Provided by: libmath-cephes-perl_0.5305-6_amd64 bug

NAME

       Math::Cephes - perl interface to the cephes math library

SYNOPSIS

         use Math::Cephes qw(:all);

DESCRIPTION

         This module provides an interface to over 150 functions of the
         cephes math library of Stephen Moshier. No functions are exported
         by default, but rather must be imported explicitly, as in

            use Math::Cephes qw(sin cos);

         There are a number of export tags defined which allow
         importing groups of functions:

       use Math::Cephes qw(:constants);
             imports the variables

             $PI      :   3.14159265358979323846      #  pi
             $PIO2    :   1.57079632679489661923      #  pi/2
             $PIO4    :   0.785398163397448309616     #  pi/4
             $SQRT2   :   1.41421356237309504880      #  sqrt(2)
             $SQRTH   :   0.707106781186547524401     #  sqrt(2)/2
             $LOG2E   :   1.4426950408889634073599    #  1/log(2)
             $SQ2OPI  :   0.79788456080286535587989   #  sqrt( 2/pi )
             $LOGE2   :   0.693147180559945309417     #  log(2)
             $LOGSQ2  :   0.346573590279972654709     #  log(2)/2
             $THPIO4  :   2.35619449019234492885      #  3*pi/4
             $TWOOPI  :   0.636619772367581343075535  #  2/pi

             As well, there are 4 machine-specific numbers available:

              $MACHEP : machine roundoff error
              $MAXLOG : maximum log on the machine
              $MINLOG : minimum log on the machine
              $MAXNUM : largest number represented

       use Math::Cephes qw(:trigs);
             imports

            acos:  Inverse circular cosine
            asin:  Inverse circular sine
            atan:  Inverse circular tangent (arctangent)
            atan2:  Quadrant correct inverse circular tangent
            cos:  Circular cosine
            cosdg:  Circular cosine of angle in degrees
            cot:  Circular cotangent
            cotdg:  Circular cotangent of argument in degrees
            hypot: hypotenuse associated with the sides of a right triangle
            radian: Degrees, minutes, seconds to radians
            sin:  Circular sine
            sindg:  Circular sine of angle in degrees
            tan:  Circular tangent
            tandg:  Circular tangent of argument in degrees
            cosm1:  Relative error approximations for function arguments near unity

       use Math::Cephes qw(:hypers);
             imports

            acosh:  Inverse hyperbolic cosine
            asinh:  Inverse hyperbolic sine
            atanh:  Inverse hyperbolic tangent
            cosh:  Hyperbolic cosine
            sinh:  Hyperbolic sine
            tanh:  Hyperbolic tangent

       use Math::Cephes qw(:explog);
             imports

            exp:  Exponential function
            expxx: exp(x*x)
            exp10:  Base 10 exponential function (Common antilogarithm)
            exp2:  Base 2 exponential function
            log:  Natural logarithm
            log10:  Common logarithm
            log2:  Base 2 logarithm
            log1p,expm1:  Relative error approximations for function arguments near unity.

       use Math::Cephes qw(:cmplx);
             imports

            new_cmplx: create a new complex number object
            cabs:  Complex absolute value
            cacos:  Complex circular arc cosine
            cacosh: Complex inverse hyperbolic cosine
            casin:  Complex circular arc sine
            casinh: Complex inverse hyperbolic sine
            catan:  Complex circular arc tangent
            catanh: Complex inverse hyperbolic tangent
            ccos:  Complex circular cosine
            ccosh: Complex hyperbolic cosine
            ccot:  Complex circular cotangent
            cexp:  Complex exponential function
            clog:  Complex natural logarithm
            cadd: add two complex numbers
            csub: subtract two complex numbers
            cmul: multiply two complex numbers
            cdiv: divide two complex numbers
            cmov: copy one complex number to another
            cneg: negate a complex number
            cpow: Complex power function
            csin:  Complex circular sine
            csinh: Complex hyperbolic sine
            csqrt:  Complex square root
            ctan:  Complex circular tangent
            ctanh: Complex hyperbolic tangent

       use Math::Cephes qw(:utils);
             imports

            cbrt:  Cube root
            ceil:  ceil
            drand:  Pseudorandom number generator
            fabs:  Absolute value
            fac:  Factorial function
            floor:  floor
            frexp:  frexp
            ldexp:  multiplies x by 2**n.
            lrand:  Pseudorandom number generator
            lsqrt:  Integer square root
            pow:  Power function
            powi:  Real raised to integer power
            round:  Round double to nearest or even integer valued double
            sqrt:  Square root

       use Math::Cephes qw(:bessels);
             imports

            i0:  Modified Bessel function of order zero
            i0e:  Modified Bessel function of order zero, exponentially scaled
            i1:  Modified Bessel function of order one
            i1e:  Modified Bessel function of order one, exponentially scaled
            iv:  Modified Bessel function of noninteger order
            j0:  Bessel function of order zero
            j1:  Bessel function of order one
            jn:  Bessel function of integer order
            jv:  Bessel function of noninteger order
            k0:  Modified Bessel function, third kind, order zero
            k0e:  Modified Bessel function, third kind, order zero, exponentially scaled
            k1:  Modified Bessel function, third kind, order one
            k1e:  Modified Bessel function, third kind, order one, exponentially scaled
            kn:  Modified Bessel function, third kind, integer order
            y0:  Bessel function of the second kind, order zero
            y1:  Bessel function of second kind of order one
            yn:  Bessel function of second kind of integer order
            yv:  Bessel function Yv with noninteger v

       use Math::Cephes qw(:dists);
             imports

            bdtr:  Binomial distribution
            bdtrc:  Complemented binomial distribution
            bdtri:  Inverse binomial distribution
            btdtr:  Beta distribution
            chdtr:  Chi-square distribution
            chdtrc:  Complemented Chi-square distribution
            chdtri:  Inverse of complemented Chi-square distribution
            fdtr:  F distribution
            fdtrc:  Complemented F distribution
            fdtri:  Inverse of complemented F distribution
            gdtr:  Gamma distribution function
            gdtrc:  Complemented gamma distribution function
            nbdtr:  Negative binomial distribution
            nbdtrc:  Complemented negative binomial distribution
            nbdtri:  Functional inverse of negative binomial distribution
            ndtr:  Normal distribution function
            ndtri:  Inverse of Normal distribution function
            pdtr:  Poisson distribution
            pdtrc:  Complemented poisson distribution
            pdtri:  Inverse Poisson distribution
            stdtr:  Student's t distribution
            stdtri:  Functional inverse of Student's t distribution

       use Math::Cephes qw(:gammas);
             imports

            fac:  Factorial function
            gamma:  Gamma function
            igam:  Incomplete gamma integral
            igamc:  Complemented incomplete gamma integral
            igami:  Inverse of complemented imcomplete gamma integral
            psi:  Psi (digamma) function
            rgamma:  Reciprocal gamma function

       use Math::Cephes qw(:betas);
             imports

            beta:  Beta function
            incbet:  Incomplete beta integral
            incbi:  Inverse of imcomplete beta integral
            lbeta:  Natural logarithm of |beta|

       use Math::Cephes qw(:elliptics);
             imports

            ellie:  Incomplete elliptic integral of the second kind
            ellik:  Incomplete elliptic integral of the first kind
            ellpe:  Complete elliptic integral of the second kind
            ellpj:  Jacobian Elliptic Functions
            ellpk:  Complete elliptic integral of the first kind

       use Math::Cephes qw(:hypergeometrics);
             imports

            hyp2f0:  Gauss hypergeometric function   F
            hyp2f1:  Gauss hypergeometric function   F
            hyperg:  Confluent hypergeometric function
            onef2:  Hypergeometric function 1F2
            threef0:  Hypergeometric function 3F0

       use Math::Cephes qw(:misc);
             imports

            airy:  Airy function
            bernum: Bernoulli numbers
            dawsn:  Dawson's Integral
            ei: Exponential integral
            erf:  Error function
            erfc:  Complementary error function
            expn:  Exponential integral En
            fresnl:  Fresnel integral
            plancki: Integral of Planck's black body radiation formula
            polylog: Polylogarithm function
            shichi:  Hyperbolic sine and cosine integrals
            sici:  Sine and cosine integrals
            simpson: Simpson's rule to find an integral
            spence:  Dilogarithm
            struve:  Struve function
            vecang: angle between two vectors
            zeta:  Riemann zeta function of two arguments
            zetac:  Riemann zeta function

       use Math::Cephes qw(:fract);
             imports

            new_fract: create a new fraction object
            radd: add two fractions
            rmul: multiply two fractions
            rsub: subtracttwo fractions
            rdiv: divide two fractions
            euclid: finds the greatest common divisor

FUNCTIONS

         A description of the various functions available follows.

       acosh: Inverse hyperbolic cosine
            SYNOPSIS:

            # double x, y, acosh();

            $y = acosh( $x );

            DESCRIPTION:

            Returns inverse hyperbolic cosine of argument.

            If 1 <= x < 1.5, a rational approximation

                   sqrt(z) * P(z)/Q(z)

            where z = x-1, is used.  Otherwise,

            acosh(x)  =  log( x + sqrt( (x-1)(x+1) ).

            ACCURACY:
                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       1,3         30000       4.2e-17     1.1e-17
               IEEE      1,3         30000       4.6e-16     8.7e-17

            ERROR MESSAGES:

              message         condition      value returned
            acosh domain       |x| < 1            NAN

       airy: Airy function
            SYNOPSIS:

            # double x, ai, aiprime, bi, biprime;
            # int airy();

            ($flag, $ai, $aiprime, $bi, $biprime) = airy( $x );

            DESCRIPTION:

            Solution of the differential equation

                   y"(x) = xy.

            The function returns the two independent solutions Ai, Bi
            and their first derivatives Ai'(x), Bi'(x).

            Evaluation is by power series summation for small x,
            by rational minimax approximations for large x.

            ACCURACY:
            Error criterion is absolute when function <= 1, relative
            when function > 1, except * denotes relative error criterion.
            For large negative x, the absolute error increases as x^1.5.
            For large positive x, the relative error increases as x^1.5.

            Arithmetic  domain   function  # trials      peak         rms
            IEEE        -10, 0     Ai        10000       1.6e-15     2.7e-16
            IEEE          0, 10    Ai        10000       2.3e-14*    1.8e-15*
            IEEE        -10, 0     Ai'       10000       4.6e-15     7.6e-16
            IEEE          0, 10    Ai'       10000       1.8e-14*    1.5e-15*
            IEEE        -10, 10    Bi        30000       4.2e-15     5.3e-16
            IEEE        -10, 10    Bi'       30000       4.9e-15     7.3e-16
            DEC         -10, 0     Ai         5000       1.7e-16     2.8e-17
            DEC           0, 10    Ai         5000       2.1e-15*    1.7e-16*
            DEC         -10, 0     Ai'        5000       4.7e-16     7.8e-17
            DEC           0, 10    Ai'       12000       1.8e-15*    1.5e-16*
            DEC         -10, 10    Bi        10000       5.5e-16     6.8e-17
            DEC         -10, 10    Bi'        7000       5.3e-16     8.7e-17

       radian: Degrees, minutes, seconds to radians
            SYNOPSIS:

            # double d, m, s, radian();

            $r = radian( $d, $m, $s );

            DESCRIPTION:

            Converts an angle of degrees, minutes, seconds to radians.

       hypot: returns the hypotenuse associated with the sides of a right triangle
            SYNOPSIS:

            # double a, b, c, hypot();

            $c = hypot( $a, $b );

            DESCRIPTION:

            Calculates the hypotenuse associated with the sides of a
            right triangle, according to

                   c = sqrt( a**2 + b**2)

       asin: Inverse circular sine
            SYNOPSIS:

            # double x, y, asin();

            $y = asin( $x );

            DESCRIPTION:

            Returns radian angle between -pi/2 and +pi/2 whose sine is x.

            A rational function of the form x + x**3 P(x**2)/Q(x**2)
            is used for |x| in the interval [0, 0.5].  If |x| > 0.5 it is
            transformed by the identity

               asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      -1, 1        40000       2.6e-17     7.1e-18
               IEEE     -1, 1        10^6        1.9e-16     5.4e-17

            ERROR MESSAGES:

              message         condition      value returned
            asin domain        |x| > 1           NAN

       acos: Inverse circular cosine
            SYNOPSIS:

            # double x, y, acos();

            $y = acos( $x );

            DESCRIPTION:

            Returns radian angle between 0 and pi whose cosine
            is x.

            Analytically, acos(x) = pi/2 - asin(x).  However if |x| is
            near 1, there is cancellation error in subtracting asin(x)
            from pi/2.  Hence if x < -0.5,

               acos(x) =    pi - 2.0 * asin( sqrt((1+x)/2) );

            or if x > +0.5,

               acos(x) =    2.0 * asin(  sqrt((1-x)/2) ).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -1, 1       50000       3.3e-17     8.2e-18
               IEEE      -1, 1       10^6        2.2e-16     6.5e-17

            ERROR MESSAGES:

              message         condition      value returned
            asin domain        |x| > 1           NAN

       asinh: Inverse hyperbolic sine
            SYNOPSIS:

            # double x, y, asinh();

            $y = asinh( $x );

            DESCRIPTION:

            Returns inverse hyperbolic sine of argument.

            If |x| < 0.5, the function is approximated by a rational
            form  x + x**3 P(x)/Q(x).  Otherwise,

                asinh(x) = log( x + sqrt(1 + x*x) ).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      -3,3         75000       4.6e-17     1.1e-17
               IEEE     -1,1         30000       3.7e-16     7.8e-17
               IEEE      1,3         30000       2.5e-16     6.7e-17

       atan: Inverse circular tangent (arctangent)
            SYNOPSIS:

            # double x, y, atan();

            $y = atan( $x );

            DESCRIPTION:

            Returns radian angle between -pi/2 and +pi/2 whose tangent
            is x.

