Provided by: perl-doc_5.36.0-9ubuntu1.1_all bug

NAME

       Math::BigRat - arbitrary size rational number math package

SYNOPSIS

           use Math::BigRat;

           my $x = Math::BigRat->new('3/7'); $x += '5/9';

           print $x->bstr(), "\n";
           print $x ** 2, "\n";

           my $y = Math::BigRat->new('inf');
           print "$y ", ($y->is_inf ? 'is' : 'is not'), " infinity\n";

           my $z = Math::BigRat->new(144); $z->bsqrt();

DESCRIPTION

       Math::BigRat complements Math::BigInt and Math::BigFloat by providing support for
       arbitrary big rational numbers.

   MATH LIBRARY
       You can change the underlying module that does the low-level math operations by using:

           use Math::BigRat try => 'GMP';

       Note: This needs Math::BigInt::GMP installed.

       The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and when
       this also fails, revert to Math::BigInt::Calc:

           use Math::BigRat try => 'Foo,Math::BigInt::Bar';

       If you want to get warned when the fallback occurs, replace "try" with "lib":

           use Math::BigRat lib => 'Foo,Math::BigInt::Bar';

       If you want the code to die instead, replace "try" with "only":

           use Math::BigRat only => 'Foo,Math::BigInt::Bar';

METHODS

       Any methods not listed here are derived from Math::BigFloat (or Math::BigInt), so make
       sure you check these two modules for further information.

       new()
               $x = Math::BigRat->new('1/3');

           Create a new Math::BigRat object. Input can come in various forms:

               $x = Math::BigRat->new(123);                            # scalars
               $x = Math::BigRat->new('inf');                          # infinity
               $x = Math::BigRat->new('123.3');                        # float
               $x = Math::BigRat->new('1/3');                          # simple string
               $x = Math::BigRat->new('1 / 3');                        # spaced
               $x = Math::BigRat->new('1 / 0.1');                      # w/ floats
               $x = Math::BigRat->new(Math::BigInt->new(3));           # BigInt
               $x = Math::BigRat->new(Math::BigFloat->new('3.1'));     # BigFloat
               $x = Math::BigRat->new(Math::BigInt::Lite->new('2'));   # BigLite

               # You can also give D and N as different objects:
               $x = Math::BigRat->new(
                       Math::BigInt->new(-123),
                       Math::BigInt->new(7),
                    );                      # => -123/7

       numerator()
               $n = $x->numerator();

           Returns a copy of the numerator (the part above the line) as signed BigInt.

       denominator()
               $d = $x->denominator();

           Returns a copy of the denominator (the part under the line) as positive BigInt.

       parts()
               ($n, $d) = $x->parts();

           Return a list consisting of (signed) numerator and (unsigned) denominator as BigInts.

       dparts()
           Returns the integer part and the fraction part.

       fparts()
           Returns the smallest possible numerator and denominator so that the numerator divided
           by the denominator gives back the original value. For finite numbers, both values are
           integers. Mnemonic: fraction.

       numify()
               my $y = $x->numify();

           Returns the object as a scalar. This will lose some data if the object cannot be
           represented by a normal Perl scalar (integer or float), so use "as_int()" or
           "as_float()" instead.

           This routine is automatically used whenever a scalar is required:

               my $x = Math::BigRat->new('3/1');
               @array = (0, 1, 2, 3);
               $y = $array[$x];                # set $y to 3

       as_int()
       as_number()
               $x = Math::BigRat->new('13/7');
               print $x->as_int(), "\n";               # '1'

           Returns a copy of the object as BigInt, truncated to an integer.

           "as_number()" is an alias for "as_int()".

       as_float()
               $x = Math::BigRat->new('13/7');
               print $x->as_float(), "\n";             # '1'

               $x = Math::BigRat->new('2/3');
               print $x->as_float(5), "\n";            # '0.66667'

           Returns a copy of the object as BigFloat, preserving the accuracy as wanted, or the
           default of 40 digits.

