Provided by: freeipmi-tools_1.6.11-1_amd64 bug

NAME

       ipmipower - IPMI power control utility

SYNOPSIS

       ipmipower [OPTION...]

DESCRIPTION

       Ipmipower  allows  users  to remotely power on, off, cycle, hard reset, get a power status
       query, perform a pulse diagnostic interrupt, or initiate a soft-shutdown  of  the  OS  via
       ACPI through the IPMI over LAN protocol.

       When  a  power  command  (--on,  --off,  --cycle,  --reset, --stat, --pulse, or --soft) is
       specified on the command line, Ipmipower will attempt to run  the  power  command  on  all
       hostnames listed on the command line then exit.

       If  no power commands are specified on the command line, ipmipower will run in interactive
       mode. Interactive mode gives the user a command line interface to enter various  commands.
       Details  of  the  interactive  command line interface can be found below under INTERACTIVE
       COMMANDS.

       Listed  below  are  general  IPMI  options,  tool  specific  options,   trouble   shooting
       information,   workaround   information,   examples,  and  known  issues.  For  a  general
       introduction to FreeIPMI please see freeipmi(7).

GENERAL OPTIONS

       The following options are general options for configuring IPMI communication and executing
       general tool commands.

       -D IPMIDRIVER, --driver-type=IPMIDRIVER
              Specify  the  driver type to use instead of doing an auto selection.  The currently
              available outofband drivers are LAN and LAN_2_0, which perform IPMI  1.5  and  IPMI
              2.0 respectively.

       -h IPMIHOST1,IPMIHOST2,..., --hostname=IPMIHOST1[:PORT],IPMIHOST2[:PORT],...
              Specify the remote host(s) to communicate with. Multiple hostnames may be separated
              by comma or may be specified in a range format; see HOSTRANGED  SUPPORT  below.  An
              optional  port  can  be  specified  with  each  host,  which  may be useful in port
              forwarding or similar situations.  If specifying an IPv6 address and port, use  the
              format [ADDRESS]:PORT.

       -u USERNAME, --username=USERNAME
              Specify  the  username  to  use  when  authenticating with the remote host.  If not
              specified, a null (i.e. anonymous) username is assumed. The user must have  atleast
              OPERATOR  privileges  to  run the --on, --off, --reset, --cycle, --pulse, or --soft
              power control commands. The user must have atleast USER privileges to determine the
              power status of the machine through --stat.

       -p PASSWORD, --password=PASSWORD
              Specify  the  password  to  use  when authenticationg with the remote host.  If not
              specified, a null password is assumed. Maximum password length is 16 for  IPMI  1.5
              and 20 for IPMI 2.0.

       -P, --password-prompt
              Prompt for password to avoid possibility of listing it in process lists.

       -k K_G, --k-g=K_G
              Specify  the  K_g  BMC key to use when authenticating with the remote host for IPMI
              2.0. If not specified, a null key is assumed. To input the key in hexadecimal form,
              prefix the string with '0x'. E.g., the key 'abc' can be entered with the either the
              string 'abc' or the string '0x616263'

       -K, --k-g-prompt
              Prompt for k-g to avoid possibility of listing it in process lists.

       --session-timeout=MILLISECONDS
              Specify the session timeout in milliseconds. Defaults  to  20000  milliseconds  (20
              seconds) if not specified.

       --retransmission-timeout=MILLISECONDS
              Specify  the  packet  retransmission  timeout  in  milliseconds.  Defaults  to  400
              milliseconds (0.4 seconds) if not specified.

       -a AUTHENTICATION-TYPE, --authentication-type=AUTHENTICATION-TYPE
              Specify  the  IPMI  1.5  authentication  type  to  use.  The  currently   available
              authentication types are NONE, STRAIGHT_PASSWORD_KEY, MD2, and MD5. Defaults to MD5
              if not specified.