            Range reduction is from three intervals into the interval
            from zero to 0.66.  The approximant uses a rational
            function of degree 4/5 of the form x + x**3 P(x)/Q(x).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10, 10     50000       2.4e-17     8.3e-18
               IEEE      -10, 10      10^6       1.8e-16     5.0e-17

       atan2: Quadrant correct inverse circular tangent
            SYNOPSIS:

            # double x, y, z, atan2();

            $z = atan2( $y, $x );

            DESCRIPTION:

            Returns radian angle whose tangent is y/x.
            Define compile time symbol ANSIC = 1 for ANSI standard,
            range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
            0 to 2PI, args (x,y).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      -10, 10      10^6       2.5e-16     6.9e-17
            See atan.c.

       atanh: Inverse hyperbolic tangent
            SYNOPSIS:

            # double x, y, atanh();

            $y = atanh( $x );

            DESCRIPTION:

            Returns inverse hyperbolic tangent of argument in the range
            MINLOG to MAXLOG.

            If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
            employed.  Otherwise,
                   atanh(x) = 0.5 * log( (1+x)/(1-x) ).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -1,1        50000       2.4e-17     6.4e-18
               IEEE      -1,1        30000       1.9e-16     5.2e-17

       bdtr: Binomial distribution
            SYNOPSIS:

            # int k, n;
            # double p, y, bdtr();

            $y = bdtr( $k, $n, $p );

            DESCRIPTION:

            Returns the sum of the terms 0 through k of the Binomial
            probability density:

              k
              --  ( n )   j      n-j
              >   (   )  p  (1-p)
              --  ( j )
             j=0

            The terms are not summed directly; instead the incomplete
            beta integral is employed, according to the formula

             y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).

            The arguments must be positive, with p ranging from 0 to 1.

            ACCURACY:

            Tested at random points (a,b,p), with p between 0 and 1.

                          a,b                     Relative error:
            arithmetic  domain     # trials      peak         rms
             For p between 0.001 and 1:
               IEEE     0,100       100000      4.3e-15     2.6e-16
            See also incbet.c.

            ERROR MESSAGES:

              message         condition      value returned
            bdtr domain         k < 0            0.0
                                n < k
                                x < 0, x > 1

       bdtrc: Complemented binomial distribution
            SYNOPSIS:

            # int k, n;
            # double p, y, bdtrc();

            $y = bdtrc( $k, $n, $p );

            DESCRIPTION:

            Returns the sum of the terms k+1 through n of the Binomial
            probability density:

              n
              --  ( n )   j      n-j
              >   (   )  p  (1-p)
              --  ( j )
             j=k+1

            The terms are not summed directly; instead the incomplete
            beta integral is employed, according to the formula

            y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).

            The arguments must be positive, with p ranging from 0 to 1.

            ACCURACY:

            Tested at random points (a,b,p).

                          a,b                     Relative error:
            arithmetic  domain     # trials      peak         rms
             For p between 0.001 and 1:
               IEEE     0,100       100000      6.7e-15     8.2e-16
             For p between 0 and .001:
               IEEE     0,100       100000      1.5e-13     2.7e-15

            ERROR MESSAGES:

              message         condition      value returned
            bdtrc domain      x<0, x>1, n<k       0.0

       bdtri: Inverse binomial distribution
            SYNOPSIS:

            # int k, n;
            # double p, y, bdtri();

            $p = bdtr( $k, $n, $y );

            DESCRIPTION:

            Finds the event probability p such that the sum of the
            terms 0 through k of the Binomial probability density
            is equal to the given cumulative probability y.

            This is accomplished using the inverse beta integral
            function and the relation

            1 - p = incbi( n-k, k+1, y ).

            ACCURACY:

            Tested at random points (a,b,p).

                          a,b                     Relative error:
            arithmetic  domain     # trials      peak         rms
             For p between 0.001 and 1:
               IEEE     0,100       100000      2.3e-14     6.4e-16
               IEEE     0,10000     100000      6.6e-12     1.2e-13
             For p between 10^-6 and 0.001:
               IEEE     0,100       100000      2.0e-12     1.3e-14
               IEEE     0,10000     100000      1.5e-12     3.2e-14
            See also incbi.c.

            ERROR MESSAGES:

              message         condition      value returned
            bdtri domain     k < 0, n <= k         0.0
                             x < 0, x > 1

       beta: Beta function
            SYNOPSIS:

            # double a, b, y, beta();

            $y = beta( $a, $b );

            DESCRIPTION:

                              -     -
                             | (a) | (b)
            beta( a, b )  =  -----------.
                                -
                               | (a+b)

            For large arguments the logarithm of the function is
            evaluated using lgam(), then exponentiated.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC        0,30        1700       7.7e-15     1.5e-15
               IEEE       0,30       30000       8.1e-14     1.1e-14

            ERROR MESSAGES:

              message         condition          value returned
            beta overflow    log(beta) > MAXLOG       0.0
                             a or b <0 integer        0.0

       lbeta: Natural logarithm of |beta|
            SYNOPSIS:

            # double a, b;

            # double lbeta( a, b );

            $y = lbeta( $a, $b);

       btdtr: Beta distribution
            SYNOPSIS:

            # double a, b, x, y, btdtr();

            $y = btdtr( $a, $b, $x );

            DESCRIPTION:

            Returns the area from zero to x under the beta density
            function:

                                     x
                       -             -
                      | (a+b)       | |  a-1      b-1
            P(x)  =  ----------     |   t    (1-t)    dt
                      -     -     | |
                     | (a) | (b)   -
                                    0

            This function is identical to the incomplete beta
            integral function incbet(a, b, x).

            The complemented function is

            1 - P(1-x)  =  incbet( b, a, x );

            ACCURACY:

            See incbet.c.

       cbrt: Cube root
            SYNOPSIS:

            # double x, y, cbrt();

            $y = cbrt( $x );

            DESCRIPTION:

            Returns the cube root of the argument, which may be negative.

            Range reduction involves determining the power of 2 of
            the argument.  A polynomial of degree 2 applied to the
            mantissa, and multiplication by the cube root of 1, 2, or 4
            approximates the root to within about 0.1%.  Then Newton's
            iteration is used three times to converge to an accurate
            result.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC        -10,10     200000      1.8e-17     6.2e-18
               IEEE       0,1e308     30000      1.5e-16     5.0e-17

       chdtr: Chi-square distribution
            SYNOPSIS:

            # double v, x, y, chdtr();

            $y = chdtr( $v, $x );

            DESCRIPTION:

            Returns the area under the left hand tail (from 0 to x)
            of the Chi square probability density function with
            v degrees of freedom.

                                             inf.
                                               -
                                   1          | |  v/2-1  -t/2
             P( x | v )   =   -----------     |   t      e     dt
                               v/2  -       | |
                              2    | (v/2)   -
                                              x

            where x is the Chi-square variable.

            The incomplete gamma integral is used, according to the
            formula

                   y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).

            The arguments must both be positive.

            ACCURACY:

            See igam().

            ERROR MESSAGES:

              message         condition      value returned
            chdtr domain   x < 0 or v < 1        0.0

       chdtrc: Complemented Chi-square distribution
            SYNOPSIS:

            # double v, x, y, chdtrc();

            $y = chdtrc( $v, $x );

            DESCRIPTION:

            Returns the area under the right hand tail (from x to
            infinity) of the Chi square probability density function
            with v degrees of freedom:

                                             inf.
                                               -
                                   1          | |  v/2-1  -t/2
             P( x | v )   =   -----------     |   t      e     dt
                               v/2  -       | |
                              2    | (v/2)   -
                                              x

            where x is the Chi-square variable.

            The incomplete gamma integral is used, according to the
            formula

                   y = chdtrc( v, x ) = igamc( v/2.0, x/2.0 ).

            The arguments must both be positive.

            ACCURACY:

            See igamc().

            ERROR MESSAGES:

              message         condition      value returned
            chdtrc domain  x < 0 or v < 1        0.0

       chdtri: Inverse of complemented Chi-square distribution
            SYNOPSIS:

            # double df, x, y, chdtri();

            $x = chdtri( $df, $y );

            DESCRIPTION:

            Finds the Chi-square argument x such that the integral
            from x to infinity of the Chi-square density is equal
            to the given cumulative probability y.

            This is accomplished using the inverse gamma integral
            function and the relation

               x/2 = igami( df/2, y );

            ACCURACY:

            See igami.c.

            ERROR MESSAGES:

              message         condition      value returned
            chdtri domain   y < 0 or y > 1        0.0
                                v < 1

       clog: Complex natural logarithm
            SYNOPSIS:

            # void clog();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            clog($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            Returns complex logarithm to the base e (2.718...) of
            the complex argument x.

            If z = x + iy, r = sqrt( x**2 + y**2 ),
            then
                  w = log(r) + i arctan(y/x).

            The arctangent ranges from -PI to +PI.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      7000       8.5e-17     1.9e-17
               IEEE      -10,+10     30000       5.0e-15     1.1e-16

            Larger relative error can be observed for z near 1 +i0.
            In IEEE arithmetic the peak absolute error is 5.2e-16, rms
            absolute error 1.0e-16.

       cexp: Complex exponential function
            SYNOPSIS:

            # void cexp();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            cexp($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            Returns the exponential of the complex argument z
            into the complex result w.

            If
                z = x + iy,
                r = exp(x),

            then

                w = r cos y + i r sin y.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      8700       3.7e-17     1.1e-17
               IEEE      -10,+10     30000       3.0e-16     8.7e-17

       csin: Complex circular sine
            SYNOPSIS:

            # void csin();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            csin($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            If
                z = x + iy,

            then

                w = sin x  cosh y  +  i cos x sinh y.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      8400       5.3e-17     1.3e-17
               IEEE      -10,+10     30000       3.8e-16     1.0e-16
            Also tested by csin(casin(z)) = z.

       ccos: Complex circular cosine
            SYNOPSIS:

            # void ccos();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            ccos($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            If
                z = x + iy,

            then

                w = cos x  cosh y  -  i sin x sinh y.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      8400       4.5e-17     1.3e-17
               IEEE      -10,+10     30000       3.8e-16     1.0e-16

       ctan: Complex circular tangent
            SYNOPSIS:

            # void ctan();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            ctan($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            If
                z = x + iy,

            then

                      sin 2x  +  i sinh 2y
                w  =  --------------------.
                       cos 2x  +  cosh 2y

            On the real axis the denominator is zero at odd multiples
            of PI/2.  The denominator is evaluated by its Taylor
            series near these points.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      5200       7.1e-17     1.6e-17
               IEEE      -10,+10     30000       7.2e-16     1.2e-16
            Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.

       ccot: Complex circular cotangent
            SYNOPSIS:

            # void ccot();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            ccot($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            If
                z = x + iy,

            then

                      sin 2x  -  i sinh 2y
                w  =  --------------------.
                       cosh 2y  -  cos 2x

            On the real axis, the denominator has zeros at even
            multiples of PI/2.  Near these points it is evaluated
            by a Taylor series.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      3000       6.5e-17     1.6e-17
               IEEE      -10,+10     30000       9.2e-16     1.2e-16
            Also tested by ctan * ccot = 1 + i0.

       casin: Complex circular arc sine
            SYNOPSIS:

            # void casin();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            casin($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            Inverse complex sine:

                                          2
            w = -i clog( iz + csqrt( 1 - z ) ).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10     10100       2.1e-15     3.4e-16
               IEEE      -10,+10     30000       2.2e-14     2.7e-15
            Larger relative error can be observed for z near zero.
            Also tested by csin(casin(z)) = z.

       cacos: Complex circular arc cosine
            SYNOPSIS:

            # void cacos();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            cacos($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            w = arccos z  =  PI/2 - arcsin z.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      5200      1.6e-15      2.8e-16
               IEEE      -10,+10     30000      1.8e-14      2.2e-15

       catan: Complex circular arc tangent
            SYNOPSIS:

            # void catan();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            catan($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            If
                z = x + iy,

            then
                     1       (    2x     )
            Re w  =  - arctan(-----------)  +  k PI
                     2       (     2    2)
                             (1 - x  - y )

                          ( 2         2)
                     1    (x  +  (y+1) )
            Im w  =  - log(------------)
                     4    ( 2         2)
                          (x  +  (y-1) )

            Where k is an arbitrary integer.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10      5900       1.3e-16     7.8e-18
               IEEE      -10,+10     30000       2.3e-15     8.5e-17
            The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
            had peak relative error 1.5e-16, rms relative error
            2.9e-17.  See also clog().

       csinh: Complex hyperbolic sine
             SYNOPSIS:

             # void csinh();
             # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            csinh($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

             DESCRIPTION:

             csinh z = (cexp(z) - cexp(-z))/2
                     = sinh x * cos y  +  i cosh x * sin y .

             ACCURACY:

                                  Relative error:
             arithmetic   domain     # trials      peak         rms
                IEEE      -10,+10     30000       3.1e-16     8.2e-17

       casinh: Complex inverse hyperbolic sine
             SYNOPSIS:

             # void casinh();
             # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            casinh($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w
            print_new_cmplx($w);                 # prints $w as Re($w) + i Im($w)

             DESCRIPTION:

             casinh z = -i casin iz .

             ACCURACY:

                                  Relative error:
             arithmetic   domain     # trials      peak         rms
                IEEE      -10,+10     30000       1.8e-14     2.6e-15

       ccosh: Complex hyperbolic cosine
             SYNOPSIS:

             # void ccosh();
             # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            ccosh($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

             DESCRIPTION:

             ccosh(z) = cosh x  cos y + i sinh x sin y .

             ACCURACY:

                                  Relative error:
             arithmetic   domain     # trials      peak         rms
                IEEE      -10,+10     30000       2.9e-16     8.1e-17

       cacosh: Complex inverse hyperbolic cosine
             SYNOPSIS:

             # void cacosh();
             # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            cacosh($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

             DESCRIPTION:

             acosh z = i acos z .

             ACCURACY:

                                  Relative error:
             arithmetic   domain     # trials      peak         rms
                IEEE      -10,+10     30000       1.6e-14     2.1e-15

       ctanh: Complex hyperbolic tangent
            SYNOPSIS:

            # void ctanh();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            ctanh($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) .