           This method was added in v0.22 of Math::BigRat (April 2008).

       as_hex()
               $x = Math::BigRat->new('13');
               print $x->as_hex(), "\n";               # '0xd'

           Returns the BigRat as hexadecimal string. Works only for integers.

       as_bin()
               $x = Math::BigRat->new('13');
               print $x->as_bin(), "\n";               # '0x1101'

           Returns the BigRat as binary string. Works only for integers.

       as_oct()
               $x = Math::BigRat->new('13');
               print $x->as_oct(), "\n";               # '015'

           Returns the BigRat as octal string. Works only for integers.

       from_hex()
               my $h = Math::BigRat->from_hex('0x10');

           Create a BigRat from a hexadecimal number in string form.

       from_oct()
               my $o = Math::BigRat->from_oct('020');

           Create a BigRat from an octal number in string form.

       from_bin()
               my $b = Math::BigRat->from_bin('0b10000000');

           Create a BigRat from an binary number in string form.

       bnan()
               $x = Math::BigRat->bnan();

           Creates a new BigRat object representing NaN (Not A Number).  If used on an object, it
           will set it to NaN:

               $x->bnan();

       bzero()
               $x = Math::BigRat->bzero();

           Creates a new BigRat object representing zero.  If used on an object, it will set it
           to zero:

               $x->bzero();

       binf()
               $x = Math::BigRat->binf($sign);

           Creates a new BigRat object representing infinity. The optional argument is either '-'
           or '+', indicating whether you want infinity or minus infinity.  If used on an object,
           it will set it to infinity:

               $x->binf();
               $x->binf('-');

       bone()
               $x = Math::BigRat->bone($sign);

           Creates a new BigRat object representing one. The optional argument is either '-' or
           '+', indicating whether you want one or minus one.  If used on an object, it will set
           it to one:

               $x->bone();                 # +1
               $x->bone('-');              # -1

       length()
               $len = $x->length();

           Return the length of $x in digits for integer values.

       digit()
               print Math::BigRat->new('123/1')->digit(1);     # 1
               print Math::BigRat->new('123/1')->digit(-1);    # 3

           Return the N'ths digit from X when X is an integer value.

       bnorm()
               $x->bnorm();

           Reduce the number to the shortest form. This routine is called automatically whenever
           it is needed.

       bfac()
               $x->bfac();

           Calculates the factorial of $x. For instance:

               print Math::BigRat->new('3/1')->bfac(), "\n";   # 1*2*3
               print Math::BigRat->new('5/1')->bfac(), "\n";   # 1*2*3*4*5

           Works currently only for integers.

       bround()/round()/bfround()
           Are not yet implemented.

       bmod()
               $x->bmod($y);

           Returns $x modulo $y. When $x is finite, and $y is finite and non-zero, the result is
           identical to the remainder after floored division (F-division). If, in addition, both
           $x and $y are integers, the result is identical to the result from Perl's % operator.

       bmodinv()
               $x->bmodinv($mod);          # modular multiplicative inverse

           Returns the multiplicative inverse of $x modulo $mod. If

               $y = $x -> copy() -> bmodinv($mod)

           then $y is the number closest to zero, and with the same sign as $mod, satisfying

               ($x * $y) % $mod = 1 % $mod

           If $x and $y are non-zero, they must be relative primes, i.e., "bgcd($y, $mod)==1".
           '"NaN"' is returned when no modular multiplicative inverse exists.

       bmodpow()
               $num->bmodpow($exp,$mod);           # modular exponentiation
                                                   # ($num**$exp % $mod)

           Returns the value of $num taken to the power $exp in the modulus $mod using binary
           exponentiation.  "bmodpow" is far superior to writing

               $num ** $exp % $mod

           because it is much faster - it reduces internal variables into the modulus whenever
           possible, so it operates on smaller numbers.

           "bmodpow" also supports negative exponents.

               bmodpow($num, -1, $mod)

           is exactly equivalent to

               bmodinv($num, $mod)

       bneg()
               $x->bneg();

           Used to negate the object in-place.

       is_one()
               print "$x is 1\n" if $x->is_one();

           Return true if $x is exactly one, otherwise false.

       is_zero()
               print "$x is 0\n" if $x->is_zero();

           Return true if $x is exactly zero, otherwise false.

       is_pos()/is_positive()
               print "$x is >= 0\n" if $x->is_positive();

           Return true if $x is positive (greater than or equal to zero), otherwise false. Please
           note that '+inf' is also positive, while 'NaN' and '-inf' aren't.

           "is_positive()" is an alias for "is_pos()".

       is_neg()/is_negative()
               print "$x is < 0\n" if $x->is_negative();

           Return true if $x is negative (smaller than zero), otherwise false. Please note that
           '-inf' is also negative, while 'NaN' and '+inf' aren't.

