Provided by: libpdl-linearalgebra-perl_0.37-1_amd64
NAME
PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)
SYNOPSIS
use PDL; use PDL::LinearAlgebra::Complex; $a = random(cdouble, 100, 100); $s = zeroes(cdouble, 100); $u = zeroes(cdouble, 100, 100); $v = zeroes(cdouble, 100, 100); $info = 0; $job = 0; cgesdd($a, $job, $info, $s , $u, $v);
DESCRIPTION
This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays. #line 68 "Complex.pm"
FUNCTIONS
cgtsv Signature: (complex [phys]DL(n);complex [phys]D(n);complex [phys]DU(n);complex [io,phys]B(n,nrhs); int [o,phys]info()) Solves the equation A * X = B where A is an "n" by "n" tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an "n" by "nrhs" matrix. Note that the equation "A**T*X = B" may be solved by interchanging the order of the arguments DU and DL. NB This differs from the LINPACK function "cgtsl" in that "DL" starts from its first element, while the LINPACK equivalent starts from its second element. Arguments ========= DL: On entry, DL must contain the (n-1) sub-diagonal elements of A. On exit, DL is overwritten by the (n-2) elements of the second super-diagonal of the upper triangular matrix U from the LU factorization of A, in DL(1), ..., DL(n-2). D: On entry, D must contain the diagonal elements of A. On exit, D is overwritten by the n diagonal elements of U. DU: On entry, DU must contain the (n-1) super-diagonal elements of A. On exit, DU is overwritten by the (n-1) elements of the first super-diagonal of the U. B: On entry, the n by nrhs matrix of right hand side matrix B. On exit, if info = 0, the n by nrhs solution matrix X. info: = 0: successful exit < 0: if info = -i, the i-th argument had an illegal value > 0: if info = i, U(i,i) is exactly zero, and the solution has not been computed. The factorization has not been completed unless i = n. $dl = random(float, 9) + random(float, 9) * i; $d = random(float, 10) + random(float, 10) * i; $du = random(float, 9) + random(float, 9) * i; $b = random(10,5) + random(10,5) * i; cgtsv($dl, $d, $du, $b, ($info=null)); print "X is:\n$b" unless $info; cgesvd Signature: (complex [io]A(m,n); int jobu(); int jobvt(); [o]s(minmn);complex [o]U(p,p);complex [o]VT(s,s); int [o]info(); [t]rwork(rworkn)) Complex version of "gesvd" in PDL::LinearAlgebra::Real. The SVD is written A = U * SIGMA * ConjugateTranspose(V) cgesdd Signature: (complex [io]A(m,n); int jobz(); [o]s(minmn);complex [o]U(p,p);complex [o]VT(s,s); int [o]info(); int [t]iwork(iworkn)) Complex version of "gesdd" in PDL::LinearAlgebra::Real. The SVD is written A = U * SIGMA * ConjugateTranspose(V) cggsvd Signature: (complex [io]A(m,n); int jobu(); int jobv(); int jobq();complex [io]B(p,n); int [o]k(); int [o]l();[o]alpha(n);[o]beta(n);complex [o]U(q,q);complex [o]V(r,r);complex [o]Q(s,s); int [o]iwork(n); int [o]info(); [t]rwork(rworkn)) Complex version of "ggsvd" in PDL::LinearAlgebra::Real cgeev Signature: (complex A(n,n); int jobvl(); int jobvr();complex [o]w(n);complex [o]vl(m,m);complex [o]vr(p,p); int [o]info(); [t]rwork(rworkn)) Complex version of "geev" in PDL::LinearAlgebra::Real cgeevx Signature: (complex [io]A(n,n); int jobvl(); int jobvr(); int balance(); int sense();complex [o]w(n);complex [o]vl(m,m);complex [o]vr(p,p); int [o]ilo(); int [o]ihi(); [o]scale(n); [o]abnrm(); [o]rconde(q); [o]rcondv(r); int [o]info(); [t]rwork(rworkn)) Complex version of "geevx" in PDL::LinearAlgebra::Real cggev Signature: (complex A(n,n); int [phys]jobvl();int [phys]jobvr();complex B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]info(); [t]rwork(rworkn)) Complex version of "ggev" in PDL::LinearAlgebra::Real cggevx Signature: (complex [io,phys]A(n,n);int balanc();int jobvl();int jobvr();int sense();complex [io,phys]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]ilo();int [o]ihi();[o]lscale(n);[o]rscale(n);[o]abnrm();[o]bbnrm();[o]rconde(r);[o]rcondv(s);int [o]info(); [t]rwork(rworkn); int [t]bwork(bworkn); int [t]iwork(iworkn)) Complex version of "ggevx" in PDL::LinearAlgebra::Real cgees Signature: (complex [io]A(n,n); int jobvs(); int sort();complex [o]w(n);complex [o]vs(p,p); int [o]sdim(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func) Complex version of "gees" in PDL::LinearAlgebra::Real