Provided by: grass-doc_8.3.0-1_all
NAME
r.grow - Generates a raster map layer with contiguous areas grown by one cell.
KEYWORDS
raster, distance, proximity
SYNOPSIS
r.grow r.grow --help r.grow [-m] input=name output=name [radius=float] [metric=string] [old=integer] [new=integer] [--overwrite] [--help] [--verbose] [--quiet] [--ui] Flags: -m Radius is in map units rather than cells --overwrite Allow output files to overwrite existing files --help Print usage summary --verbose Verbose module output --quiet Quiet module output --ui Force launching GUI dialog Parameters: input=name [required] Name of input raster map output=name [required] Name for output raster map radius=float Radius of buffer in raster cells Default: 1.01 metric=string Metric Options: euclidean, maximum, manhattan Default: euclidean old=integer Value to write for input cells which are non-NULL (-1 => NULL) new=integer Value to write for "grown" cells
DESCRIPTION
r.grow adds cells around the perimeters of all areas in a user-specified raster map layer and stores the output in a new raster map layer. The user can use it to grow by one or more than one cell (by varying the size of the radius parameter), or like r.buffer, but with the option of preserving the original cells (similar to combining r.buffer and r.patch). If radius is negative,r.grow shrinks areas by removing cells around the perimeters of all areas.
NOTES
The user has the option of specifying three different metrics which control the geometry in which grown cells are created, (controlled by the metric parameter): Euclidean, Manhattan, and Maximum. The Euclidean distance or Euclidean metric is the "ordinary" distance between two points that one would measure with a ruler, which can be proven by repeated application of the Pythagorean theorem. The formula is given by: d(dx,dy) = sqrt(dx^2 + dy^2) Cells grown using this metric would form isolines of distance that are circular from a given point, with the distance given by the radius. The Manhattan metric, or Taxicab geometry, is a form of geometry in which the usual metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the (absolute) differences of their coordinates. The name alludes to the grid layout of most streets on the island of Manhattan, which causes the shortest path a car could take between two points in the city to have length equal to the points’ distance in taxicab geometry. The formula is given by: d(dx,dy) = abs(dx) + abs(dy) where cells grown using this metric would form isolines of distance that are rhombus-shaped from a given point. The Maximum metric is given by the formula d(dx,dy) = max(abs(dx),abs(dy)) where the isolines of distance from a point are squares. If there are two cells which are equal candidates to grow into an empty space, r.grow will choose the northernmost candidate; if there are multiple candidates with the same northing, the westernmost is chosen.
EXAMPLE
In this example, the lakes map in the North Carolina sample dataset location is buffered: g.region raster=lakes -p # the lake raster map pixel resolution is 10m r.grow input=lakes output=lakes_grown_100m radius=10 Shrinking instead of growing: g.region raster=lakes -p # the lake raster map pixel resolution is 10m r.grow input=lakes output=lakes_shrunk_100m radius=-10
SEE ALSO
r.buffer, r.grow.distance, r.patch Wikipedia Entry: Euclidean Metric Wikipedia Entry: Manhattan Metric
AUTHORS
Marjorie Larson, U.S. Army Construction Engineering Research Laboratory Glynn Clements
SOURCE CODE
Available at: r.grow source code (history) Accessed: Tuesday Jun 27 11:14:33 2023 Main index | Raster index | Topics index | Keywords index | Graphical index | Full index © 2003-2023 GRASS Development Team, GRASS GIS 8.3.0 Reference Manual