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      -10,+10     30000       1.7e-14     2.4e-16

       catanh: Complex inverse hyperbolic tangent
             SYNOPSIS:

             # void catanh();
             # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            catanh($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

             DESCRIPTION:

             Inverse tanh, equal to  -i catan (iz);

             ACCURACY:

                                  Relative error:
             arithmetic   domain     # trials      peak         rms
                IEEE      -10,+10     30000       2.3e-16     6.2e-17

       cpow: Complex power function
             SYNOPSIS:

             # void cpow();
             # cmplx a, z, w;

            $a = new_cmplx(5, 6);    # $z = 5 + 6 i
            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            cpow($a, $z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

             DESCRIPTION:

             Raises complex A to the complex Zth power.
             Definition is per AMS55 # 4.2.8,
             analytically equivalent to cpow(a,z) = cexp(z clog(a)).

             ACCURACY:

                                  Relative error:
             arithmetic   domain     # trials      peak         rms
                IEEE      -10,+10     30000       9.4e-15     1.5e-15

       cmplx: Complex number arithmetic
            SYNOPSIS:

            # typedef struct {
            #     double r;     real part
            #     double i;     imaginary part
            #    }cmplx;

            # cmplx *a, *b, *c;

            $a = new_cmplx(3, 5);   # $a = 3 + 5 i
            $b = new_cmplx(2, 3);   # $b = 2 + 3 i
            $c = new_cmplx();

            cadd( $a, $b, $c );  #   c = b + a
            csub( $a, $b, $c );  #   c = b - a
            cmul( $a, $b, $c );  #   c = b * a
            cdiv( $a, $b, $c );  #   c = b / a
            cneg( $c );          #   c = -c
            cmov( $b, $c );      #   c = b

            print $c->{r}, '  ', $c->{i};   # prints real and imaginary parts of $c

            DESCRIPTION:

            Addition:
               c.r  =  b.r + a.r
               c.i  =  b.i + a.i

            Subtraction:
               c.r  =  b.r - a.r
               c.i  =  b.i - a.i

            Multiplication:
               c.r  =  b.r * a.r  -  b.i * a.i
               c.i  =  b.r * a.i  +  b.i * a.r

            Division:
               d    =  a.r * a.r  +  a.i * a.i
               c.r  = (b.r * a.r  + b.i * a.i)/d
               c.i  = (b.i * a.r  -  b.r * a.i)/d
            ACCURACY:

            In DEC arithmetic, the test (1/z) * z = 1 had peak relative
            error 3.1e-17, rms 1.2e-17.  The test (y/z) * (z/y) = 1 had
            peak relative error 8.3e-17, rms 2.1e-17.

            Tests in the rectangle {-10,+10}:
                                 Relative error:
            arithmetic   function  # trials      peak         rms
               DEC        cadd       10000       1.4e-17     3.4e-18
               IEEE       cadd      100000       1.1e-16     2.7e-17
               DEC        csub       10000       1.4e-17     4.5e-18
               IEEE       csub      100000       1.1e-16     3.4e-17
               DEC        cmul        3000       2.3e-17     8.7e-18
               IEEE       cmul      100000       2.1e-16     6.9e-17
               DEC        cdiv       18000       4.9e-17     1.3e-17
               IEEE       cdiv      100000       3.7e-16     1.1e-16

       cabs: Complex absolute value
            SYNOPSIS:

            # double a, cabs();
            # cmplx z;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $a = cabs( $z );

            DESCRIPTION:

            If z = x + iy

            then

                  a = sqrt( x**2 + y**2 ).

            Overflow and underflow are avoided by testing the magnitudes
            of x and y before squaring.  If either is outside half of
            the floating point full scale range, both are rescaled.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -30,+30     30000       3.2e-17     9.2e-18
               IEEE      -10,+10    100000       2.7e-16     6.9e-17

       csqrt: Complex square root
            SYNOPSIS:

            # void csqrt();
            # cmplx z, w;

            $z = new_cmplx(2, 3);    # $z = 2 + 3 i
            $w = new_cmplx();
            csqrt($z, $w );
            print $w->{r}, '  ', $w->{i};  # prints real and imaginary parts of $w

            DESCRIPTION:

            If z = x + iy,  r = |z|, then

                                  1/2
            Im w  =  [ (r - x)/2 ]   ,

            Re w  =  y / 2 Im w.

            Note that -w is also a square root of z.  The root chosen
            is always in the upper half plane.

            Because of the potential for cancellation error in r - x,
            the result is sharpened by doing a Heron iteration
            (see sqrt.c) in complex arithmetic.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -10,+10     25000       3.2e-17     9.6e-18
               IEEE      -10,+10    100000       3.2e-16     7.7e-17

                                   2
            Also tested by csqrt( z ) = z, and tested by arguments
            close to the real axis.

       machconst: Globally declared constants
            SYNOPSIS:

            extern double nameofconstant;

            DESCRIPTION:

            This file contains a number of mathematical constants and
            also some needed size parameters of the computer arithmetic.
            The values are supplied as arrays of hexadecimal integers
            for IEEE arithmetic; arrays of octal constants for DEC
            arithmetic; and in a normal decimal scientific notation for
            other machines.  The particular notation used is determined
            by a symbol (DEC, IBMPC, or UNK) defined in the include file
            mconf.h.

            The default size parameters are as follows.

            For DEC and UNK modes:
            MACHEP =  1.38777878078144567553E-17       2**-56
            MAXLOG =  8.8029691931113054295988E1       log(2**127)
            MINLOG = -8.872283911167299960540E1        log(2**-128)
            MAXNUM =  1.701411834604692317316873e38    2**127

            For IEEE arithmetic (IBMPC):
            MACHEP =  1.11022302462515654042E-16       2**-53
            MAXLOG =  7.09782712893383996843E2         log(2**1024)
            MINLOG = -7.08396418532264106224E2         log(2**-1022)
            MAXNUM =  1.7976931348623158E308           2**1024

            These lists are subject to change.

       cosh: Hyperbolic cosine
            SYNOPSIS:

            # double x, y, cosh();

            $y = cosh( $x );

            DESCRIPTION:

            Returns hyperbolic cosine of argument in the range MINLOG to
            MAXLOG.

            cosh(x)  =  ( exp(x) + exp(-x) )/2.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       +- 88       50000       4.0e-17     7.7e-18
               IEEE     +-MAXLOG     30000       2.6e-16     5.7e-17

            ERROR MESSAGES:

              message         condition      value returned
            cosh overflow    |x| > MAXLOG       MAXNUM

       dawsn: Dawson's Integral
            SYNOPSIS:

            # double x, y, dawsn();

            $y = dawsn( $x );

            DESCRIPTION:

            Approximates the integral

                                        x
                                        -
                                 2     | |        2
             dawsn(x)  =  exp( -x  )   |    exp( t  ) dt
                                     | |
                                      -
                                      0

            Three different rational approximations are employed, for
            the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0,10        10000       6.9e-16     1.0e-16
               DEC       0,10         6000       7.4e-17     1.4e-17

       drand: Pseudorandom number generator
            SYNOPSIS:

            # double y, drand();

            ($flag, $y) = drand( );

            DESCRIPTION:

            Yields a random number 1.0 <= y < 2.0.

            The three-generator congruential algorithm by Brian
            Wichmann and David Hill (BYTE magazine, March, 1987,
            pp 127-8) is used. The period, given by them, is
            6953607871644.

            Versions invoked by the different arithmetic compile
            time options DEC, IBMPC, and MIEEE, produce
            approximately the same sequences, differing only in the
            least significant bits of the numbers. The UNK option
            implements the algorithm as recommended in the BYTE
            article.  It may be used on all computers. However,
            the low order bits of a double precision number may
            not be adequately random, and may vary due to arithmetic
            implementation details on different computers.

            The other compile options generate an additional random
            integer that overwrites the low order bits of the double
            precision number.  This reduces the period by a factor of
            two but tends to overcome the problems mentioned.

       ellie: Incomplete elliptic integral of the second kind
            SYNOPSIS:

            # double phi, m, y, ellie();

            $y = ellie( $phi, $m );

            DESCRIPTION:

            Approximates the integral

                           phi
                            -
                           | |
                           |                   2
            E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
                           |
                         | |
                          -
                           0

            of amplitude phi and modulus m, using the arithmetic -
            geometric mean algorithm.

            ACCURACY:

            Tested at random arguments with phi in [-10, 10] and m in
            [0, 1].
                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC        0,2         2000       1.9e-16     3.4e-17
               IEEE     -10,10      150000       3.3e-15     1.4e-16

       ellik: Incomplete elliptic integral of the first kind
            SYNOPSIS:

            # double phi, m, y, ellik();

            $y = ellik( $phi, $m );

            DESCRIPTION:

            Approximates the integral

                           phi
                            -
                           | |
                           |           dt
            F(phi_\m)  =    |    ------------------
                           |                   2
                         | |    sqrt( 1 - m sin t )
                          -
                           0

            of amplitude phi and modulus m, using the arithmetic -
            geometric mean algorithm.

            ACCURACY:

            Tested at random points with m in [0, 1] and phi as indicated.

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE     -10,10       200000      7.4e-16     1.0e-16

       ellpe: Complete elliptic integral of the second kind
            SYNOPSIS:

            # double m1, y, ellpe();

            $y = ellpe( $m1 );

            DESCRIPTION:

            Approximates the integral

                       pi/2
                        -
                       | |                 2
            E(m)  =    |    sqrt( 1 - m sin t ) dt
                     | |
                      -
                       0

            Where m = 1 - m1, using the approximation

                 P(x)  -  x log x Q(x).

            Though there are no singularities, the argument m1 is used
            rather than m for compatibility with ellpk().

            E(1) = 1; E(0) = pi/2.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC        0, 1       13000       3.1e-17     9.4e-18
               IEEE       0, 1       10000       2.1e-16     7.3e-17

            ERROR MESSAGES:

              message         condition      value returned
            ellpe domain      x<0, x>1            0.0

       ellpj: Jacobian Elliptic Functions
            SYNOPSIS:

            # double u, m, sn, cn, dn, phi;
            # int ellpj();

            ($flag, $sn, $cn, $dn, $phi) = ellpj( $u, $m );

            DESCRIPTION:

            Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
            and dn(u|m) of parameter m between 0 and 1, and real
            argument u.

            These functions are periodic, with quarter-period on the
            real axis equal to the complete elliptic integral
            ellpk(1.0-m).

            Relation to incomplete elliptic integral:
            If u = ellik(phi,m), then sn(u|m) = sin(phi),
            and cn(u|m) = cos(phi).  Phi is called the amplitude of u.

            Computation is by means of the arithmetic-geometric mean
            algorithm, except when m is within 1e-9 of 0 or 1.  In the
            latter case with m close to 1, the approximation applies
            only for phi < pi/2.

            ACCURACY:

            Tested at random points with u between 0 and 10, m between
            0 and 1.

                       Absolute error (* = relative error):
            arithmetic   function   # trials      peak         rms
               DEC       sn           1800       4.5e-16     8.7e-17
               IEEE      phi         10000       9.2e-16*    1.4e-16*
               IEEE      sn          50000       4.1e-15     4.6e-16
               IEEE      cn          40000       3.6e-15     4.4e-16
               IEEE      dn          10000       1.3e-12     1.8e-14

             Peak error observed in consistency check using addition
            theorem for sn(u+v) was 4e-16 (absolute).  Also tested by
            the above relation to the incomplete elliptic integral.
            Accuracy deteriorates when u is large.

       ellpk: Complete elliptic integral of the first kind
            SYNOPSIS:

            # double m1, y, ellpk();

            $y = ellpk( $m1 );

            DESCRIPTION:

            Approximates the integral

                       pi/2
                        -
                       | |
                       |           dt
            K(m)  =    |    ------------------
                       |                   2
                     | |    sqrt( 1 - m sin t )
                      -
                       0

            where m = 1 - m1, using the approximation

                P(x)  -  log x Q(x).

            The argument m1 is used rather than m so that the logarithmic
            singularity at m = 1 will be shifted to the origin; this
            preserves maximum accuracy.

            K(0) = pi/2.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC        0,1        16000       3.5e-17     1.1e-17
               IEEE       0,1        30000       2.5e-16     6.8e-17

            ERROR MESSAGES:

              message         condition      value returned
            ellpk domain       x<0, x>1           0.0

       euclid: Rational arithmetic routines
            SYNOPSIS:

            # typedef struct
            #     {
            #     double n;  numerator
            #     double d;  denominator
            #     }fract;

            $a = new_fract(3, 4);  # a = 3 / 4
            $b = new_fract(2, 3);  # b = 2 / 3
            $c = new_fract();
            radd( $a, $b, $c ); #     c = b + a
            rsub( $a, $b, $c ); #     c = b - a
            rmul( $a, $b, $c ); #     c = b * a
            rdiv( $a, $b, $c ); #     c = b / a
            print $c->{n}, ' ', $c->{d};  # prints numerator and denominator of $c

            ($gcd, $m_reduced, $n_reduced) = euclid($m, $n);
            # returns the greatest common divisor of $m and $n, as well as
            # the result of reducing $m and $n by $gcd

            Arguments of the routines are pointers to the structures.
            The double precision numbers are assumed, without checking,
            to be integer valued.  Overflow conditions are reported.

       exp: Exponential function
            SYNOPSIS:

            # double x, y, exp();

            $y = exp( $x );

            DESCRIPTION:

            Returns e (2.71828...) raised to the x power.

            Range reduction is accomplished by separating the argument
            into an integer k and fraction f such that

                x    k  f
               e  = 2  e.

            A Pade' form  1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
            of degree 2/3 is used to approximate exp(f) in the basic
            interval [-0.5, 0.5].

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       +- 88       50000       2.8e-17     7.0e-18
               IEEE      +- 708      40000       2.0e-16     5.6e-17

            Error amplification in the exponential function can be
            a serious matter.  The error propagation involves
            exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
            which shows that a 1 lsb error in representing X produces
            a relative error of X times 1 lsb in the function.
            While the routine gives an accurate result for arguments
            that are exactly represented by a double precision
            computer number, the result contains amplified roundoff
            error for large arguments not exactly represented.