       -I CIPHER-SUITE-ID, --cipher-suite-id=CIPHER-SUITE-ID
              Specify the IPMI 2.0 cipher suite ID to use. The Cipher Suite ID identifies  a  set
              of  authentication,  integrity,  and confidentiality algorithms to use for IPMI 2.0
              communication. The authentication algorithm identifies the  algorithm  to  use  for
              session  setup, the integrity algorithm identifies the algorithm to use for session
              packet signatures, and the confidentiality algorithm identifies  the  algorithm  to
              use  for  payload  encryption.  Defaults to cipher suite ID 3 if not specified. The
              following cipher suite ids are currently supported:

              0 - Authentication Algorithm = None; Integrity Algorithm  =  None;  Confidentiality
              Algorithm = None

              1   -   Authentication   Algorithm   =   HMAC-SHA1;  Integrity  Algorithm  =  None;
              Confidentiality Algorithm = None

              2 - Authentication Algorithm  =  HMAC-SHA1;  Integrity  Algorithm  =  HMAC-SHA1-96;
              Confidentiality Algorithm = None

              3  -  Authentication  Algorithm  =  HMAC-SHA1;  Integrity Algorithm = HMAC-SHA1-96;
              Confidentiality Algorithm = AES-CBC-128

              6  -  Authentication  Algorithm   =   HMAC-MD5;   Integrity   Algorithm   =   None;
              Confidentiality Algorithm = None

              7  -  Authentication  Algorithm  =  HMAC-MD5;  Integrity  Algorithm = HMAC-MD5-128;
              Confidentiality Algorithm = None

              8 - Authentication  Algorithm  =  HMAC-MD5;  Integrity  Algorithm  =  HMAC-MD5-128;
              Confidentiality Algorithm = AES-CBC-128

              11   -   Authentication  Algorithm  =  HMAC-MD5;  Integrity  Algorithm  =  MD5-128;
              Confidentiality Algorithm = None

              12  -  Authentication  Algorithm  =  HMAC-MD5;  Integrity  Algorithm   =   MD5-128;
              Confidentiality Algorithm = AES-CBC-128

              15   -   Authentication  Algorithm  =  HMAC-SHA256;  Integrity  Algorithm  =  None;
              Confidentiality Algorithm = None

              16 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm = HMAC_SHA256_128;
              Confidentiality Algorithm = None

              17 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm = HMAC_SHA256_128;
              Confidentiality Algorithm = AES-CBC-128

       -l PRIVILEGE-LEVEL, --privilege-level=PRIVILEGE-LEVEL
              Specify the privilege level to be used. The currently  available  privilege  levels
              are USER, OPERATOR, and ADMIN. Defaults to OPERATOR if not specified.

       --config-file=FILE
              Specify an alternate configuration file.

       -W WORKAROUNDS, --workaround-flags=WORKAROUNDS
              Specify  workarounds  to  vendor  compliance  issues.  Multiple  workarounds can be
              specified separated by commas. A special command line flag of "none", will indicate
              no  workarounds (may be useful for overriding configured defaults). See WORKAROUNDS
              below for a list of available workarounds.

       --debug
              Turn on debugging.

       -?, --help
              Output a help list and exit.

       --usage
              Output a usage message and exit.

       -V, --version
              Output the program version and exit.

IPMIPOWER OPTIONS

       The following options are specific to ipmipower.

       -n, --on
              Power on the target hosts.

       -f, --off
              Power off the target hosts.

       -c, --cycle
              Power cycle the target hosts.

       -r, --reset
              Reset the target hosts.

       -s, --stat
              Get power status of the target hosts.

       --pulse
              Send power diagnostic interrupt to target hosts.

       --soft Initiate a soft-shutdown of the OS via ACPI.

       --on-if-off
              The IPMI specification does not require the power cycle or hard reset  commands  to
              turn  on  a machine that is currently powered off. This option will force ipmipower
              to issue a power on command instead of a power cycle or hard reset command  if  the
              remote machine's power is currently off.

       --wait-until-on
              The  IPMI  specification  allows  power on commands to return prior to the power on
              actually taking place. This option will force  ipmipower  to  regularly  query  the
              remote BMC and return only after the machine has powered on.

       --wait-until-off
              The  IPMI  specification  allows  power  off commands to return prior the power off
              actually taking place. This option will force  ipmipower  to  regularly  query  the
              remote BMC and return only after the machine has powered off.

       --oem-power-type=OEM-POWER-TYPE
              This  option informs ipmipower to initiate power control operations via an IPMI OEM
              specific power control extension. The currently available POWERTYPEs are  NONE  and
              C410X. Please see OEM POWER EXTENSIONS below for additional information.