           "is_negative()" is an alias for "is_neg()".

       is_int()
               print "$x is an integer\n" if $x->is_int();

           Return true if $x has a denominator of 1 (e.g. no fraction parts), otherwise false.
           Please note that '-inf', 'inf' and 'NaN' aren't integer.

       is_odd()
               print "$x is odd\n" if $x->is_odd();

           Return true if $x is odd, otherwise false.

       is_even()
               print "$x is even\n" if $x->is_even();

           Return true if $x is even, otherwise false.

       bceil()
               $x->bceil();

           Set $x to the next bigger integer value (e.g. truncate the number to integer and then
           increment it by one).

       bfloor()
               $x->bfloor();

           Truncate $x to an integer value.

       bint()
               $x->bint();

           Round $x towards zero.

       bsqrt()
               $x->bsqrt();

           Calculate the square root of $x.

       broot()
               $x->broot($n);

           Calculate the N'th root of $x.

       badd()
               $x->badd($y);

           Adds $y to $x and returns the result.

       bmul()
               $x->bmul($y);

           Multiplies $y to $x and returns the result.

       bsub()
               $x->bsub($y);

           Subtracts $y from $x and returns the result.

       bdiv()
               $q = $x->bdiv($y);
               ($q, $r) = $x->bdiv($y);

           In scalar context, divides $x by $y and returns the result. In list context, does
           floored division (F-division), returning an integer $q and a remainder $r so that $x =
           $q * $y + $r. The remainer (modulo) is equal to what is returned by "$x->bmod($y)".

       binv()
               $x->binv();

           Inverse of $x.

       bdec()
               $x->bdec();

           Decrements $x by 1 and returns the result.

       binc()
               $x->binc();

           Increments $x by 1 and returns the result.

       copy()
               my $z = $x->copy();

           Makes a deep copy of the object.

           Please see the documentation in Math::BigInt for further details.

       bstr()/bsstr()
               my $x = Math::BigRat->new('8/4');
               print $x->bstr(), "\n";             # prints 1/2
               print $x->bsstr(), "\n";            # prints 1/2

           Return a string representing this object.

       bcmp()
               $x->bcmp($y);

           Compares $x with $y and takes the sign into account.  Returns -1, 0, 1 or undef.

       bacmp()
               $x->bacmp($y);

           Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or undef.

       beq()
               $x -> beq($y);

           Returns true if and only if $x is equal to $y, and false otherwise.

       bne()
               $x -> bne($y);

           Returns true if and only if $x is not equal to $y, and false otherwise.

       blt()
               $x -> blt($y);

           Returns true if and only if $x is equal to $y, and false otherwise.

       ble()
               $x -> ble($y);

           Returns true if and only if $x is less than or equal to $y, and false otherwise.

       bgt()
               $x -> bgt($y);

           Returns true if and only if $x is greater than $y, and false otherwise.

       bge()
               $x -> bge($y);

           Returns true if and only if $x is greater than or equal to $y, and false otherwise.

       blsft()/brsft()
           Used to shift numbers left/right.

           Please see the documentation in Math::BigInt for further details.

       band()
               $x->band($y);               # bitwise and

       bior()
               $x->bior($y);               # bitwise inclusive or

       bxor()
               $x->bxor($y);               # bitwise exclusive or

       bnot()
               $x->bnot();                 # bitwise not (two's complement)

       bpow()
               $x->bpow($y);

           Compute $x ** $y.

           Please see the documentation in Math::BigInt for further details.

       blog()
               $x->blog($base, $accuracy);         # logarithm of x to the base $base

           If $base is not defined, Euler's number (e) is used:

               print $x->blog(undef, 100);         # log(x) to 100 digits

       bexp()
               $x->bexp($accuracy);        # calculate e ** X

           Calculates two integers A and B so that A/B is equal to "e ** $x", where "e" is
           Euler's number.

           This method was added in v0.20 of Math::BigRat (May 2007).

           See also "blog()".

       bnok()
               $x->bnok($y);               # x over y (binomial coefficient n over k)

           Calculates the binomial coefficient n over k, also called the "choose" function. The
           result is equivalent to:

               ( n )      n!
               | - |  = -------
               ( k )    k!(n-k)!