            ERROR MESSAGES:

              message         condition      value returned
            exp underflow    x < MINLOG         0.0
            exp overflow     x > MAXLOG         INFINITY

       expxx: exp(x*x)
            #  double x, y, expxx();
            # int sign;

              $y = expxx( $x, $sign );

            DESCRIPTION:

             Computes y = exp(x*x) while suppressing error amplification
             that would ordinarily arise from the inexactness of the
             exponential argument x*x.

             If sign < 0, exp(-x*x) is returned.
             If sign > 0, or omitted, exp(x*x) is returned.

            ACCURACY:

                                  Relative error:
            arithmetic    domain     # trials      peak         rms
               IEEE      -26.6, 26.6    10^7       3.9e-16     8.9e-17

       exp10: Base 10 exponential function (Common antilogarithm)
            SYNOPSIS:

            # double x, y, exp10();

            $y = exp10( $x );

            DESCRIPTION:

            Returns 10 raised to the x power.

            Range reduction is accomplished by expressing the argument
            as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
            The Pade' form

               1 + 2x P(x**2)/( Q(x**2) - P(x**2) )

            is used to approximate 10**f.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE     -307,+307    30000       2.2e-16     5.5e-17
            Test result from an earlier version (2.1):
               DEC       -38,+38     70000       3.1e-17     7.0e-18

            ERROR MESSAGES:

              message         condition      value returned
            exp10 underflow    x < -MAXL10        0.0
            exp10 overflow     x > MAXL10       MAXNUM

            DEC arithmetic: MAXL10 = 38.230809449325611792.
            IEEE arithmetic: MAXL10 = 308.2547155599167.

       exp2: Base 2 exponential function
            SYNOPSIS:

            # double x, y, exp2();

            $y = exp2( $x );

            DESCRIPTION:

            Returns 2 raised to the x power.

            Range reduction is accomplished by separating the argument
            into an integer k and fraction f such that
                x    k  f
               2  = 2  2.

            A Pade' form

              1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )

            approximates 2**x in the basic range [-0.5, 0.5].

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE    -1022,+1024   30000       1.8e-16     5.4e-17

            See exp.c for comments on error amplification.

            ERROR MESSAGES:

              message         condition      value returned
            exp underflow    x < -MAXL2        0.0
            exp overflow     x > MAXL2         MAXNUM

            For DEC arithmetic, MAXL2 = 127.
            For IEEE arithmetic, MAXL2 = 1024.

       ei:  Exponential integral
            SYNOPSIS:

            #double x, y, ei();

            $y = ei( $x );

            DESCRIPTION:

                          x
                           -     t
                          | |   e
               Ei(x) =   -|-   ---  dt .
                        | |     t
                         -
                        -inf

            Not defined for x <= 0.
            See also expn.c.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE       0,100       50000      8.6e-16     1.3e-16

       expn:     Exponential integral En
            SYNOPSIS:

            # int n;
            # double x, y, expn();

            $y = expn( $n, $x );

            DESCRIPTION:

            Evaluates the exponential integral

                            inf.
                              -
                             | |   -xt
                             |    e
                 E (x)  =    |    ----  dt.
                  n          |      n
                           | |     t
                            -
                             1

            Both n and x must be nonnegative.

            The routine employs either a power series, a continued
            fraction, or an asymptotic formula depending on the
            relative values of n and x.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 30        5000       2.0e-16     4.6e-17
               IEEE      0, 30       10000       1.7e-15     3.6e-16

       fabs:     Absolute value
            SYNOPSIS:

            # double x, y;

            $y = fabs( $x );

            DESCRIPTION:

            Returns the absolute value of the argument.

       fac: Factorial function
            SYNOPSIS:

            # double y, fac();
            # int i;

            $y = fac( $i );

            DESCRIPTION:

            Returns factorial of i  =  1 * 2 * 3 * ... * i.
            fac(0) = 1.0.

            Due to machine arithmetic bounds the largest value of
            i accepted is 33 in DEC arithmetic or 170 in IEEE
            arithmetic.  Greater values, or negative ones,
            produce an error message and return MAXNUM.

            ACCURACY:

            For i < 34 the values are simply tabulated, and have
            full machine accuracy.  If i > 55, fac(i) = gamma(i+1);
            see gamma.c.

                                 Relative error:
            arithmetic   domain      peak
               IEEE      0, 170    1.4e-15
               DEC       0, 33      1.4e-17

       fdtr: F distribution
            SYNOPSIS:

            # int df1, df2;
            # double x, y, fdtr();

            $y = fdtr( $df1, $df2, $x );

            DESCRIPTION:

            Returns the area from zero to x under the F density
            function (also known as Snedcor's density or the
            variance ratio density).  This is the density
            of x = (u1/df1)/(u2/df2), where u1 and u2 are random
            variables having Chi square distributions with df1
            and df2 degrees of freedom, respectively.

            The incomplete beta integral is used, according to the
            formula

                   P(x) = incbet( df1/2, df2/2, df1*x/(df2 + df1*x) ).

            The arguments a and b are greater than zero, and x is
            nonnegative.

            ACCURACY:

            Tested at random points (a,b,x).

                           x     a,b                     Relative error:
            arithmetic  domain  domain     # trials      peak         rms
               IEEE      0,1    0,100       100000      9.8e-15     1.7e-15
               IEEE      1,5    0,100       100000      6.5e-15     3.5e-16
               IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12
               IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13
            See also incbet.c.

            ERROR MESSAGES:

              message         condition      value returned
            fdtr domain     a<0, b<0, x<0         0.0

       fdtrc: Complemented F distribution
            SYNOPSIS:

            # int df1, df2;
            # double x, y, fdtrc();

            $y = fdtrc( $df1, $df2, $x );

            DESCRIPTION:

            Returns the area from x to infinity under the F density
            function (also known as Snedcor's density or the
            variance ratio density).

                                 inf.
                                  -
                         1       | |  a-1      b-1
            1-P(x)  =  ------    |   t    (1-t)    dt
                       B(a,b)  | |
                                -
                                 x

            The incomplete beta integral is used, according to the
            formula

                   P(x) = incbet( df2/2, df1/2, df2/(df2 + df1*x) ).

            ACCURACY:

            Tested at random points (a,b,x) in the indicated intervals.
                           x     a,b                     Relative error:
            arithmetic  domain  domain     # trials      peak         rms
               IEEE      0,1    1,100       100000      3.7e-14     5.9e-16
               IEEE      1,5    1,100       100000      8.0e-15     1.6e-15
               IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13
               IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12
            See also incbet.c.

            ERROR MESSAGES:

              message         condition      value returned
            fdtrc domain    a<0, b<0, x<0         0.0

       fdtri: Inverse of complemented F distribution
            SYNOPSIS:

            # int df1, df2;
            # double x, p, fdtri();

            $x = fdtri( $df1, $df2, $p );

            DESCRIPTION:

            Finds the F density argument x such that the integral
            from x to infinity of the F density is equal to the
            given probability p.

            This is accomplished using the inverse beta integral
            function and the relations

                 z = incbi( df2/2, df1/2, p )
                 x = df2 (1-z) / (df1 z).

            Note: the following relations hold for the inverse of
            the uncomplemented F distribution:

                 z = incbi( df1/2, df2/2, p )
                 x = df2 z / (df1 (1-z)).

            ACCURACY:

            Tested at random points (a,b,p).

                         a,b                     Relative error:
            arithmetic  domain     # trials      peak         rms
             For p between .001 and 1:
               IEEE     1,100       100000      8.3e-15     4.7e-16
               IEEE     1,10000     100000      2.1e-11     1.4e-13
             For p between 10^-6 and 10^-3:
               IEEE     1,100        50000      1.3e-12     8.4e-15
               IEEE     1,10000      50000      3.0e-12     4.8e-14
            See also fdtrc.c.

            ERROR MESSAGES:

              message         condition      value returned
            fdtri domain   p <= 0 or p > 1       0.0
                                v < 1

       ceil: ceil
            ceil() returns the smallest integer greater than or equal
            to x.  It truncates toward plus infinity.

            SYNOPSIS:

            # double x, y, ceil();

            $y = ceil( $x );

       floor: floor
            floor() returns the largest integer less than or equal to x.
            It truncates toward minus infinity.

            SYNOPSIS:

            # double x, y, floor();

            $y = floor( $x );

       frexp: frexp
            frexp() extracts the exponent from x.  It returns an integer
            power of two to expnt and the significand between 0.5 and 1
            to y.  Thus  x = y * 2**expn.

            SYNOPSIS:

            # double x, y, frexp();
            # int expnt;

            ($y, $expnt)  = frexp( $x );

       ldexp: multiplies x by 2**n.
            SYNOPSIS:

            # double x, y, ldexp();
            # int n;

            $y = ldexp( $x, $n );

       fresnl: Fresnel integral
            SYNOPSIS:

            # double x, S, C;
            # void fresnl();

            ($flag, $S, $C) = fresnl( $x );

            DESCRIPTION:

            Evaluates the Fresnel integrals

                      x
                      -
                     | |
            C(x) =   |   cos(pi/2 t**2) dt,
                   | |
                    -
                     0

                      x
                      -
                     | |
            S(x) =   |   sin(pi/2 t**2) dt.
                   | |
                    -
                     0

            The integrals are evaluated by a power series for x < 1.
            For x >= 1 auxiliary functions f(x) and g(x) are employed
            such that

            C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
            S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )

            ACCURACY:

             Relative error.

            Arithmetic  function   domain     # trials      peak         rms
              IEEE       S(x)      0, 10       10000       2.0e-15     3.2e-16
              IEEE       C(x)      0, 10       10000       1.8e-15     3.3e-16
              DEC        S(x)      0, 10        6000       2.2e-16     3.9e-17
              DEC        C(x)      0, 10        5000       2.3e-16     3.9e-17

       gamma: Gamma function
            SYNOPSIS:

            # double x, y, gamma();
            # extern int sgngam;

            $y = gamma( $x );

            DESCRIPTION:

            Returns gamma function of the argument.  The result is
            correctly signed, and the sign (+1 or -1) is also
            returned in a global (extern) variable named sgngam.
            This variable is also filled in by the logarithmic gamma
            function lgam().

            Arguments |x| <= 34 are reduced by recurrence and the function
            approximated by a rational function of degree 6/7 in the
            interval (2,3).  Large arguments are handled by Stirling's
            formula. Large negative arguments are made positive using
            a reflection formula.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      -34, 34      10000       1.3e-16     2.5e-17
               IEEE    -170,-33      20000       2.3e-15     3.3e-16
               IEEE     -33,  33     20000       9.4e-16     2.2e-16
               IEEE      33, 171.6   20000       2.3e-15     3.2e-16

            Error for arguments outside the test range will be larger
            owing to error amplification by the exponential function.

       lgam: Natural logarithm of gamma function
            SYNOPSIS:

            # double x, y, lgam();
            # extern int sgngam;

            $y = lgam( $x );

            DESCRIPTION:

            Returns the base e (2.718...) logarithm of the absolute
            value of the gamma function of the argument.
            The sign (+1 or -1) of the gamma function is returned in a
            global (extern) variable named sgngam.

            For arguments greater than 13, the logarithm of the gamma
            function is approximated by the logarithmic version of
            Stirling's formula using a polynomial approximation of
            degree 4. Arguments between -33 and +33 are reduced by
            recurrence to the interval [2,3] of a rational approximation.
            The cosecant reflection formula is employed for arguments
            less than -33.

            Arguments greater than MAXLGM return MAXNUM and an error
            message.  MAXLGM = 2.035093e36 for DEC
            arithmetic or 2.556348e305 for IEEE arithmetic.

            ACCURACY:

            arithmetic      domain        # trials     peak         rms
               DEC     0, 3                  7000     5.2e-17     1.3e-17
               DEC     2.718, 2.035e36       5000     3.9e-17     9.9e-18
               IEEE    0, 3                 28000     5.4e-16     1.1e-16
               IEEE    2.718, 2.556e305     40000     3.5e-16     8.3e-17
            The error criterion was relative when the function magnitude
            was greater than one but absolute when it was less than one.

            The following test used the relative error criterion, though
            at certain points the relative error could be much higher than
            indicated.
               IEEE    -200, -4             10000     4.8e-16     1.3e-16

       gdtr: Gamma distribution function
            SYNOPSIS:

            # double a, b, x, y, gdtr();

            $y = gdtr( $a, $b, $x );

            DESCRIPTION:

            Returns the integral from zero to x of the gamma probability
            density function:

                           x
                   b       -
                  a       | |   b-1  -at
            y =  -----    |    t    e    dt
                  -     | |
                 | (b)   -
                          0

             The incomplete gamma integral is used, according to the
            relation

            y = igam( b, ax ).

            ACCURACY:

            See igam().

            ERROR MESSAGES:

              message         condition      value returned
            gdtr domain         x < 0            0.0

       gdtrc: Complemented gamma distribution function
            SYNOPSIS:

            # double a, b, x, y, gdtrc();

            $y = gdtrc( $a, $b, $x );

            DESCRIPTION:

            Returns the integral from x to infinity of the gamma
            probability density function:

                          inf.
                   b       -
                  a       | |   b-1  -at
            y =  -----    |    t    e    dt
                  -     | |
                 | (b)   -
                          x

             The incomplete gamma integral is used, according to the
            relation

            y = igamc( b, ax ).

            ACCURACY:

            See igamc().

            ERROR MESSAGES:

              message         condition      value returned
            gdtrc domain         x < 0            0.0

       hyp2f0: Gauss hypergeometric function  2F0
            SYNOPSIS:

            # double a, b, x, value, *err;
            # int type;    /* determines what converging factor to use */

            ($value, $err) =  hyp2f0( $a, $b, $x, $type )

       hyp2f1: Gauss hypergeometric function  2F1
            SYNOPSIS:

            # double a, b, c, x, y, hyp2f1();

            $y = hyp2f1( $a, $b, $c, $x );

            DESCRIPTION:

             hyp2f1( a, b, c, x )  =   F ( a, b; c; x )
                                      2 1

                      inf.
                       -   a(a+1)...(a+k) b(b+1)...(b+k)   k+1
              =  1 +   >   -----------------------------  x   .
                       -         c(c+1)...(c+k) (k+1)!
                     k = 0

             Cases addressed are
                   Tests and escapes for negative integer a, b, or c
                   Linear transformation if c - a or c - b negative integer
                   Special case c = a or c = b
                   Linear transformation for  x near +1
                   Transformation for x < -0.5
                   Psi function expansion if x > 0.5 and c - a - b integer
                 Conditionally, a recurrence on c to make c-a-b > 0

            |x| > 1 is rejected.