IPMIPOWER ADVANCED NETWORK OPTIONS

       The following options are used to change the networking behavior of ipmipower.

       --retransmission-wait-timeout=MILLISECONDS
              Specify  the retransmission wait timeout length in milliseconds. The retransmission
              wait  timeout  is  similar  to  the  retransmission  timeout  above,  but  is  used
              specifically  for  power  completion  verification  with  the  --wait-until-on  and
              --wait-until-off options.  Defaults to 500 milliseconds (0.5 seconds).

       --retransmission-backoff-count=COUNT
              Specify the retransmission backoff count  for  retransmissions.  After  ever  COUNT
              retransmissions,  the  retransmission  timeout  length will be increased by another
              factor. Defaults to 8.

       --ping-interval=MILLISECONDS
              Specify the ping interval length in milliseconds. When running in interactive mode,
              RMCP  (Remote  Management  Control Protocol) discovery messages will be sent to all
              configured remote hosts every MILLISECONDS to confirm their support of IPMI.  Power
              commands  cannot  be  sent  to  a  host until it is discovered (or re-discovered if
              previously lost).  Defaults  to  5000  milliseconds  (5  seconds).  Ping  discovery
              messages  can  be disabled by setting this value to 0. RMCP ping discovery messages
              are automatically disabled in non-interactive mode.

       --ping-timeout=MILLISECONDS
              Specify the ping timeout length in milliseconds. When running in interactive  mode,
              RMCP  (Remote  Management  Control Protocol) messages discovery will be sent to all
              configured remote hosts to  confirm  their  support  of  IPMI.  A  remote  host  is
              considered undiscovered if the host does not respond in MILLISECONDS time. Defaults
              to 30000 milliseconds (30 seconds). The ping timeout cannot be larger than the ping
              interval.

       --ping-packet-count=COUNT
              Specify  the  ping  packet  count  size.  Defaults to 10. See the --ping-percent-fR
              option below for more information on this option.

       --ping-percent=PERCENT
              Specify the ping percent value. Defaults to 50.  Since IPMI is based on UDP, it  is
              difficult  for  ipmipower  to  distinguish  between a missing machine and a bad (or
              heavily loaded) network connection in interactive mode. when running in interactive
              mode.  For  example,  suppose  a  link  consistently  drops 80% of the packets to a
              particular machine. The power control operation  may  have  difficulty  completing,
              although a recent pong response from RMCP makes ipmipower believe the machine is up
              and functioning properly.  The ping packet count and percent options  are  used  to
              alleviate  this  problem.  Ipmipower will monitor RMCP ping packets in packet count
              chunks. If ipmipower does not receive a response to greater than  ping  percent  of
              those packets, ipmipower will assume the link to this node is bad and will not send
              power control operations to that node until the  connection  is  determined  to  be
              reliable. This heuristic can be disabled by setting either the ping packet count or
              ping percent to 0. This feature is not used if ping interval is set to 0.

       --ping-consec-count=COUNT
              Specify the ping consecutive count. This is another heuristic used to determine  if
              a  node should be considered discovered, undiscovered, or with a bad connection. If
              a valid RMCP pong response was received for the last COUNT  ping  packets,  a  node
              will  be  considered  discovered,  regardless  of  other  heuristics  listed above.
              Defaults to 5. This heuristic can be disabled by setting  this  value  to  0.  This
              feature is not used if other ping features described above are disabled.

HOSTRANGED OPTIONS

       The  following  options  manipulate  hostranged  output.  See HOSTRANGED SUPPORT below for
       additional information on hostranges.

       -B, --buffer-output
              Buffer hostranged output. For each node, buffer standard output until the node  has
              completed  its  IPMI  operation.  When  specifying  this option, data may appear to
              output slower to the user since the the entire IPMI operation must complete  before
              any data can be output.  See HOSTRANGED SUPPORT below for additional information.