           This method was added in v0.20 of Math::BigRat (May 2007).

       config()
               Math::BigRat->config("trap_nan" => 1);      # set
               $accu = Math::BigRat->config("accuracy");   # get

           Set or get configuration parameter values. Read-only parameters are marked as RO.
           Read-write parameters are marked as RW. The following parameters are supported.

               Parameter       RO/RW   Description
                                       Example
               ============================================================
               lib             RO      Name of the math backend library
                                       Math::BigInt::Calc
               lib_version     RO      Version of the math backend library
                                       0.30
               class           RO      The class of config you just called
                                       Math::BigRat
               version         RO      version number of the class you used
                                       0.10
               upgrade         RW      To which class numbers are upgraded
                                       undef
               downgrade       RW      To which class numbers are downgraded
                                       undef
               precision       RW      Global precision
                                       undef
               accuracy        RW      Global accuracy
                                       undef
               round_mode      RW      Global round mode
                                       even
               div_scale       RW      Fallback accuracy for div, sqrt etc.
                                       40
               trap_nan        RW      Trap NaNs
                                       undef
               trap_inf        RW      Trap +inf/-inf
                                       undef

NUMERIC LITERALS

       After "use Math::BigRat ':constant'" all numeric literals in the given scope are converted
       to "Math::BigRat" objects. This conversion happens at compile time. Every non-integer is
       convert to a NaN.

       For example,

           perl -MMath::BigRat=:constant -le 'print 2**150'

       prints the exact value of "2**150". Note that without conversion of constants to objects
       the expression "2**150" is calculated using Perl scalars, which leads to an inaccurate
       result.

       Please note that strings are not affected, so that

           use Math::BigRat qw/:constant/;

           $x = "1234567890123456789012345678901234567890"
                   + "123456789123456789";

       does give you what you expect. You need an explicit Math::BigRat->new() around at least
       one of the operands. You should also quote large constants to prevent loss of precision:

           use Math::BigRat;

           $x = Math::BigRat->new("1234567889123456789123456789123456789");

       Without the quotes Perl first converts the large number to a floating point constant at
       compile time, and then converts the result to a Math::BigRat object at run time, which
       results in an inaccurate result.

   Hexadecimal, octal, and binary floating point literals
       Perl (and this module) accepts hexadecimal, octal, and binary floating point literals, but
       use them with care with Perl versions before v5.32.0, because some versions of Perl
       silently give the wrong result. Below are some examples of different ways to write the
       number decimal 314.

       Hexadecimal floating point literals:

           0x1.3ap+8         0X1.3AP+8
           0x1.3ap8          0X1.3AP8
           0x13a0p-4         0X13A0P-4

       Octal floating point literals (with "0" prefix):

           01.164p+8         01.164P+8
           01.164p8          01.164P8
           011640p-4         011640P-4

       Octal floating point literals (with "0o" prefix) (requires v5.34.0):

           0o1.164p+8        0O1.164P+8
           0o1.164p8         0O1.164P8
           0o11640p-4        0O11640P-4

       Binary floating point literals:

           0b1.0011101p+8    0B1.0011101P+8
           0b1.0011101p8     0B1.0011101P8
           0b10011101000p-2  0B10011101000P-2

BUGS

       Please report any bugs or feature requests to "bug-math-bigrat at rt.cpan.org", or through
       the web interface at <https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigRat> (requires
       login).  We will be notified, and then you'll automatically be notified of progress on
       your bug as I make changes.

SUPPORT

       You can find documentation for this module with the perldoc command.

           perldoc Math::BigRat

       You can also look for information at:

       •   GitHub

           <https://github.com/pjacklam/p5-Math-BigRat>

       •   RT: CPAN's request tracker

           <https://rt.cpan.org/Dist/Display.html?Name=Math-BigRat>

       •   MetaCPAN

           <https://metacpan.org/release/Math-BigRat>

       •   CPAN Testers Matrix

           <http://matrix.cpantesters.org/?dist=Math-BigRat>

       •   CPAN Ratings

           <https://cpanratings.perl.org/dist/Math-BigRat>

LICENSE

       This program is free software; you may redistribute it and/or modify it under the same
       terms as Perl itself.

SEE ALSO

       bigrat, Math::BigFloat and Math::BigInt as well as the backends Math::BigInt::FastCalc,
       Math::BigInt::GMP, and Math::BigInt::Pari.

AUTHORS

       •   Tels <http://bloodgate.com/> 2001-2009.

       •   Maintained by Peter John Acklam <pjacklam@gmail.com> 2011-