            The parameters a, b, c are considered to be integer
            valued if they are within 1.0e-14 of the nearest integer
            (1.0e-13 for IEEE arithmetic).

            ACCURACY:

                          Relative error (-1 < x < 1):
            arithmetic   domain     # trials      peak         rms
               IEEE      -1,7        230000      1.2e-11     5.2e-14

            Several special cases also tested with a, b, c in
            the range -7 to 7.

            ERROR MESSAGES:

            A "partial loss of precision" message is printed if
            the internally estimated relative error exceeds 1^-12.
            A "singularity" message is printed on overflow or
            in cases not addressed (such as x < -1).

       hyperg: Confluent hypergeometric function
            SYNOPSIS:

            # double a, b, x, y, hyperg();

            $y = hyperg( $a, $b, $x );

            DESCRIPTION:

            Computes the confluent hypergeometric function

                                     1           2
                                  a x    a(a+1) x
              F ( a,b;x )  =  1 + ---- + --------- + ...
             1 1                  b 1!   b(b+1) 2!

            Many higher transcendental functions are special cases of
            this power series.

            As is evident from the formula, b must not be a negative
            integer or zero unless a is an integer with 0 >= a > b.

            The routine attempts both a direct summation of the series
            and an asymptotic expansion.  In each case error due to
            roundoff, cancellation, and nonconvergence is estimated.
            The result with smaller estimated error is returned.

            ACCURACY:

            Tested at random points (a, b, x), all three variables
            ranging from 0 to 30.
                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0,30         2000       1.2e-15     1.3e-16
               IEEE      0,30        30000       1.8e-14     1.1e-15

            Larger errors can be observed when b is near a negative
            integer or zero.  Certain combinations of arguments yield
            serious cancellation error in the power series summation
            and also are not in the region of near convergence of the
            asymptotic series.  An error message is printed if the
            self-estimated relative error is greater than 1.0e-12.

       i0: Modified Bessel function of order zero
            SYNOPSIS:

            # double x, y, i0();

            $y = i0( $x );

            DESCRIPTION:

            Returns modified Bessel function of order zero of the
            argument.

            The function is defined as i0(x) = j0( ix ).

            The range is partitioned into the two intervals [0,8] and
            (8, infinity).  Chebyshev polynomial expansions are employed
            in each interval.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0,30         6000       8.2e-17     1.9e-17
               IEEE      0,30        30000       5.8e-16     1.4e-16

       i0e: Modified Bessel function of order zero, exponentially scaled
            SYNOPSIS:

            # double x, y, i0e();

            $y = i0e( $x );

            DESCRIPTION:

            Returns exponentially scaled modified Bessel function
            of order zero of the argument.

            The function is defined as i0e(x) = exp(-|x|) j0( ix ).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0,30        30000       5.4e-16     1.2e-16
            See i0().

       i1: Modified Bessel function of order one
            SYNOPSIS:

            # double x, y, i1();

            $y = i1( $x );

            DESCRIPTION:

            Returns modified Bessel function of order one of the
            argument.

            The function is defined as i1(x) = -i j1( ix ).

            The range is partitioned into the two intervals [0,8] and
            (8, infinity).  Chebyshev polynomial expansions are employed
            in each interval.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 30        3400       1.2e-16     2.3e-17
               IEEE      0, 30       30000       1.9e-15     2.1e-16

       i1e: Modified Bessel function of order one, exponentially scaled
            SYNOPSIS:

            # double x, y, i1e();

            $y = i1e( $x );

            DESCRIPTION:

            Returns exponentially scaled modified Bessel function
            of order one of the argument.

            The function is defined as i1(x) = -i exp(-|x|) j1( ix ).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0, 30       30000       2.0e-15     2.0e-16
            See i1().

       igam: Incomplete gamma integral
            SYNOPSIS:

            # double a, x, y, igam();

            $y = igam( $a, $x );

            DESCRIPTION:

            The function is defined by

                                      x
                                       -
                              1       | |  -t  a-1
             igam(a,x)  =   -----     |   e   t   dt.
                             -      | |
                            | (a)    -
                                      0

            In this implementation both arguments must be positive.
            The integral is evaluated by either a power series or
            continued fraction expansion, depending on the relative
            values of a and x.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0,30       200000       3.6e-14     2.9e-15
               IEEE      0,100      300000       9.9e-14     1.5e-14

       igamc: Complemented incomplete gamma integral
            SYNOPSIS:

            # double a, x, y, igamc();

            $y = igamc( $a, $x );

            DESCRIPTION:

            The function is defined by

             igamc(a,x)   =   1 - igam(a,x)

                                       inf.
                                         -
                                1       | |  -t  a-1
                          =   -----     |   e   t   dt.
                               -      | |
                              | (a)    -
                                        x

            In this implementation both arguments must be positive.
            The integral is evaluated by either a power series or
            continued fraction expansion, depending on the relative
            values of a and x.

            ACCURACY:

            Tested at random a, x.
                           a         x                      Relative error:
            arithmetic   domain   domain     # trials      peak         rms
               IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15
               IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15

       igami: Inverse of complemented imcomplete gamma integral
            SYNOPSIS:

            # double a, x, p, igami();

            $x = igami( $a, $p );

            DESCRIPTION:

            Given p, the function finds x such that

             igamc( a, x ) = p.

            It is valid in the right-hand tail of the distribution, p < 0.5.
            Starting with the approximate value

                    3
             x = a t

             where

             t = 1 - d - ndtri(p) sqrt(d)

            and

             d = 1/9a,

            the routine performs up to 10 Newton iterations to find the
            root of igamc(a,x) - p = 0.

            ACCURACY:

            Tested at random a, p in the intervals indicated.

                           a        p                      Relative error:
            arithmetic   domain   domain     # trials      peak         rms
               IEEE     0.5,100   0,0.5       100000       1.0e-14     1.7e-15
               IEEE     0.01,0.5  0,0.5       100000       9.0e-14     3.4e-15
               IEEE    0.5,10000  0,0.5        20000       2.3e-13     3.8e-14

       incbet: Incomplete beta integral
            SYNOPSIS:

            # double a, b, x, y, incbet();

            $y = incbet( $a, $b, $x );

            DESCRIPTION:

            Returns incomplete beta integral of the arguments, evaluated
            from zero to x.  The function is defined as

                             x
                -            -
               | (a+b)      | |  a-1     b-1
             -----------    |   t   (1-t)   dt.
              -     -     | |
             | (a) | (b)   -
                            0

            The domain of definition is 0 <= x <= 1.  In this
            implementation a and b are restricted to positive values.
            The integral from x to 1 may be obtained by the symmetry
            relation

               1 - incbet( a, b, x )  =  incbet( b, a, 1-x ).

            The integral is evaluated by a continued fraction expansion
            or, when b*x is small, by a power series.

            ACCURACY:

            Tested at uniformly distributed random points (a,b,x) with a and b
            in "domain" and x between 0 and 1.
                                                   Relative error
            arithmetic   domain     # trials      peak         rms
               IEEE      0,5         10000       6.9e-15     4.5e-16
               IEEE      0,85       250000       2.2e-13     1.7e-14
               IEEE      0,1000      30000       5.3e-12     6.3e-13
               IEEE      0,10000    250000       9.3e-11     7.1e-12
               IEEE      0,100000    10000       8.7e-10     4.8e-11
            Outputs smaller than the IEEE gradual underflow threshold
            were excluded from these statistics.

            ERROR MESSAGES:
              message         condition      value returned
            incbet domain      x<0, x>1          0.0
            incbet underflow                     0.0

       incbi: Inverse of imcomplete beta integral
            SYNOPSIS:

            # double a, b, x, y, incbi();

            $x = incbi( $a, $b, $y );

            DESCRIPTION:

            Given y, the function finds x such that

             incbet( a, b, x ) = y .

            The routine performs interval halving or Newton iterations to find the
            root of incbet(a,b,x) - y = 0.

            ACCURACY:

                                 Relative error:
                           x     a,b
            arithmetic   domain  domain  # trials    peak       rms
               IEEE      0,1    .5,10000   50000    5.8e-12   1.3e-13
               IEEE      0,1   .25,100    100000    1.8e-13   3.9e-15
               IEEE      0,1     0,5       50000    1.1e-12   5.5e-15
               VAX       0,1    .5,100     25000    3.5e-14   1.1e-15
            With a and b constrained to half-integer or integer values:
               IEEE      0,1    .5,10000   50000    5.8e-12   1.1e-13
               IEEE      0,1    .5,100    100000    1.7e-14   7.9e-16
            With a = .5, b constrained to half-integer or integer values:
               IEEE      0,1    .5,10000   10000    8.3e-11   1.0e-11

       iv: Modified Bessel function of noninteger order
            SYNOPSIS:

            # double v, x, y, iv();

            $y = iv( $v, $x );

            DESCRIPTION:

            Returns modified Bessel function of order v of the
            argument.  If x is negative, v must be integer valued.

            The function is defined as Iv(x) = Jv( ix ).  It is
            here computed in terms of the confluent hypergeometric
            function, according to the formula

                         v  -x
            Iv(x) = (x/2)  e   hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)

            If v is a negative integer, then v is replaced by -v.

            ACCURACY:

            Tested at random points (v, x), with v between 0 and
            30, x between 0 and 28.
                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0,30          2000      3.1e-15     5.4e-16
               IEEE      0,30         10000      1.7e-14     2.7e-15

            Accuracy is diminished if v is near a negative integer.

            See also hyperg.c.

       j0: Bessel function of order zero
            SYNOPSIS:

            # double x, y, j0();

            $y = j0( $x );

            DESCRIPTION:

            Returns Bessel function of order zero of the argument.

            The domain is divided into the intervals [0, 5] and
            (5, infinity). In the first interval the following rational
            approximation is used:

                   2         2
            (w - r  ) (w - r  ) P (w) / Q (w)
                  1         2    3       8

                       2
            where w = x  and the two r's are zeros of the function.

            In the second interval, the Hankel asymptotic expansion
            is employed with two rational functions of degree 6/6
            and 7/7.

            ACCURACY:

                                 Absolute error:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 30       10000       4.4e-17     6.3e-18
               IEEE      0, 30       60000       4.2e-16     1.1e-16

       y0: Bessel function of the second kind, order zero
            SYNOPSIS:

            # double x, y, y0();

            $y = y0( $x );

            DESCRIPTION:

            Returns Bessel function of the second kind, of order
            zero, of the argument.

            The domain is divided into the intervals [0, 5] and
            (5, infinity). In the first interval a rational approximation
            R(x) is employed to compute
              y0(x)  = R(x)  +   2 * log(x) * j0(x) / PI.
            Thus a call to j0() is required.

            In the second interval, the Hankel asymptotic expansion
            is employed with two rational functions of degree 6/6
            and 7/7.

            ACCURACY:

             Absolute error, when y0(x) < 1; else relative error:

            arithmetic   domain     # trials      peak         rms
               DEC       0, 30        9400       7.0e-17     7.9e-18
               IEEE      0, 30       30000       1.3e-15     1.6e-16

       j1: Bessel function of order one
            SYNOPSIS:

            # double x, y, j1();

            $y = j1( $x );

            DESCRIPTION:

            Returns Bessel function of order one of the argument.

            The domain is divided into the intervals [0, 8] and
            (8, infinity). In the first interval a 24 term Chebyshev
            expansion is used. In the second, the asymptotic
            trigonometric representation is employed using two
            rational functions of degree 5/5.

            ACCURACY:

                                 Absolute error:
            arithmetic   domain      # trials      peak         rms
               DEC       0, 30       10000       4.0e-17     1.1e-17
               IEEE      0, 30       30000       2.6e-16     1.1e-16

       y1: Bessel function of second kind of order one
            SYNOPSIS:

            # double x, y, y1();

            $y = y1( $x );

            DESCRIPTION:

            Returns Bessel function of the second kind of order one
            of the argument.

            The domain is divided into the intervals [0, 8] and
            (8, infinity). In the first interval a 25 term Chebyshev
            expansion is used, and a call to j1() is required.
            In the second, the asymptotic trigonometric representation
            is employed using two rational functions of degree 5/5.

            ACCURACY:

                                 Absolute error:
            arithmetic   domain      # trials      peak         rms
               DEC       0, 30       10000       8.6e-17     1.3e-17
               IEEE      0, 30       30000       1.0e-15     1.3e-16

            (error criterion relative when |y1| > 1).

       jn: Bessel function of integer order
            SYNOPSIS:

            # int n;
            # double x, y, jn();

            $y = jn( $n, $x );

            DESCRIPTION:

            Returns Bessel function of order n, where n is a
            (possibly negative) integer.

            The ratio of jn(x) to j0(x) is computed by backward
            recurrence.  First the ratio jn/jn-1 is found by a
            continued fraction expansion.  Then the recurrence
            relating successive orders is applied until j0 or j1 is
            reached.

            If n = 0 or 1 the routine for j0 or j1 is called
            directly.

            ACCURACY:

                                 Absolute error:
            arithmetic   range      # trials      peak         rms
               DEC       0, 30        5500       6.9e-17     9.3e-18
               IEEE      0, 30        5000       4.4e-16     7.9e-17

            Not suitable for large n or x. Use jv() instead.

       jv: Bessel function of noninteger order
            SYNOPSIS:

            # double v, x, y, jv();

            $y = jv( $v, $x );

            DESCRIPTION:

            Returns Bessel function of order v of the argument,
            where v is real.  Negative x is allowed if v is an integer.

            Several expansions are included: the ascending power
            series, the Hankel expansion, and two transitional
            expansions for large v.  If v is not too large, it
            is reduced by recurrence to a region of best accuracy.
            The transitional expansions give 12D accuracy for v > 500.