       -C, --consolidate-output
              Consolidate  hostranged  output.  The  complete  standard  output  from  every node
              specified will be consolidated so that nodes with identical output are  not  output
              twice.  A  header  will  list  those  nodes with the consolidated output. When this
              option is specified, no output can be seen until the IPMI operations to  all  nodes
              has  completed.  If  the  user  breaks  out  of  the  program  early, all currently
              consolidated output will be dumped. See HOSTRANGED  SUPPORT  below  for  additional
              information.

       -F NUM, --fanout=NUM
              Specify  multiple  host  fanout.  Indicates  the  maximum  number  of power control
              operations that can be executed in parallel.

       -E, --eliminate
              Eliminate hosts determined as undetected by ipmidetect.  This  attempts  to  remove
              the  common  issue  of  hostranged  execution timing out due to several nodes being
              removed from service in a large cluster. The ipmidetectd daemon must be running  on
              the node executing the command.

       --always-prefix
              Always  prefix output, even if only one host is specified or communicating in-band.
              This option is primarily useful for scripting purposes. Option will be  ignored  if
              specified with the -C option.

INTERACTIVE COMMANDS

       Ipmipower  provides  the  following interactive commands at the ipmipower> prompt.  Before
       any power commands (on, off, cycle, reset, stat, pulse, or soft) can  be  used,  hostnames
       must  be  configured  into  ipmipower,  either  through the command prompt or the hostname
       command below. The parameters and options to the commands below mirror  their  appropriate
       command line options.

       hostname [IPMIHOST(s)]
              Specify a new set of hosts. No input to unconfigure all hosts.

       username [USERNAME]
              Specify a new username. No input for null username.

       password [PASSWORD]
              Specify a new password. No input for null password.

       k_g [K_G]
              Specify  a  new K_g BMC Key. No input for null key. Prefix with '0x' to enter a key
              in hexadecimal

       ipmi-version IPMIVERSION
              Specify the ipmi version to use.

       session-timeout MILLISECONDS
              Specify a new session timeout length.

       retransmission-timeout MILLISECONDS
              Specify a new retransmiision timeout length.

       authentication-type AUTHENTICATION-TYPE
              Specify the authentication type to use.

       cipher-suite-id CIPHER-SUITE-ID
              Specify the cipher suite id to use.

       privilege-level PRIVILEGE-LEVEL
              Specify the privilege level to use.

       workaround-flags WORKAROUNDS
              Specify workaround flags.

       debug [on|off]
              Toggle debug output.

       on [IPMIHOST(s)]
              Turn on all configured hosts or specified hosts.

       off [IPMIHOST(s)]
              Turn off all configured hosts or specified hosts.

       cycle [IPMIHOST(s)]
              Power cycle all configured hosts or specified hosts.

       reset [IPMIHOST(s)]
              Reset all configured hosts or specified hosts.

       stat [IPMIHOST(s)]
              Query power status for all configured hosts or specified hosts.

       pulse [IPMIHOST(s)]
              Pulse diagnostic interrupt all configured hosts or specified hosts.

       soft [IPMIHOST(s)]
              Initiate a soft-shutdown for all configured hosts or specified hosts.

       identify-on [IPMIHOST(s)]
              Turn on physical system identification.

       identify-off [IPMIHOST(s)]
              Turn off physical system identification.

       identify-status [IPMIHOST(s)]
              Query physical system identification status.

       on-if-off [on|off]
              Toggle on-if-off functionality.

       wait-until-on [on|off]
              Toggle wait-until-on functionality.

       wait-until-off [on|off]
              Toggle wait-until-off functionality.

       retransmission-wait-timeout MILLISECONDS
              Specify a new retransmission wait timeout length.

       retransmission-backoff-count COUNT
              Specify a new retransmission backoff count.

       ping-interval MILLISECONDS
              Specify a new ping interval length.

       ping-timeout MILLISECONDS
              Specify a new ping timeout length.

       ping-packet-count COUNT
              Specify a new ping packet count.

       ping-percent PERCENT
              Specify a new ping percent.

       ping-consec-count COUNT
              Specify a new ping consec count.

       buffer-output [on|off]
              Toggle buffer-output functionality.

       consolidate-output [on|off]
              Toggle consolidate-output functionality.

       fanout COUNT
              Specify a fanout.

       always-prefix [on|off]
              Toggle always-prefix functionality.

       help   Output help menu.

       version
              Output version.

       config Output the current configuration.

       quit   Quit program.