select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An complex eigenvalue w is selected if select_func(PDL::Complex(w)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(PDL::Complex(w)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+2. cgeesx Signature: (complex [io]A(n,n); int jobvs(); int sort(); int sense();complex [o]w(n);complex [o]vs(p,p); int [o]sdim(); [o]rconde();[o]rcondv(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func) Complex version of "geesx" in PDL::LinearAlgebra::Real select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An complex eigenvalue w is selected if select_func(PDL::Complex(w)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(PDL::Complex(w)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+2. cgges Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();int [o]info(); [t]rwork(rworkn); int [t]bwork(bworkn);SV* select_func) Complex version of "ggees" in PDL::LinearAlgebra::Real select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An eigenvalue w = w/beta is selected if select_func(PDL::Complex(w), PDL::Complex(beta)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+2. cggesx Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();int sense();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();[o]rconde(q=2);[o]rcondv(q=2);int [o]info(); [t]rwork(rworkn); int [t]bwork(bworkn); int [t]iwork(iworkn);SV* select_func) Complex version of "ggeesx" in PDL::LinearAlgebra::Real select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An eigenvalue w = w/beta is selected if select_func(PDL::Complex(w), PDL::Complex(beta)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+3. cheev Signature: (complex [io]A(n,n); int jobz(); int uplo(); [o]w(n); int [o]info(); [t]rwork(rworkn)) Complex version of "syev" in PDL::LinearAlgebra::Real for Hermitian matrix cheevd Signature: (complex [io,phys]A(n,n); int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info()) Complex version of "syevd" in PDL::LinearAlgebra::Real for Hermitian matrix cheevx Signature: (complex A(n,n); int jobz(); int range(); int uplo(); vl(); vu(); int il(); int iu(); abstol(); int [o]m(); [o]w(n);complex [o]z(p,p);int [o]ifail(n); int [o]info(); [t]rwork(rworkn); int [t]iwork(iworkn)) Complex version of "syevx" in PDL::LinearAlgebra::Real for Hermitian matrix cheevr Signature: (complex [phys]A(n,n); int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n);complex [o,phys]z(p,q);int [o,phys]isuppz(r); int [o,phys]info()) Complex version of "syevr" in PDL::LinearAlgebra::Real for Hermitian matrix chegv Signature: (complex [io]A(n,n);int itype();int jobz(); int uplo();complex [io]B(n,n);[o]w(n); int [o]info(); [t]rwork(rworkn)) Complex version of "sygv" in PDL::LinearAlgebra::Real for Hermitian matrix chegvd Signature: (complex [io,phys]A(n,n);int [phys]itype();int jobz(); int uplo();complex [io,phys]B(n,n);[o,phys]w(n); int [o,phys]info()) Complex version of "sygvd" in PDL::LinearAlgebra::Real for Hermitian matrix chegvx Signature: (complex [io]A(n,n);int itype();int jobz();int range(); int uplo();complex [io]B(n,n);vl();vu();int il(); int iu();abstol();int [o]m();[o]w(n);complex [o]Z(p,p);int [o]ifail(n);int [o]info(); [t]rwork(rworkn); int [t]iwork(iworkn); ) Complex version of "sygvx" in PDL::LinearAlgebra::Real for Hermitian matrix cgesv Signature: (complex [io,phys]A(n,n);complex [io,phys]B(n,m); int [o,phys]ipiv(n); int [o,phys]info()) Complex version of "gesv" in PDL::LinearAlgebra::Real cgesvx Signature: (complex [io]A(n,n); int trans(); int fact();complex [io]B(n,m);complex [io]af(n,n); int [io]ipiv(n); int [io]equed(); [o]r(p); [o]c(q);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); [o]rpvgrw(); int [o]info(); [t]rwork(rworkn); [t]work(rworkn)) Complex version of "gesvx" in PDL::LinearAlgebra::Real. trans: Specifies the form of the system of equations: = 0: A * X = B (No transpose) = 1: A' * X = B (Transpose) = 2: A**H * X = B (Conjugate transpose) csysv Signature: (complex [io,phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o]ipiv(n); int [o]info()) Complex version of "sysv" in PDL::LinearAlgebra::Real csysvx Signature: (complex [phys]A(n,n); int uplo(); int fact();complex [phys]B(n,m);complex [io,phys]af(n,n); int [io,phys]ipiv(n);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n)) Complex version of "sysvx" in PDL::LinearAlgebra::Real chesv Signature: (complex [io,phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o,phys]ipiv(n); int [o,phys]info()) Complex version of "sysv" in PDL::LinearAlgebra::Real for Hermitian matrix chesvx Signature: (complex A(n,n); int uplo(); int fact();complex B(n,m);complex [io]af(n,n); int [io]ipiv(n);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n)) Complex version of "sysvx" in PDL::LinearAlgebra::Real for Hermitian matrix cposv Signature: (complex [io,phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o,phys]info()) Complex version of "posv" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix cposvx Signature: (complex [io]A(n,n); int uplo(); int fact();complex [io]B(n,m);complex [io]af(n,n); int [io]equed(); [o]s(p);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(rworkn); [t]work(workn)) Complex version of "posvx" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix cgels Signature: (complex [io,phys]A(m,n); int trans();complex [io,phys]B(p,q);int [o,phys]info()) Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of "gels" in PDL::LinearAlgebra::Real. trans: = 0: the linear system involves A; = 1: the linear system involves A**H. cgelsy Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); int [io]jpvt(n); int [o]rank();int [o]info(); [t]rwork(rworkn)) Complex version of "gelsy" in PDL::LinearAlgebra::Real cgelss Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); [o]s(r); int [o]rank();int [o]info(); [t]rwork(rworkn)) Complex version of "gelss" in PDL::LinearAlgebra::Real cgelsd Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); [o]s(minmn); int [o]rank();int [o]info(); int [t]iwork(iworkn); [t]rwork(rworkn)) Complex version of "gelsd" in PDL::LinearAlgebra::Real cgglse Signature: (complex [phys]A(m,n);complex [phys]B(p,n);complex [io,phys]c(m);complex [phys]d(p);complex [o,phys]x(n);int [o,phys]info()) Complex version of "gglse" in PDL::LinearAlgebra::Real cggglm Signature: (complex [phys]A(n,m);complex [phys]B(n,p);complex [phys]d(n);complex [o,phys]x(m);complex [o,phys]y(p);int [o,phys]info()) Complex version of "ggglm" in PDL::LinearAlgebra::Real cgetrf Signature: (complex [io]A(m,n); int [o]ipiv(p); int [o]info()) Complex version of "getrf" in PDL::LinearAlgebra::Real cgetf2 Signature: (complex [io]A(m,n); int [o]ipiv(p); int [o]info()) Complex version of "getf2" in PDL::LinearAlgebra::Real csytrf Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info()) Complex version of "sytrf" in PDL::LinearAlgebra::Real csytf2 Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info()) Complex version of "sytf2" in PDL::LinearAlgebra::Real cchetrf Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info(); [t]work(workn)) Complex version of "sytrf" in PDL::LinearAlgebra::Real for Hermitian matrix chetf2 Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info()) Complex version of "sytf2" in PDL::LinearAlgebra::Real for Hermitian matrix cpotrf Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info()) Complex version of "potrf" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix cpotf2 Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info()) Complex version of "potf2" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix cgetri Signature: (complex [io,phys]A(n,n); int [phys]ipiv(n); int [o,phys]info()) Complex version of "getri" in PDL::LinearAlgebra::Real csytri Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn)) Complex version of "sytri" in PDL::LinearAlgebra::Real chetri Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn)) Complex version of "sytri" in PDL::LinearAlgebra::Real for Hermitian matrix cpotri Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info()) Complex version of "potri" in PDL::LinearAlgebra::Real ctrtri Signature: (complex [io,phys]A(n,n); int uplo(); int diag(); int [o,phys]info()) Complex version of "trtri" in PDL::LinearAlgebra::Real ctrti2 Signature: (complex [io,phys]A(n,n); int uplo(); int diag(); int [o,phys]info()) Complex version of "trti2" in PDL::LinearAlgebra::Real cgetrs Signature: (complex [phys]A(n,n); int