            ACCURACY:

            Results for integer v are indicated by *, where x and v
            both vary from -125 to +125.  Otherwise,
            x ranges from 0 to 125, v ranges as indicated by "domain."
            Error criterion is absolute, except relative when |jv()| > 1.

            arithmetic  v domain  x domain    # trials      peak       rms
               IEEE      0,125     0,125      100000      4.6e-15    2.2e-16
               IEEE   -125,0       0,125       40000      5.4e-11    3.7e-13
               IEEE      0,500     0,500       20000      4.4e-15    4.0e-16
            Integer v:
               IEEE   -125,125   -125,125      50000      3.5e-15*   1.9e-16*

       k0: Modified Bessel function, third kind, order zero
            SYNOPSIS:

            # double x, y, k0();

            $y = k0( $x );

            DESCRIPTION:

            Returns modified Bessel function of the third kind
            of order zero of the argument.

            The range is partitioned into the two intervals [0,8] and
            (8, infinity).  Chebyshev polynomial expansions are employed
            in each interval.

            ACCURACY:

            Tested at 2000 random points between 0 and 8.  Peak absolute
            error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 30        3100       1.3e-16     2.1e-17
               IEEE      0, 30       30000       1.2e-15     1.6e-16

            ERROR MESSAGES:

              message         condition      value returned
             K0 domain          x <= 0          MAXNUM

       k0e: Modified Bessel function, third kind, order zero, exponentially scaled
            SYNOPSIS:

            # double x, y, k0e();

            $y = k0e( $x );

            DESCRIPTION:

            Returns exponentially scaled modified Bessel function
            of the third kind of order zero of the argument.

                 k0e(x) = exp(x) * k0(x).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0, 30       30000       1.4e-15     1.4e-16
            See k0().

       k1: Modified Bessel function, third kind, order one
            SYNOPSIS:

            # double x, y, k1();

            $y = k1( $x );

            DESCRIPTION:

            Computes the modified Bessel function of the third kind
            of order one of the argument.

            The range is partitioned into the two intervals [0,2] and
            (2, infinity).  Chebyshev polynomial expansions are employed
            in each interval.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 30        3300       8.9e-17     2.2e-17
               IEEE      0, 30       30000       1.2e-15     1.6e-16

            ERROR MESSAGES:

              message         condition      value returned
            k1 domain          x <= 0          MAXNUM

       k1e: Modified Bessel function, third kind, order one, exponentially scaled
            SYNOPSIS:

            # double x, y, k1e();

            $y = k1e( $x );

            DESCRIPTION:

            Returns exponentially scaled modified Bessel function
            of the third kind of order one of the argument:

                 k1e(x) = exp(x) * k1(x).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0, 30       30000       7.8e-16     1.2e-16
            See k1().

       kn: Modified Bessel function, third kind, integer order
            SYNOPSIS:

            # double x, y, kn();
            # int n;

            $y = kn( $n, $x );

            DESCRIPTION:

            Returns modified Bessel function of the third kind
            of order n of the argument.

            The range is partitioned into the two intervals [0,9.55] and
            (9.55, infinity).  An ascending power series is used in the
            low range, and an asymptotic expansion in the high range.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0,30         3000       1.3e-9      5.8e-11
               IEEE      0,30        90000       1.8e-8      3.0e-10

             Error is high only near the crossover point x = 9.55
            between the two expansions used.

       log: Natural logarithm
            SYNOPSIS:

            # double x, y, log();

            $y = log( $x );

            DESCRIPTION:

            Returns the base e (2.718...) logarithm of x.

            The argument is separated into its exponent and fractional
            parts.  If the exponent is between -1 and +1, the logarithm
            of the fraction is approximated by

                log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).

            Otherwise, setting  z = 2(x-1)/x+1),

                log(x) = z + z**3 P(z)/Q(z).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0.5, 2.0    150000      1.44e-16    5.06e-17
               IEEE      +-MAXNUM    30000       1.20e-16    4.78e-17
               DEC       0, 10       170000      1.8e-17     6.3e-18

            In the tests over the interval [+-MAXNUM], the logarithms
            of the random arguments were uniformly distributed over
            [0, MAXLOG].

            ERROR MESSAGES:

            log singularity:  x = 0; returns -INFINITY
            log domain:       x < 0; returns NAN

       log10: Common logarithm
            SYNOPSIS:

            # double x, y, log10();

            $y = log10( $x );

            DESCRIPTION:

            Returns logarithm to the base 10 of x.

            The argument is separated into its exponent and fractional
            parts.  The logarithm of the fraction is approximated by

                log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0.5, 2.0     30000      1.5e-16     5.0e-17
               IEEE      0, MAXNUM    30000      1.4e-16     4.8e-17
               DEC       1, MAXNUM    50000      2.5e-17     6.0e-18

            In the tests over the interval [1, MAXNUM], the logarithms
            of the random arguments were uniformly distributed over
            [0, MAXLOG].

            ERROR MESSAGES:

            log10 singularity:  x = 0; returns -INFINITY
            log10 domain:       x < 0; returns NAN

       log2: Base 2 logarithm
            SYNOPSIS:

            # double x, y, log2();

            $y = log2( $x );

            DESCRIPTION:

            Returns the base 2 logarithm of x.

            The argument is separated into its exponent and fractional
            parts.  If the exponent is between -1 and +1, the base e
            logarithm of the fraction is approximated by

                log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).

            Otherwise, setting  z = 2(x-1)/x+1),

                log(x) = z + z**3 P(z)/Q(z).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0.5, 2.0    30000       2.0e-16     5.5e-17
               IEEE      exp(+-700)  40000       1.3e-16     4.6e-17

            In the tests over the interval [exp(+-700)], the logarithms
            of the random arguments were uniformly distributed.

            ERROR MESSAGES:

            log2 singularity:  x = 0; returns -INFINITY
            log2 domain:       x < 0; returns NAN

       lrand: Pseudorandom number generator
            SYNOPSIS:

            long y, lrand();

            $y = lrand( );

            DESCRIPTION:

            Yields a long integer random number.

            The three-generator congruential algorithm by Brian
            Wichmann and David Hill (BYTE magazine, March, 1987,
            pp 127-8) is used. The period, given by them, is
            6953607871644.

       lsqrt: Integer square root
            SYNOPSIS:

            long x, y;
            long lsqrt();

            $y = lsqrt( $x );

            DESCRIPTION:

            Returns a long integer square root of the long integer
            argument.  The computation is by binary long division.

            The largest possible result is lsqrt(2,147,483,647)
            = 46341.

            If x < 0, the square root of |x| is returned, and an
            error message is printed.

            ACCURACY:

            An extra, roundoff, bit is computed; hence the result
            is the nearest integer to the actual square root.
            NOTE: only DEC arithmetic is currently supported.

       mtherr: Library common error handling routine
            SYNOPSIS:

            char *fctnam;
            # int code;
            # int mtherr();

            mtherr( $fctnam, $code );

            DESCRIPTION:

            This routine may be called to report one of the following
            error conditions (in the include file mconf.h).

              Mnemonic        Value          Significance

               DOMAIN            1       argument domain error
               SING              2       function singularity
               OVERFLOW          3       overflow range error
               UNDERFLOW         4       underflow range error
               TLOSS             5       total loss of precision
               PLOSS             6       partial loss of precision
               EDOM             33       Unix domain error code
               ERANGE           34       Unix range error code

            The default version of the file prints the function name,
            passed to it by the pointer fctnam, followed by the
            error condition.  The display is directed to the standard
            output device.  The routine then returns to the calling
            program.  Users may wish to modify the program to abort by
            calling exit() under severe error conditions such as domain
            errors.

            Since all error conditions pass control to this function,
            the display may be easily changed, eliminated, or directed
            to an error logging device.

            SEE ALSO: mconf.h

       nbdtr: Negative binomial distribution
            SYNOPSIS:

            # int k, n;
            # double p, y, nbdtr();

            $y = nbdtr( $k, $n, $p );

            DESCRIPTION:

            Returns the sum of the terms 0 through k of the negative
            binomial distribution:

              k
              --  ( n+j-1 )   n      j
              >   (       )  p  (1-p)
              --  (   j   )
             j=0

            In a sequence of Bernoulli trials, this is the probability
            that k or fewer failures precede the nth success.

            The terms are not computed individually; instead the incomplete
            beta integral is employed, according to the formula

            y = nbdtr( k, n, p ) = incbet( n, k+1, p ).

            The arguments must be positive, with p ranging from 0 to 1.

            ACCURACY:

            Tested at random points (a,b,p), with p between 0 and 1.

                          a,b                     Relative error:
            arithmetic  domain     # trials      peak         rms
               IEEE     0,100       100000      1.7e-13     8.8e-15
            See also incbet.c.

       nbdtrc: Complemented negative binomial distribution
            SYNOPSIS:

            # int k, n;
            # double p, y, nbdtrc();

            $y = nbdtrc( $k, $n, $p );

            DESCRIPTION:

            Returns the sum of the terms k+1 to infinity of the negative
            binomial distribution:

              inf
              --  ( n+j-1 )   n      j
              >   (       )  p  (1-p)
              --  (   j   )
             j=k+1

            The terms are not computed individually; instead the incomplete
            beta integral is employed, according to the formula

            y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).

            The arguments must be positive, with p ranging from 0 to 1.

            ACCURACY:

            Tested at random points (a,b,p), with p between 0 and 1.

                          a,b                     Relative error:
            arithmetic  domain     # trials      peak         rms
               IEEE     0,100       100000      1.7e-13     8.8e-15
            See also incbet.c.

       nbdtrc: Complemented negative binomial distribution
            SYNOPSIS:

            # int k, n;
            # double p, y, nbdtrc();

            $y = nbdtrc( $k, $n, $p );

            DESCRIPTION:

            Returns the sum of the terms k+1 to infinity of the negative
            binomial distribution:

              inf
              --  ( n+j-1 )   n      j
              >   (       )  p  (1-p)
              --  (   j   )
             j=k+1

            The terms are not computed individually; instead the incomplete
            beta integral is employed, according to the formula

            y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).

            The arguments must be positive, with p ranging from 0 to 1.

            ACCURACY:

            See incbet.c.

       nbdtri: Functional inverse of negative binomial distribution
            SYNOPSIS:

            # int k, n;
            # double p, y, nbdtri();

            $p = nbdtri( $k, $n, $y );

            DESCRIPTION:

            Finds the argument p such that nbdtr(k,n,p) is equal to y.

            ACCURACY:

            Tested at random points (a,b,y), with y between 0 and 1.

                          a,b                     Relative error:
            arithmetic  domain     # trials      peak         rms
               IEEE     0,100       100000      1.5e-14     8.5e-16
            See also incbi.c.

       ndtr: Normal distribution function
            SYNOPSIS:

            # double x, y, ndtr();

            $y = ndtr( $x );

            DESCRIPTION:

            Returns the area under the Gaussian probability density
            function, integrated from minus infinity to x:

                                       x
                                        -
                              1        | |          2
               ndtr(x)  = ---------    |    exp( - t /2 ) dt
                          sqrt(2pi)  | |
                                      -
                                     -inf.

                        =  ( 1 + erf(z) ) / 2

            where z = x/sqrt(2). Computation is via the functions
            erf and erfc.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      -13,0         8000       2.1e-15     4.8e-16
               IEEE     -13,0        30000       3.4e-14     6.7e-15

            ERROR MESSAGES:

              message         condition         value returned
            erfc underflow    x > 37.519379347       0.0

       erf: Error function
            SYNOPSIS:

            # double x, y, erf();

            $y = erf( $x );

            DESCRIPTION:

            The integral is

                                      x
                                       -
                            2         | |          2
              erf(x)  =  --------     |    exp( - t  ) dt.
                         sqrt(pi)   | |
                                     -
                                      0

            The magnitude of x is limited to 9.231948545 for DEC
            arithmetic; 1 or -1 is returned outside this range.

            For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
            erf(x) = 1 - erfc(x).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0,1         14000       4.7e-17     1.5e-17
               IEEE      0,1         30000       3.7e-16     1.0e-16

       erfc: Complementary error function
            SYNOPSIS:

            # double x, y, erfc();

            $y = erfc( $x );

            DESCRIPTION:

             1 - erf(x) =

                                      inf.
                                        -
                             2         | |          2
              erfc(x)  =  --------     |    exp( - t  ) dt
                          sqrt(pi)   | |
                                      -
                                       x

            For small x, erfc(x) = 1 - erf(x); otherwise rational
            approximations are computed.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 9.2319   12000       5.1e-16     1.2e-16
               IEEE      0,26.6417   30000       5.7e-14     1.5e-14

            ERROR MESSAGES:

              message         condition              value returned
            erfc underflow    x > 9.231948545 (DEC)       0.0

       ndtri: Inverse of Normal distribution function
            SYNOPSIS:

            # double x, y, ndtri();

            $x = ndtri( $y );

            DESCRIPTION:

            Returns the argument, x, for which the area under the
            Gaussian probability density function (integrated from
            minus infinity to x) is equal to y.

            For small arguments 0 < y < exp(-2), the program computes
            z = sqrt( -2.0 * log(y) );  then the approximation is
            x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
            There are two rational functions P/Q, one for 0 < y < exp(-32)
            and the other for y up to exp(-2).  For larger arguments,
            w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).

            ACCURACY:

                                 Relative error:
            arithmetic   domain        # trials      peak         rms
               DEC      0.125, 1         5500       9.5e-17     2.1e-17
               DEC      6e-39, 0.135     3500       5.7e-17     1.3e-17
               IEEE     0.125, 1        20000       7.2e-16     1.3e-16
               IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17

            ERROR MESSAGES:

              message         condition    value returned
            ndtri domain       x <= 0        -MAXNUM
            ndtri domain       x >= 1         MAXNUM

       pdtr: Poisson distribution
            SYNOPSIS:

            # int k;
            # double m, y, pdtr();

            $y = pdtr( $k, $m );

            DESCRIPTION:

            Returns the sum of the first k terms of the Poisson
            distribution:

              k         j
              --   -m  m
              >   e    --
              --       j!
             j=0

            The terms are not summed directly; instead the incomplete
            gamma integral is employed, according to the relation

            y = pdtr( k, m ) = igamc( k+1, m ).