OEM POWER EXTENSIONS

       Some motherboards include IPMI OEM extensions for alternate power control mechanisms.  For
       example, these power control mechanisms may allow you to power control a sub-device within
       the system rather than the entire system itself.

       By  specifying  an  OEM  power  type  via  --oem-power-type  on  the   command   line   or
       freeipmi.conf(5),   you   can  instruct  ipmipower  to  execute  alternate  power  control
       implementations over the standard ones. Depending on the OEM extension, some power control
       commands  may  no  longer be available. For example, an OEM extension may allow on but not
       cycle. Specific ipmipower options may not longer function either.

       Some OEM extensions may require additional arguments for their power control action,  such
       as  a sub-device identifier. Additional arguments can be provided by appending a plus sign
       ('+') and the extra information to the end of the  hostname.  This  can  be  done  on  the
       command  line  or  in interactive mode. For example, the hostname mynode+18 would indicate
       the power control operation should be sent to the host mynode, and 18 is the identifier of
       a  possible sub-device to be power controlled. The --consolidate-output option is commonly
       disabled when using an OEM power control that requires extra arguments.

       Because OEM power control may involve subtypes, it is possible a user may  wish  to  power
       control  multiple  sub-devices  on the same host. For example, you might specify the hosts
       mynode+1,mynode+2, indicating to power control subdevice 1 and 2 on mynode.  Because  many
       BMCs  cannot handle multiple IPMI sessions, power control operations to the same host will
       be serialized internally by ipmipower.

       The following are the current OEM power types available, along  with  information  on  the
       systems they work with and the power control operations available.

       C410X  This  OEM  power  type  supports  the power control of PCIe slots on Dell Poweredge
              C410x systems. It supports on, off, and stat. The PCIe slot number ranges from 1-16
              and  must always be specified when attempting to power control with this extension.
              For example, the hostname mynode+2 would inform ipmipower to operate on slot number
              2  on mynode.  The C410x appears to have difficulty handling new slot power control
              requests until prior ones have completed. Users may wish to strongly consider using
              the  --wait-until-on  and  --wait-until-off options if multiple slots will be power
              controlled in short succession.

       NONE   This informs ipmipower that no OEM power type extension is to be used and  standard
              IPMI power control is used. This is the default.

HOSTRANGED SUPPORT

       Multiple  hosts  can  be  input  either as an explicit comma separated lists of hosts or a
       range of hostnames in the general form: prefix[n-m,l-k,...], where n < m and l <  k,  etc.
       The  later  form  should  not  be confused with regular expression character classes (also
       denoted by []). For  example,  foo[19]  does  not  represent  foo1  or  foo9,  but  rather
       represents a degenerate range: foo19.

       This  range  syntax  is  meant  only  as  a convenience on clusters with a prefixNN naming
       convention and specification of ranges should not be  considered  necessary  --  the  list
       foo1,foo9 could be specified as such, or by the range foo[1,9].

       Some examples of range usage follow:
           foo[01-05] instead of foo01,foo02,foo03,foo04,foo05
           foo[7,9-10] instead of foo7,foo9,foo10
           foo[0-3] instead of foo0,foo1,foo2,foo3

       As  a  reminder  to  the reader, some shells will interpret brackets ([ and ]) for pattern
       matching. Depending on your shell, it may be necessary  to  enclose  ranged  lists  within
       quotes.

       When  multiple hosts are specified by the user, a socket will be created for each host and
       polled on, effectively allowing communication to all hosts in parallel.  This  will  allow
       communication  to  large numbers of nodes far more quickly than if done in serial.  The -F
       option can configure the number of nodes that can be communicated with in parallel at  the
       same time.

       By  default,  standard  output  from  each node specified will be output with the hostname
       prepended to each line. Although this output is readable in many  situations,  it  may  be
       difficult  to  read  in  other  situations. For example, output from multiple nodes may be
       mixed together. The -B and -C options can be used to change this default.