trans();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info()) Complex version of "getrs" in PDL::LinearAlgebra::Real Arguments ========= trans: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose; csytrs Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info()) Complex version of "sytrs" in PDL::LinearAlgebra::Real chetrs Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info()) Complex version of "sytrs" in PDL::LinearAlgebra::Real for Hermitian matrix cpotrs Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o,phys]info()) Complex version of "potrs" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix ctrtrs Signature: (complex [phys]A(n,n); int uplo(); int trans(); int diag();complex [io,phys]B(n,m); int [o,phys]info()) Complex version of "trtrs" in PDL::LinearAlgebra::Real Arguments ========= trans: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose; clatrs Signature: (complex [phys]A(n,n); int uplo(); int trans(); int diag(); int normin();complex [io,phys]x(n); [o,phys]scale();[io,phys]cnorm(n);int [o,phys]info()) Complex version of "latrs" in PDL::LinearAlgebra::Real Arguments ========= trans: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose; cgecon Signature: (complex A(n,n); int norm(); anorm(); [o]rcond();int [o]info(); [t]rwork(rworkn); [t]work(workn)) Complex version of "gecon" in PDL::LinearAlgebra::Real csycon Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn)) Complex version of "sycon" in PDL::LinearAlgebra::Real checon Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn)) Complex version of "sycon" in PDL::LinearAlgebra::Real for Hermitian matrix cpocon Signature: (complex A(n,n); int uplo(); anorm(); [o]rcond();int [o]info(); [t]work(workn); [t]rwork(n)) Complex version of "pocon" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix ctrcon Signature: (complex A(n,n); int norm();int uplo();int diag(); [o]rcond();int [o]info(); [t]work(workn); [t]rwork(n)) Complex version of "trcon" in PDL::LinearAlgebra::Real cgeqp3 Signature: (complex [io]A(m,n); int [io]jpvt(n);complex [o]tau(k); int [o]info(); [t]rwork(rworkn)) Complex version of "geqp3" in PDL::LinearAlgebra::Real cgeqrf Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info()) Complex version of "geqrf" in PDL::LinearAlgebra::Real cungqr Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info()) Complex version of "orgqr" in PDL::LinearAlgebra::Real cunmqr Signature: (complex [phys]A(p,k); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info()) Complex version of "ormqr" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose. cgelqf Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info()) Complex version of "gelqf" in PDL::LinearAlgebra::Real cunglq Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info()) Complex version of "orglq" in PDL::LinearAlgebra::Real cunmlq Signature: (complex [phys]A(k,p); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info()) Complex version of "ormlq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose. cgeqlf Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info()) Complex version of "geqlf" in PDL::LinearAlgebra::Real cungql Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info()) cunmql Signature: (complex [phys]A(p,k); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info()) Complex version of "ormql" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose. cgerqf Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info()) Complex version of "gerqf" in PDL::LinearAlgebra::Real cungrq Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info()) Complex version of "orgrq" in PDL::LinearAlgebra::Real. cunmrq Signature: (complex [phys]A(k,p); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info()) Complex version of "ormrq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose. ctzrzf Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info()) Complex version of "tzrzf" in PDL::LinearAlgebra::Real cunmrz Signature: (complex [phys]A(k,p); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info()) Complex version of "ormrz" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose. cgehrd Signature: (complex [io,phys]A(n,n); int [phys]ilo();int [phys]ihi();complex [o,phys]tau(k); int [o,phys]info()) Complex