            The arguments must both be positive.

            ACCURACY:

            See igamc().

       pdtrc: Complemented poisson distribution
            SYNOPSIS:

            # int k;
            # double m, y, pdtrc();

            $y = pdtrc( $k, $m );

            DESCRIPTION:

            Returns the sum of the terms k+1 to infinity of the Poisson
            distribution:

             inf.       j
              --   -m  m
              >   e    --
              --       j!
             j=k+1

            The terms are not summed directly; instead the incomplete
            gamma integral is employed, according to the formula

            y = pdtrc( k, m ) = igam( k+1, m ).

            The arguments must both be positive.

            ACCURACY:

            See igam.c.

       pdtri: Inverse Poisson distribution
            SYNOPSIS:

            # int k;
            # double m, y, pdtr();

            $m = pdtri( $k, $y );

            DESCRIPTION:

            Finds the Poisson variable x such that the integral
            from 0 to x of the Poisson density is equal to the
            given probability y.

            This is accomplished using the inverse gamma integral
            function and the relation

               m = igami( k+1, y ).

            ACCURACY:

            See igami.c.

            ERROR MESSAGES:

              message         condition      value returned
            pdtri domain    y < 0 or y >= 1       0.0
                                k < 0

       pow: Power function
            SYNOPSIS:

            # double x, y, z, pow();

            $z = pow( $x, $y );

            DESCRIPTION:

            Computes x raised to the yth power.  Analytically,

                 x**y  =  exp( y log(x) ).

            Following Cody and Waite, this program uses a lookup table
            of 2**-i/16 and pseudo extended precision arithmetic to
            obtain an extra three bits of accuracy in both the logarithm
            and the exponential.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE     -26,26       30000      4.2e-16      7.7e-17
               DEC      -26,26       60000      4.8e-17      9.1e-18
            1/26 < x < 26, with log(x) uniformly distributed.
            -26 < y < 26, y uniformly distributed.
               IEEE     0,8700       30000      1.5e-14      2.1e-15
            0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.

            ERROR MESSAGES:

              message         condition      value returned
            pow overflow     x**y > MAXNUM      INFINITY
            pow underflow   x**y < 1/MAXNUM       0.0
            pow domain      x<0 and y noninteger  0.0

       powi: Real raised to integer power
            SYNOPSIS:

            # double x, y, powi();
            # int n;

            $y = powi( $x, $n );

            DESCRIPTION:

            Returns argument x raised to the nth power.
            The routine efficiently decomposes n as a sum of powers of
            two. The desired power is a product of two-to-the-kth
            powers of x.  Thus to compute the 32767 power of x requires
            28 multiplications instead of 32767 multiplications.

            ACCURACY:

                                 Relative error:
            arithmetic   x domain   n domain  # trials      peak         rms
               DEC       .04,26     -26,26    100000       2.7e-16     4.3e-17
               IEEE      .04,26     -26,26     50000       2.0e-15     3.8e-16
               IEEE        1,2    -1022,1023   50000       8.6e-14     1.6e-14

            Returns MAXNUM on overflow, zero on underflow.

       psi: Psi (digamma) function
            SYNOPSIS:

            # double x, y, psi();

            $y = psi( $x );

            DESCRIPTION:

                         d      -
              psi(x)  =  -- ln | (x)
                         dx

            is the logarithmic derivative of the gamma function.
            For integer x,
                              n-1
                               -
            psi(n) = -EUL  +   >  1/k.
                               -
                              k=1

            This formula is used for 0 < n <= 10.  If x is negative, it
            is transformed to a positive argument by the reflection
            formula  psi(1-x) = psi(x) + pi cot(pi x).
            For general positive x, the argument is made greater than 10
            using the recurrence  psi(x+1) = psi(x) + 1/x.
            Then the following asymptotic expansion is applied:

                                      inf.   B
                                       -      2k
            psi(x) = log(x) - 1/2x -   >   -------
                                       -        2k
                                      k=1   2k x

            where the B2k are Bernoulli numbers.

            ACCURACY:
               Relative error (except absolute when |psi| < 1):
            arithmetic   domain     # trials      peak         rms
               DEC       0,30         2500       1.7e-16     2.0e-17
               IEEE      0,30        30000       1.3e-15     1.4e-16
               IEEE      -30,0       40000       1.5e-15     2.2e-16

            ERROR MESSAGES:
                message         condition      value returned
            psi singularity    x integer <=0      MAXNUM

       rgamma: Reciprocal gamma function
            SYNOPSIS:

            # double x, y, rgamma();

            $y = rgamma( $x );

            DESCRIPTION:

            Returns one divided by the gamma function of the argument.

            The function is approximated by a Chebyshev expansion in
            the interval [0,1].  Range reduction is by recurrence
            for arguments between -34.034 and +34.84425627277176174.
            1/MAXNUM is returned for positive arguments outside this
            range.  For arguments less than -34.034 the cosecant
            reflection formula is applied; lograrithms are employed
            to avoid unnecessary overflow.

            The reciprocal gamma function has no singularities,
            but overflow and underflow may occur for large arguments.
            These conditions return either MAXNUM or 1/MAXNUM with
            appropriate sign.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      -30,+30       4000       1.2e-16     1.8e-17
               IEEE     -30,+30      30000       1.1e-15     2.0e-16
            For arguments less than -34.034 the peak error is on the
            order of 5e-15 (DEC), excepting overflow or underflow.

       round: Round double to nearest or even integer valued double
            SYNOPSIS:

            # double x, y, round();

            $y = round( $x );

            DESCRIPTION:

            Returns the nearest integer to x as a double precision
            floating point result.  If x ends in 0.5 exactly, the
            nearest even integer is chosen.

            ACCURACY:

            If x is greater than 1/(2*MACHEP), its closest machine
            representation is already an integer, so rounding does
            not change it.

       shichi: Hyperbolic sine and cosine integrals
            SYNOPSIS:

            # double x, Chi, Shi, shichi();

            ($flag, $Shi, $Chi) = shichi( $x );

            DESCRIPTION:

            Approximates the integrals

                                       x
                                       -
                                      | |   cosh t - 1
              Chi(x) = eul + ln x +   |    -----------  dt,
                                    | |          t
                                     -
                                     0

                          x
                          -
                         | |  sinh t
              Shi(x) =   |    ------  dt
                       | |       t
                        -
                        0

            where eul = 0.57721566490153286061 is Euler's constant.
            The integrals are evaluated by power series for x < 8
            and by Chebyshev expansions for x between 8 and 88.
            For large x, both functions approach exp(x)/2x.
            Arguments greater than 88 in magnitude return MAXNUM.

            ACCURACY:

            Test interval 0 to 88.
                                 Relative error:
            arithmetic   function  # trials      peak         rms
               DEC          Shi       3000       9.1e-17
               IEEE         Shi      30000       6.9e-16     1.6e-16
                   Absolute error, except relative when |Chi| > 1:
               DEC          Chi       2500       9.3e-17
               IEEE         Chi      30000       8.4e-16     1.4e-16

       sici: Sine and cosine integrals
            SYNOPSIS:

            # double x, Ci, Si, sici();

            ($flag, $Si, $Ci) = sici( $x );

            DESCRIPTION:

            Evaluates the integrals

                                     x
                                     -
                                    |  cos t - 1
              Ci(x) = eul + ln x +  |  --------- dt,
                                    |      t
                                   -
                                    0
                        x
                        -
                       |  sin t
              Si(x) =  |  ----- dt
                       |    t
                      -
                       0

            where eul = 0.57721566490153286061 is Euler's constant.
            The integrals are approximated by rational functions.
            For x > 8 auxiliary functions f(x) and g(x) are employed
            such that

            Ci(x) = f(x) sin(x) - g(x) cos(x)
            Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)

            ACCURACY:
               Test interval = [0,50].
            Absolute error, except relative when > 1:
            arithmetic   function   # trials      peak         rms
               IEEE        Si        30000       4.4e-16     7.3e-17
               IEEE        Ci        30000       6.9e-16     5.1e-17
               DEC         Si         5000       4.4e-17     9.0e-18
               DEC         Ci         5300       7.9e-17     5.2e-18

       sin: Circular sine
            SYNOPSIS:

            # double x, y, sin();

            $y = sin( $x );

            DESCRIPTION:

            Range reduction is into intervals of pi/4.  The reduction
            error is nearly eliminated by contriving an extended precision
            modular arithmetic.

            Two polynomial approximating functions are employed.
            Between 0 and pi/4 the sine is approximated by
                 x  +  x**3 P(x**2).
            Between pi/4 and pi/2 the cosine is represented as
                 1  -  x**2 Q(x**2).

            ACCURACY:

                                 Relative error:
            arithmetic   domain      # trials      peak         rms
               DEC       0, 10       150000       3.0e-17     7.8e-18
               IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17

            ERROR MESSAGES:

              message           condition        value returned
            sin total loss   x > 1.073741824e9      0.0

            Partial loss of accuracy begins to occur at x = 2**30
            = 1.074e9.  The loss is not gradual, but jumps suddenly to
            about 1 part in 10e7.  Results may be meaningless for
            x > 2**49 = 5.6e14.  The routine as implemented flags a
            TLOSS error for x > 2**30 and returns 0.0.

       cos: Circular cosine
            SYNOPSIS:

            # double x, y, cos();

            $y = cos( $x );

            DESCRIPTION:

            Range reduction is into intervals of pi/4.  The reduction
            error is nearly eliminated by contriving an extended precision
            modular arithmetic.

            Two polynomial approximating functions are employed.
            Between 0 and pi/4 the cosine is approximated by
                 1  -  x**2 Q(x**2).
            Between pi/4 and pi/2 the sine is represented as
                 x  +  x**3 P(x**2).

            ACCURACY:

                                 Relative error:
            arithmetic   domain      # trials      peak         rms
               IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
               DEC        0,+1.07e9   17000       3.0e-17     7.2e-18

       sindg: Circular sine of angle in degrees
            SYNOPSIS:

            # double x, y, sindg();

            $y = sindg( $x );

            DESCRIPTION:

            Range reduction is into intervals of 45 degrees.

            Two polynomial approximating functions are employed.
            Between 0 and pi/4 the sine is approximated by
                 x  +  x**3 P(x**2).
            Between pi/4 and pi/2 the cosine is represented as
                 1  -  x**2 P(x**2).

            ACCURACY:

                                 Relative error:
            arithmetic   domain      # trials      peak         rms
               DEC       +-1000        3100      3.3e-17      9.0e-18
               IEEE      +-1000       30000      2.3e-16      5.6e-17

            ERROR MESSAGES:

              message           condition        value returned
            sindg total loss   x > 8.0e14 (DEC)      0.0
                               x > 1.0e14 (IEEE)

       cosdg: Circular cosine of angle in degrees
            SYNOPSIS:

            # double x, y, cosdg();

            $y = cosdg( $x );

            DESCRIPTION:

            Range reduction is into intervals of 45 degrees.

            Two polynomial approximating functions are employed.
            Between 0 and pi/4 the cosine is approximated by
                 1  -  x**2 P(x**2).
            Between pi/4 and pi/2 the sine is represented as
                 x  +  x**3 P(x**2).

            ACCURACY:

                                 Relative error:
            arithmetic   domain      # trials      peak         rms
               DEC      +-1000         3400       3.5e-17     9.1e-18
               IEEE     +-1000        30000       2.1e-16     5.7e-17
             See also sin().

       sinh: Hyperbolic sine
            SYNOPSIS:

            # double x, y, sinh();

            $y = sinh( $x );

            DESCRIPTION:

            Returns hyperbolic sine of argument in the range MINLOG to
            MAXLOG.

            The range is partitioned into two segments.  If |x| <= 1, a
            rational function of the form x + x**3 P(x)/Q(x) is employed.
            Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      +- 88        50000       4.0e-17     7.7e-18
               IEEE     +-MAXLOG     30000       2.6e-16     5.7e-17

       spence: Dilogarithm
            SYNOPSIS:

            # double x, y, spence();

            $y = spence( $x );

            DESCRIPTION:

            Computes the integral

                               x
                               -
                              | | log t
            spence(x)  =  -   |   ----- dt
                            | |   t - 1
                             -
                             1

            for x >= 0.  A rational approximation gives the integral in
            the interval (0.5, 1.5).  Transformation formulas for 1/x
            and 1-x are employed outside the basic expansion range.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      0,4         30000       3.9e-15     5.4e-16
               DEC       0,4          3000       2.5e-16     4.5e-17

       sqrt: Square root
            SYNOPSIS:

            # double x, y, sqrt();

            $y = sqrt( $x );

            DESCRIPTION:

            Returns the square root of x.

            Range reduction involves isolating the power of two of the
            argument and using a polynomial approximation to obtain
            a rough value for the square root.  Then Heron's iteration
            is used three times to converge to an accurate value.

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 10       60000       2.1e-17     7.9e-18
               IEEE      0,1.7e308   30000       1.7e-16     6.3e-17

            ERROR MESSAGES:

              message         condition      value returned
            sqrt domain        x < 0            0.0

       stdtr: Student's t distribution
            SYNOPSIS:

            # double t, stdtr();
            short k;

            $y = stdtr( $k, $t );

            DESCRIPTION:

            Computes the integral from minus infinity to t of the Student
            t distribution with integer k > 0 degrees of freedom:

                                                 t
                                                 -
                                                | |
                         -                      |         2   -(k+1)/2
                        | ( (k+1)/2 )           |  (     x   )
                  ----------------------        |  ( 1 + --- )        dx
                                -               |  (      k  )
                  sqrt( k pi ) | ( k/2 )        |
                                              | |
                                               -
                                              -inf.

            Relation to incomplete beta integral:

                   1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
            where
                   z = k/(k + t**2).

            For t < -2, this is the method of computation.  For higher t,
            a direct method is derived from integration by parts.
            Since the function is symmetric about t=0, the area under the
            right tail of the density is found by calling the function
            with -t instead of t.