EXAMPLES

       Determine the power status of foo[0-2] with null username and password
               ipmipower -h foo[0-2] --stat

       Determine the power status of foo[0-2] with non-null username and password
               ipmipower -h foo[0-2] -u foo -p bar --stat

       Hard reset nodes foo[0-2] with non-null username and password
               ipmipower -h foo[0-2] -u foo -p bar --reset

GENERAL TROUBLESHOOTING

       Most often, IPMI problems are due to configuration problems.

       IPMI over LAN problems involve a misconfiguration of the  remote  machine's  BMC.   Double
       check  to  make sure the following are configured properly in the remote machine's BMC: IP
       address, MAC address, subnet mask, username, user enablement,  user  privilege,  password,
       LAN   privilege,  LAN  enablement,  and  allowed  authentication  type(s).  For  IPMI  2.0
       connections, double check to make sure the cipher  suite  privilege(s)  and  K_g  key  are
       configured  properly.  The  ipmi-config(8)  tool  can be used to check and/or change these
       configuration settings.

       In addition to the troubleshooting tips below, please see WORKAROUNDS  below  to  also  if
       there are any vendor specific bugs that have been discovered and worked around.

       Listed  below  are  many of the common issues for error messages.  For additional support,
       please e-mail the <freeipmi-users@gnu.org> mailing list.

       "username invalid" - The username entered (or a NULL username if none was entered) is  not
       available  on  the  remote  machine.  It  may  also  be possible the remote BMC's username
       configuration is incorrect.

       "password invalid" - The password entered (or a NULL password if none was entered) is  not
       correct.  It may also be possible the password for the user is not correctly configured on
       the remote BMC.

       "password verification timeout" -  Password  verification  has  timed  out.   A  "password
       invalid"  error  (described  above)  or  a  generic  "session  timeout"  (described below)
       occurred.  During this point in the protocol it cannot be differentiated which occurred.

       "k_g invalid" - The K_g key entered (or a NULL  K_g  key  if  none  was  entered)  is  not
       correct.  It  may  also  be possible the K_g key is not correctly configured on the remote
       BMC.

       "privilege level insufficient" - An IPMI command requires a higher user privilege than the
       one  authenticated  with.  Please  try  to  authenticate with a higher privilege. This may
       require authenticating to a different user which has a higher maximum privilege.

       "privilege level cannot be  obtained  for  this  user"  -  The  privilege  level  you  are
       attempting  to  authenticate with is higher than the maximum allowed for this user. Please
       try again with a lower privilege. It may also be  possible  the  maximum  privilege  level
       allowed for a user is not configured properly on the remote BMC.

       "authentication  type unavailable for attempted privilege level" - The authentication type
       you wish to authenticate with is not available for this privilege level. Please try  again
       with  an  alternate  authentication  type  or  alternate  privilege  level. It may also be
       possible the available authentication types you can authenticate with  are  not  correctly
       configured on the remote BMC.

       "cipher  suite  id unavailable" - The cipher suite id you wish to authenticate with is not
       available on the remote BMC. Please try again with an alternate cipher suite  id.  It  may
       also be possible the available cipher suite ids are not correctly configured on the remote
       BMC.

       "ipmi 2.0 unavailable" - IPMI 2.0 was not discovered on the remote machine. Please try  to
       use IPMI 1.5 instead.

       "connection timeout" - Initial IPMI communication failed. A number of potential errors are
       possible, including an invalid hostname specified, an IPMI IP address cannot be  resolved,
       IPMI  is  not  enabled  on  the  remote server, the network connection is bad, etc. Please
       verify configuration and connectivity.

       "session timeout" - The IPMI session has timed  out.  Please  reconnect.   If  this  error
       occurs  often,  you  may wish to increase the retransmission timeout. Some remote BMCs are
       considerably slower than others.

       "internal IPMI error" - An IPMI error has occurred that FreeIPMI  does  not  know  how  to
       handle. Please e-mail <freeipmi-users@gnu.org> to report the issue.

IPMIPOWER TROUBLESHOOTING

       When  powering  on a powered off machine, the client must have a means by which to resolve
       the MAC address of the remote machine's ethernet card. While most  modern  IPMI  solutions
       support  the  ability  to  ARP and resolve addresses when the machine is powered off, some
       older machines do not. This is typically solved in one of two ways:

       1) Enable gratuitous ARPs on the remote machine.  The  remote  machine  will  send  out  a
       gratuitous ARP, which advertises the ethernet IP and MAC address so that other machines on
       the network this information their local ARP cache. For large clusters, this method is not
       recommended since gratuitous ARPs can flood the network with unnecessary traffic.

