopper_phmm(reads, phmm_file, config, cutoff, threads, pool, min_batch) Segment using the profile HMM backend pychopper.chopper.segments_to_reads(read, segments, keep_primers, bam_tags, detect_umis) Convert segments to output reads with annotation pychopper.common_structures module class pychopper.common_structures.Hit(Ref, RefStart, RefEnd, Query, QueryStart, QueryEnd, Score) Bases: tuple Create new instance of Hit(Ref, RefStart, RefEnd, Query, QueryStart, QueryEnd, Score) Query Alias for field number 3 QueryEnd Alias for field number 5 QueryStart Alias for field number 4 Ref Alias for field number 0 RefEnd Alias for field number 2 RefStart Alias for field number 1 Score Alias for field number 6 class pychopper.common_structures.Segment(Left, Start, End, Right, Strand, Len) Bases: tuple Create new instance of Segment(Left, Start, End, Right, Strand, Len) End Alias for field number 2 Left Alias for field number 0 Len Alias for field number 5 Right Alias for field number 3 Start Alias for field number 1 Strand Alias for field number 4 class pychopper.common_structures.Seq(Id, Name, Seq, Qual, Umi) Bases: tuple Create new instance of Seq(Id, Name, Seq, Qual, Umi) Id Alias for field number 0 Name Alias for field number 1 Qual Alias for field number 3 Seq Alias for field number 2 Umi Alias for field number 4 pychopper.edlib_backend module pychopper.edlib_backend.find_locations(reads, all_primers, max_ed, pool, min_batch) Find alignment hits of all primers in all reads using the edlib/parasail backend pychopper.edlib_backend.find_umi_single(params) Find UMI in a single reads using the edlib/parasail backend pychopper.hmmer_backend module pychopper.hmmer_backend.find_locations(reads, phmm_file, E, pool, min_batch) Find alignment hits of all primers in all reads using the pHMM/nhmmscan backend pychopper.parasail_backend module pychopper.parasail_backend.first_cigar(cigar) Extract details of the first operation in a cigar string. pychopper.parasail_backend.pair_align(reference, query, query_name, subs_mat, params) Perform pairwise local alignment using parsail-python pychopper.parasail_backend.process_alignment(aln, query, query_name, aln_params) Process an alignment, extracting score, start and end. pychopper.parasail_backend.refine_locations(read, all_primers, locations, aln_params={'gap_extend': 1, 'gap_open': 1, 'match': 1, 'mismatch': -2}, subs_mat=<parasail.bindings_v2.Matrix object>) Refine alignment edges based on local alignment pychopper.report module class pychopper.report.Report(pdf) Bases: object Class for plotting utilities on the top of matplotlib. Plots are saved in the specified file through the PDF backend. Parameters • self -- object. • pdf -- Output pdf. Returns The report object. Return type Report close() Close PDF backend. Do not forget to call this at the end of your script or your output will be damaged! Parameters self -- object Returns None Return type object plot_arrays(data_map, title='', xlab='', ylab='', marker='.', legend_loc='best', legend=True, vlines=None, vlcolor='green', vlwitdh=0.5) Plot multiple pairs of data arrays. Parameters • self -- object. • data_map -- A dictionary with labels as keys and tupples of data arrays (x,y) as values. • title -- Figure title. • xlab -- X axis label. • ylab -- Y axis label. • marker -- Marker passed to the plot function. • legend_loc -- Location of legend. • legend -- Plot legend if True • vlines -- Dictionary with labels and positions of vertical lines to draw. • vlcolor -- Color of vertical lines drawn. • vlwidth -- Width of vertical lines drawn. Returns None Return type object plot_bars_simple(data_map, title='', xlab='', ylab='', alpha=0.6, xticks_rotation=0, auto_limit=False) Plot simple bar chart from input dictionary. Parameters • self -- object. • data_map -- A dictionary with labels as keys and data as values. • title -- Figure title. • xlab -- X axis label. • ylab -- Y axis label. • alpha -- Alpha value. • xticks_rotation -- Rotation value for x tick labels. • auto_limit -- Set y axis limits automatically. Returns None Return type object plot_histograms(data_map, title='', xlab='', ylab='', bins=50, alpha=0.7, legend_loc='best', legend=True, vlines=None) Plot histograms of multiple data arrays. Parameters • self -- object. • data_map -- A dictionary with labels as keys and data arrays as values. • title -- Figure title. • xlab -- X axis label. • ylab -- Y axis label. • bins -- Number of bins. • alpha -- Transparency value for histograms. • legend_loc -- Location of legend. • legend -- Plot legend if True. • vlines -- Dictionary with labels and positions of vertical lines to draw. Returns None Return type object save_close() Utility method to save and close figure. pychopper.seq_utils module pychopper.seq_utils.base_complement(k) Return