Provided by: libsc-doc_2.3.1-22_all bug

NAME

       sc::ShellRotation - Compute the transformation matrices that maps a set of Cartesian
       functions to another set of Cartesian functions in a rotated coordinate system.

SYNOPSIS

       #include <shellrot.h>

   Public Member Functions
       void init (int a, SymmetryOperation &, const Ref< Integral > &)
           Initialize the ShellRotation for Cartesian functions, given the angular momentum, a
           symmetry operation, and an Integral object.
       void init_pure (int a, SymmetryOperation &, const Ref< Integral > &)
           Initialize the ShellRotation for solid harmonic functions, given the angular momentum,
           a symmetry operation, and an Integral object.
       ShellRotation (int n)
           Initialize this ShellRotation to hold a n by n transformation.
       ShellRotation (const ShellRotation &)
           Initialize this from another ShellRotation.
       ShellRotation (int a, SymmetryOperation &, const Ref< Integral > &, int pure=0)
           Initialize using init(...) or, if pure is nonzero, init_pure(...).
       ShellRotation & operator= (const ShellRotation &)
           Assign this to another shell rotation.
       int am () const
           Return the angular momentum.
       int dim () const
           Return the number of functions in a shell.
       double & operator() (int i, int j)
           Return an element of the transform matrix.
       double * operator[] (int i)
           Return a row of the transform matrix.
       ShellRotation operate (const ShellRotation &rot) const
           Returns the result of rot*this.
       ShellRotation transform (const ShellRotation &rot) const
           Returns the result of rot*this*transpose(rot).
       double trace () const
           Return the trace of the transformation.
       void print () const
           Print the object to ExEnv::out0().

Detailed Description

       Compute the transformation matrices that maps a set of Cartesian functions to another set
       of Cartesian functions in a rotated coordinate system.

Author

       Generated automatically by Doxygen for MPQC from the source code.