            ACCURACY:

            Tested at random 1 <= k <= 25.  The "domain" refers to t.
                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE     -100,-2      50000       5.9e-15     1.4e-15
               IEEE     -2,100      500000       2.7e-15     4.9e-17

       stdtri: Functional inverse of Student's t distribution
            SYNOPSIS:

            # double p, t, stdtri();
            # int k;

            $t = stdtri( $k, $p );

            DESCRIPTION:

            Given probability p, finds the argument t such that stdtr(k,t)
            is equal to p.

            ACCURACY:

            Tested at random 1 <= k <= 100.  The "domain" refers to p:
                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE    .001,.999     25000       5.7e-15     8.0e-16
               IEEE    10^-6,.001    25000       2.0e-12     2.9e-14

       struve: Struve function
            SYNOPSIS:

            # double v, x, y, struve();

            $y = struve( $v, $x );

            DESCRIPTION:

            Computes the Struve function Hv(x) of order v, argument x.
            Negative x is rejected unless v is an integer.

            ACCURACY:

            Not accurately characterized, but spot checked against tables.

       plancki: Integral of Planck's black body radiation formula
            SYNOPSIS:

            # double lambda, T, y, plancki()

            $y = plancki( $lambda, $T );

            DESCRIPTION:

            Evaluates the definite integral, from wavelength 0 to lambda,
            of Planck's radiation formula
                                  -5
                        c1  lambda
                 E =  ------------------
                        c2/(lambda T)
                       e             - 1

            Physical constants c1 = 3.7417749e-16 and c2 = 0.01438769 are built in
            to the function program.  They are scaled to provide a result
            in watts per square meter.  Argument T represents temperature in degrees
            Kelvin; lambda is wavelength in meters.

            The integral is expressed in closed form, in terms of polylogarithms
            (see polylog.c).

            The total area under the curve is
                 (-1/8) (42 zeta(4) - 12 pi^2 zeta(2) + pi^4 ) c1 (T/c2)^4
                  = (pi^4 / 15)  c1 (T/c2)^4
                  =  5.6705032e-8 T^4
            where sigma = 5.6705032e-8 W m^2 K^-4 is the Stefan-Boltzmann constant.

            ACCURACY:

            The left tail of the function experiences some relative error
            amplification in computing the dominant term exp(-c2/(lambda T)).
            For the right-hand tail see planckc, below.

                                 Relative error.
              The domain refers to lambda T / c2.
            arithmetic   domain     # trials      peak         rms
               IEEE      0.1, 10      50000      7.1e-15     5.4e-16

       polylog: polylogarithm function SYNOPSIS:
            # double x, y, polylog();
            # int n;

                $y = polylog( $n, $x );

            The polylogarithm of order n is defined by the series

                          inf   k
                           -   x
              Li (x)  =    >   ---  .
                n          -     n
                          k=1   k

              For x = 1,

                           inf
                            -    1
               Li (1)  =    >   ---   =  Riemann zeta function (n)  .
                 n          -     n
                           k=1   k

             When n = 2, the function is the dilogarithm, related to Spence's integral:

                             x                      1-x
                             -                        -
                            | |  -ln(1-t)            | |  ln t
               Li (x)  =    |    -------- dt    =    |    ------ dt    =   spence(1-x) .
                 2        | |       t              | |    1 - t
                           -                        -
                            0                        1

             ACCURACY:

                                  Relative error:
             arithmetic   domain   n   # trials      peak         rms
                IEEE      0, 1     2     50000      6.2e-16     8.0e-17
                IEEE      0, 1     3    100000      2.5e-16     6.6e-17
                IEEE      0, 1     4     30000      1.7e-16     4.9e-17
                IEEE      0, 1     5     30000      5.1e-16     7.8e-17

       bernum: Bernoulli numbers
            SYNOPSIS:

               ($num, $den) = bernum( $n);
               ($num_array, $den_array) = bernum();

            DESCRIPTION:

            This calculates the Bernoulli numbers, up to 30th order.
            If called with an integer argument, the numerator and denominator
            of that Bernoulli number is returned; if called with no argument,
            two array references representing the numerator and denominators
            of the first 30 Bernoulli numbers are returned.

       simpson: Simpson's rule to find an integral
            SYNOPSIS:

               $result = simpson(\&fun, $a, $b, $abs_err, $rel_err, $nmax);

               sub fun {
                  my $x = shift;
                  return cos($x)*exp($x);
               }

            DESCRIPTION:

            This evaluates the area under the graph of a function,
            represented in a subroutine, from $a to $b, using an 8-point
            Newton-Cotes formula. The routine divides up the interval into
            equal segments, evaluates the integral, then compares that
            to the result with double the number of segments. If the two
            results agree, to within an absolute error $abs_err or a
            relative error $rel_err, the result is returned; otherwise,
            the number of segments is doubled again, and the results
            compared. This continues until the desired accuracy is attained,
            or until the maximum number of iterations $nmax is reached.

       vecang: angle between two vectors
            SYNOPSIS:

            # double p[3], q[3], vecang();

               $y = vecang( $p, $q );

            DESCRIPTION:

            For two vectors p, q, the angle A between them is given by

                 p.q / (|p| |q|)  = cos A  .

            where "." represents inner product, "|x|" the length of vector x.
            If the angle is small, an expression in sin A is preferred.
            Set r = q - p.  Then

                p.q = p.p + p.r ,

                |p|^2 = p.p ,

                |q|^2 = p.p + 2 p.r + r.r ,

                             p.p^2 + 2 p.p p.r + p.r^2
                cos^2 A  =  ----------------------------
                               p.p (p.p + 2 p.r + r.r)

                             p.p + 2 p.r + p.r^2 / p.p
                         =  --------------------------- ,
                                p.p + 2 p.r + r.r

                sin^2 A  =  1 - cos^2 A

                              r.r - p.r^2 / p.p
                         =  --------------------
                             p.p + 2 p.r + r.r

                         =   (r.r - p.r^2 / p.p) / q.q  .

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      -1, 1        10^6       1.7e-16     4.2e-17

       onef2: Hypergeometric function 1F2
            SYNOPSIS:

            # double a, b, c, x, value;

            # double *err;

            ($value, $err) = onef2( $a, $b, $c, $x)

            ACCURACY:

            Not accurately characterized, but spot checked against tables.

       threef0: Hypergeometric function 3F0
            SYNOPSIS:

            # double a, b, c, x, value;

            # double *err;

            ($value, $err) = threef0( $a, $b, $c, $x )

            ACCURACY:

            Not accurately characterized, but spot checked against tables.

       yv: Bessel function Yv with noninteger v
            SYNOPSIS:

            # double v, x;

            # double yv( v, x );

            $y = yv( $v, $x );

            ACCURACY:

            Not accurately characterized, but spot checked against tables.

       tan: Circular tangent
            SYNOPSIS:

            # double x, y, tan();

            $y = tan( $x );

            DESCRIPTION:

            Returns the circular tangent of the radian argument x.

            Range reduction is modulo pi/4.  A rational function
                  x + x**3 P(x**2)/Q(x**2)
            is employed in the basic interval [0, pi/4].

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      +-1.07e9      44000      4.1e-17     1.0e-17
               IEEE     +-1.07e9      30000      2.9e-16     8.1e-17

            ERROR MESSAGES:

              message         condition          value returned
            tan total loss   x > 1.073741824e9     0.0

       cot: Circular cotangent
            SYNOPSIS:

            # double x, y, cot();

            $y = cot( $x );

            DESCRIPTION:

            Returns the circular cotangent of the radian argument x.

            Range reduction is modulo pi/4.  A rational function
                  x + x**3 P(x**2)/Q(x**2)
            is employed in the basic interval [0, pi/4].

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE     +-1.07e9      30000      2.9e-16     8.2e-17

            ERROR MESSAGES:

              message         condition          value returned
            cot total loss   x > 1.073741824e9       0.0
            cot singularity  x = 0                  INFINITY

       tandg: Circular tangent of argument in degrees
            SYNOPSIS:

            # double x, y, tandg();

            $y = tandg( $x );

            DESCRIPTION:

            Returns the circular tangent of the argument x in degrees.

            Range reduction is modulo pi/4.  A rational function
                  x + x**3 P(x**2)/Q(x**2)
            is employed in the basic interval [0, pi/4].

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC      0,10          8000      3.4e-17      1.2e-17
               IEEE     0,10         30000      3.2e-16      8.4e-17

            ERROR MESSAGES:

              message         condition          value returned
            tandg total loss   x > 8.0e14 (DEC)      0.0
                               x > 1.0e14 (IEEE)
            tandg singularity  x = 180 k  +  90     MAXNUM

       cotdg: Circular cotangent of argument in degrees
            SYNOPSIS:

            # double x, y, cotdg();

            $y = cotdg( $x );

            DESCRIPTION:

            Returns the circular cotangent of the argument x in degrees.

            Range reduction is modulo pi/4.  A rational function
                  x + x**3 P(x**2)/Q(x**2)
            is employed in the basic interval [0, pi/4].

            ERROR MESSAGES:

              message         condition          value returned
            cotdg total loss   x > 8.0e14 (DEC)      0.0
                               x > 1.0e14 (IEEE)
            cotdg singularity  x = 180 k            MAXNUM

       tanh: Hyperbolic tangent
            SYNOPSIS:

            # double x, y, tanh();

            $y = tanh( $x );

            DESCRIPTION:

            Returns hyperbolic tangent of argument in the range MINLOG to
            MAXLOG.

            A rational function is used for |x| < 0.625.  The form
            x + x**3 P(x)/Q(x) of Cody _& Waite is employed.
            Otherwise,
               tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).

            ACCURACY:

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               DEC       -2,2        50000       3.3e-17     6.4e-18
               IEEE      -2,2        30000       2.5e-16     5.8e-17

       unity: Relative error approximations for function arguments near unity.
            SYNOPSIS:

           #    log1p(x) = log(1+x)

            $y = log1p( $x );

           #    expm1(x) = exp(x) - 1

            $y = expm1( $x );

           #    cosm1(x) = cos(x) - 1

            $y = cosm1( $x );

       yn: Bessel function of second kind of integer order
            SYNOPSIS:

            # double x, y, yn();
            # int n;

            $y = yn( $n, $x );

            DESCRIPTION:

            Returns Bessel function of order n, where n is a
            (possibly negative) integer.

            The function is evaluated by forward recurrence on
            n, starting with values computed by the routines
            y0() and y1().

            If n = 0 or 1 the routine for y0 or y1 is called
            directly.

            ACCURACY:

                                 Absolute error, except relative
                                 when y > 1:
            arithmetic   domain     # trials      peak         rms
               DEC       0, 30        2200       2.9e-16     5.3e-17
               IEEE      0, 30       30000       3.4e-15     4.3e-16

            ERROR MESSAGES:

              message         condition      value returned
            yn singularity   x = 0              MAXNUM
            yn overflow                         MAXNUM

            Spot checked against tables for x, n between 0 and 100.

       zeta: Riemann zeta function of two arguments
            SYNOPSIS:

            # double x, q, y, zeta();

            $y = zeta( $x, $q );

            DESCRIPTION:

                            inf.
                             -        -x
              zeta(x,q)  =   >   (k+q)
                             -
                            k=0

            where x > 1 and q is not a negative integer or zero.
            The Euler-Maclaurin summation formula is used to obtain
            the expansion

                           n
                           -       -x
            zeta(x,q)  =   >  (k+q)
                           -
                          k=1

                      1-x                 inf.  B   x(x+1)...(x+2j)
                 (n+q)           1         -     2j
             +  ---------  -  -------  +   >    --------------------
                   x-1              x      -                   x+2j+1
                              2(n+q)      j=1       (2j)! (n+q)

            where the B2j are Bernoulli numbers.  Note that (see zetac.c)
            zeta(x,1) = zetac(x) + 1.

            ACCURACY:

            REFERENCE:

            Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
            Series, and Products, p. 1073; Academic Press, 1980.

       zetac: Riemann zeta function
            SYNOPSIS:

            # double x, y, zetac();

            $y = zetac( $x );

            DESCRIPTION:

                           inf.
                            -    -x
              zetac(x)  =   >   k   ,   x > 1,
                            -
                           k=2

            is related to the Riemann zeta function by

                   Riemann zeta(x) = zetac(x) + 1.

            Extension of the function definition for x < 1 is implemented.
            Zero is returned for x > log2(MAXNUM).

            An overflow error may occur for large negative x, due to the
            gamma function in the reflection formula.

            ACCURACY:

            Tabulated values have full machine accuracy.

                                 Relative error:
            arithmetic   domain     # trials      peak         rms
               IEEE      1,50        10000       9.8e-16       1.3e-16
               DEC       1,50         2000       1.1e-16     1.9e-17

TODO

       •   Include more operating systems when generating mconf.h.

MAINTAINER

       Shlomi Fish, <http://www.shlomifish.org/>, <https://metacpan.org/author/SHLOMIF> .

BUGS

       Please report any on the rt.cpan.org interface:
       <https://rt.cpan.org/Dist/Display.html?Queue=Math-Cephes>

VERSION CONTROL

       This distribution is maintained in this GitHub repository:

       <https://github.com/shlomif/Math-Cephes>.

SEE ALSO

       For interfaces to programs which can do symbolic manipulation, see PDL, Math::Pari, and
       Math::ematica.  For a command line interface to the routines of Math::Cephes, see the
       included "pmath" script. For a different interface to the fraction and complex number
       routines, see Math::Cephes::Fraction and Math::Cephes::Complex.  For an interface to some
       polynomial routines, see Math::Cephes::Polynomial, and for some matrix routines, see
       Math::Cephes::Matrix.

COPYRIGHT

       The C code for the Cephes Math Library is Copyright 1984, 1987, 1989, 2002 by Stephen L.
       Moshier, and is available at <http://www.netlib.org/cephes/>.  Direct inquiries to 30
       Frost Street, Cambridge, MA 02140.

       The file arrays.c included here to handle passing arrays into and out of C routines comes
       from the PGPLOT module of Karl Glazebrook <kgb@zzoepp.aao.gov.au>.

       The perl interface is copyright 2000, 2002 by Randy Kobes.  This library is free software;
       you can redistribute it and/or modify it under the same terms as Perl itself.

       Perl interface maintained by Shlomi Fish starting from 2012. All explicit or implicit
       copyrights on the changes are disclaimed by him.