complement of base. Performs the subsitutions: A<=>T, C<=>G, X=>X for both upper and lower case. The return value is identical to the argument for all other values. Parameters k -- A base. Returns Complement of base. Return type str pychopper.seq_utils.errs_tab(n) Generate list of error rates for qualities less than equal than n. pychopper.seq_utils.get_primers(primers) Load primers from fasta file pychopper.seq_utils.get_runid(desc) Parse out runid from sequence description. pychopper.seq_utils.mean_qual(quals, qround=False, tab=[1.0, 0.7943282347242815, 0.6309573444801932, 0.5011872336272722, 0.3981071705534972, 0.31622776601683794, 0.251188643150958, 0.19952623149688797, 0.15848931924611134, 0.12589254117941673, 0.1, 0.07943282347242814, 0.06309573444801933, 0.05011872336272722, 0.039810717055349734, 0.03162277660168379, 0.025118864315095794, 0.0199526231496888, 0.015848931924611134, 0.012589254117941675, 0.01, 0.007943282347242814, 0.00630957344480193, 0.005011872336272725, 0.003981071705534973, 0.0031622776601683794, 0.0025118864315095794, 0.001995262314968879, 0.001584893192461114, 0.0012589254117941675, 0.001, 0.0007943282347242813, 0.000630957344480193, 0.0005011872336272725, 0.00039810717055349735, 0.00031622776601683794, 0.00025118864315095795, 0.00019952623149688788, 0.00015848931924611142, 0.00012589254117941674, 0.0001, 7.943282347242822e-05, 6.309573444801929e-05, 5.011872336272725e-05, 3.9810717055349695e-05, 3.1622776601683795e-05, 2.5118864315095822e-05, 1.9952623149688786e-05, 1.584893192461114e-05, 1.2589254117941661e-05, 1e-05, 7.943282347242822e-06, 6.30957344480193e-06, 5.011872336272725e-06, 3.981071705534969e-06, 3.162277660168379e-06, 2.5118864315095823e-06, 1.9952623149688787e-06, 1.584893192461114e-06, 1.2589254117941661e-06, 1e-06, 7.943282347242822e-07, 6.30957344480193e-07, 5.011872336272725e-07, 3.981071705534969e-07, 3.162277660168379e-07, 2.5118864315095823e-07, 1.9952623149688787e-07, 1.584893192461114e-07, 1.2589254117941662e-07, 1e-07, 7.943282347242822e-08, 6.30957344480193e-08, 5.011872336272725e-08, 3.981071705534969e-08, 3.162277660168379e-08, 2.511886431509582e-08, 1.9952623149688786e-08, 1.5848931924611143e-08, 1.2589254117941661e-08, 1e-08, 7.943282347242822e-09, 6.309573444801943e-09, 5.011872336272715e-09, 3.981071705534969e-09, 3.1622776601683795e-09, 2.511886431509582e-09, 1.9952623149688828e-09, 1.584893192461111e-09, 1.2589254117941663e-09, 1e-09, 7.943282347242822e-10, 6.309573444801942e-10, 5.011872336272714e-10, 3.9810717055349694e-10, 3.1622776601683795e-10, 2.511886431509582e-10, 1.9952623149688828e-10, 1.584893192461111e-10, 1.2589254117941662e-10, 1e-10, 7.943282347242822e-11, 6.309573444801942e-11, 5.011872336272715e-11, 3.9810717055349695e-11, 3.1622776601683794e-11, 2.5118864315095823e-11, 1.9952623149688828e-11, 1.5848931924611107e-11, 1.2589254117941662e-11, 1e-11, 7.943282347242821e-12, 6.309573444801943e-12, 5.011872336272715e-12, 3.9810717055349695e-12, 3.1622776601683794e-12, 2.5118864315095823e-12, 1.9952623149688827e-12, 1.584893192461111e-12, 1.258925411794166e-12, 1e-12, 7.943282347242822e-13, 6.309573444801942e-13, 5.011872336272715e-13, 3.981071705534969e-13, 3.162277660168379e-13, 2.511886431509582e-13, 1.9952623149688827e-13, 1.584893192461111e-13]) Calculate average basecall quality of a read. Receive the ascii quality scores of a read and return the average quality for that read First convert Phred scores to probabilities, calculate average error probability convert average back to Phred scale pychopper.seq_utils.random(size=None) Return random floats in the half-open interval [0.0, 1.0). Alias for random_sample to ease forward-porting to the new random API. pychopper.seq_utils.readfq(fp, sample=None, min_qual=None, rfq_sup={}) Below function taken from https://github.com/lh3/readfq/blob/master/readfq.py Much faster parsing of large files compared to Biopyhton. pychopper.seq_utils.record_size(read, in_format='fastq') Calculate record size. pychopper.seq_utils.revcomp_seq(seq) Reverse complement sequence record pychopper.seq_utils.reverse_complement(seq) Return reverse complement of a string (base) sequence. Parameters seq -- Input sequence. Returns Reverse complement of input sequence. Return type str pychopper.seq_utils.writefq(r, fh) Write read to fastq file pychopper.utils module pychopper.utils.batch(iterable, size) pychopper.utils.check_command(cmd) pychopper.utils.check_min_hmmer_version(major, minor) pychopper.utils.count_fastq_records(fname, size=128000000, opener=<built-in function open>) pychopper.utils.hit2bed(hit, read) pychopper.utils.parse_config_string(s) Module contents • Index • Module Index • Search Page
AUTHOR
ONT Applications Group
COPYRIGHT
2023, Oxford Nanopore Technologies Ltd.