version of "gehrd" in PDL::LinearAlgebra::Real cunghr Signature: (complex [io,phys]A(n,n); int [phys]ilo();int [phys]ihi();complex [phys]tau(k); int [o,phys]info()) Complex version of "orghr" in PDL::LinearAlgebra::Real chseqr Signature: (complex [io,phys]H(n,n); int job();int compz();int [phys]ilo();int [phys]ihi();complex [o,phys]w(n);complex [o,phys]Z(m,m); int [o,phys]info()) Complex version of "hseqr" in PDL::LinearAlgebra::Real ctrevc Signature: (complex [io]T(n,n); int side();int howmny();int select(q);complex [o]VL(m,m);complex [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn)) Complex version of "trevc" in PDL::LinearAlgebra::Real ctgevc Signature: (complex [io]A(n,n); int side();int howmny();complex [io]B(n,n);int select(q);complex [o]VL(m,m);complex [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn)) Complex version of "tgevc" in PDL::LinearAlgebra::Real cgebal Signature: (complex [io,phys]A(n,n); int job(); int [o,phys]ilo();int [o,phys]ihi();[o,phys]scale(n); int [o,phys]info()) Complex version of "gebal" in PDL::LinearAlgebra::Real clange Signature: (complex A(n,m); int norm(); [o]b(); [t]work(workn)) Complex version of "lange" in PDL::LinearAlgebra::Real clansy Signature: (complex A(n,n); int uplo(); int norm(); [o]b(); [t]work(workn)) Complex version of "lansy" in PDL::LinearAlgebra::Real clantr Signature: (complex A(m,n); int uplo(); int norm();int diag(); [o]b(); [t]work(workn)) Complex version of "lantr" in PDL::LinearAlgebra::Real cgemm Signature: (complex [phys]A(m,n); int transa(); int transb();complex [phys]B(p,q);complex [phys]alpha();complex [phys]beta();complex [io,phys]C(r,s)) Complex version of "gemm" in PDL::LinearAlgebra::Real. Arguments ========= transa: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose; transb: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose; cmmult Signature: (complex [phys]A(m,n);complex [phys]B(p,m);complex [o,phys]C(p,n)) Complex version of "mmult" in PDL::LinearAlgebra::Real ccrossprod Signature: (complex [phys]A(n,m);complex [phys]B(p,m);complex [o,phys]C(p,n)) Complex version of "crossprod" in PDL::LinearAlgebra::Real csyrk Signature: (complex [phys]A(m,n); int uplo(); int trans();complex [phys]alpha();complex [phys]beta();complex [io,phys]C(p,p)) Complex version of "syrk" in PDL::LinearAlgebra::Real cdot Signature: (complex [phys]a(n);complex [phys]b(n);complex [o]c()) Complex version of "dot" in PDL::LinearAlgebra::Real cdotc Signature: (complex [phys]a(n);complex [phys]b(n);complex [o,phys]c()) Forms the dot product of two vectors, conjugating the first vector. caxpy Signature: (complex [phys]a(n);complex [phys] alpha();complex [io,phys]b(n)) Complex version of "axpy" in PDL::LinearAlgebra::Real cnrm2 Signature: (complex [phys]a(n);[o]b()) Complex version of "nrm2" in PDL::LinearAlgebra::Real casum Signature: (complex [phys]a(n);[o]b()) Complex version of "asum" in PDL::LinearAlgebra::Real cscal Signature: (complex [io,phys]a(n);complex scale()) Complex version of "scal" in PDL::LinearAlgebra::Real csscal Signature: (complex [io,phys]a(n);scale()) Scales a complex vector by a real constant. crotg Signature: (complex [io,phys]a();complex [phys]b();[o,phys]c();complex [o,phys]s()) Complex version of "rotg" in PDL::LinearAlgebra::Real clacpy Signature: (complex [phys]A(m,n); int uplo();complex [o,phys]B(p,n)) Complex version of "lacpy" in PDL::LinearAlgebra::Real claswp Signature: (complex [io,phys]A(m,n); int [phys]k1(); int [phys]k2(); int [phys]ipiv(p)) Complex version of "laswp" in PDL::LinearAlgebra::Real ctricpy Signature: (A(c=2,m,n);int uplo();[o] C(c=2,m,n)) Copy triangular part to another matrix. If uplo == 0 copy upper triangular part. ctricpy does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays. cmstack Signature: (x(c,n,m);y(c,n,p);[o]out(c,n,q)) Combine two 3D ndarrays into a single ndarray. This routine does backward and forward dataflow automatically. cmstack does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays. ccharpol Signature: (A(c=2,n,n);[o]Y(c=2,n,n);[o]out(c=2,p); [t]rwork(rworkn)) Complex version of "charpol" in PDL::LinearAlgebra::Real
AUTHOR
Copyright (C) Grégory Vanuxem 2005-2018. This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.