       2)  Permanently store the remote machine's MAC address in the local ARP cache. This is the
       more common approach on large clusters.

       Other methods are listed in the IPMI specification.

WORKAROUNDS

       With so many different vendors implementing their own IPMI  solutions,  different  vendors
       may  implement  their  IPMI  protocols  incorrectly.  The  following describes a number of
       workarounds currently available to handle discovered  compliance  issues.  When  possible,
       workarounds  have  been implemented so they will be transparent to the user. However, some
       will require the user to specify a workaround be used via the -W option.

       The hardware listed below may only indicate the hardware that a problem was discovered on.
       Newer  versions  of  hardware  may fix the problems indicated below. Similar machines from
       vendors may or may not exhibit the same problems.  Different  vendors  may  license  their
       firmware from the same IPMI firmware developer, so it may be worthwhile to try workarounds
       listed below even if your motherboard is not listed.

       If you believe your hardware has an additional compliance issue that needs a workaround to
       be  implemented,  please  contact  the FreeIPMI maintainers on <freeipmi-users@gnu.org> or
       <freeipmi-devel@gnu.org>.

       authcap -  This  workaround  flag  will  skip  early  checks  for  username  capabilities,
       authentication  capabilities, and K_g support and allow IPMI authentication to succeed. It
       works around multiple issues in which the remote system does not properly report  username
       capabilities, authentication capabilities, or K_g status. Those hitting this issue may see
       "username invalid", "authentication type unavailable for attempted  privilege  level",  or
       "k_g   invalid"   errors.    Issue   observed   on  Asus  P5M2/P5MT-R/RS162-E4/RX4,  Intel
       SR1520ML/X38ML, and Sun Fire 2200/4150/4450 with ELOM.

       nochecksumcheck - This workaround flag will tell  FreeIPMI  to  not  check  the  checksums
       returned  from  IPMI  command  responses.  It  works  around  systems  that return invalid
       checksums due to implementation errors, but the  packet  is  otherwise  valid.  Users  are
       cautioned  on  the  use  of this option, as it removes validation of packet integrity in a
       number of circumstances. However, it is unlikely to be an issue in most situations.  Those
       hitting  this  issue  may  see  "connection  timeout",  "session  timeout",  or  "password
       verification timeout" errors. On IPMI 1.5 connections,  the  "noauthcodecheck"  workaround
       may  also  needed  too.  Issue  observed  on Supermicro X9SCM-iiF, Supermicro X9DRi-F, and
       Supermicro X9DRFR.

       idzero - This workaround flag will allow empty session IDs to be accepted by  the  client.
       It  works  around IPMI sessions that report empty session IDs to the client. Those hitting
       this issue may see "session timeout" errors. Issue observed on Tyan S2882 with M3289 BMC.

       unexpectedauth - This workaround flag will  allow  unexpected  non-null  authcodes  to  be
       checked  as  though they were expected. It works around an issue when packets contain non-
       null  authentication  data  when  they  should  be  null  due  to   disabled   per-message
       authentication.  Those hitting this issue may see "session timeout" errors. Issue observed
       on Dell PowerEdge 2850,SC1425. Confirmed fixed on newer firmware.

       forcepermsg - This workaround flag will force per-message authentication  to  be  used  no
       matter  what is advertised by the remote system. It works around an issue when per-message
       authentication is advertised as disabled on the remote system, but it is actually required
       for  the  protocol.  Those  hitting  this  issue  may see "session timeout" errors.  Issue
       observed on IBM eServer 325.

       endianseq - This workaround flag will flip the endian of the session sequence  numbers  to
       allow  the session to continue properly. It works around IPMI 1.5 session sequence numbers
       that are the wrong endian.  Those hitting this issue may  see  "session  timeout"  errors.
       Issue observed on some Sun ILOM 1.0/2.0 (depends on service processor endian).

       noauthcodecheck  - This workaround flag will tell FreeIPMI to not check the authentication
       codes returned from IPMI 1.5 command  responses.  It  works  around  systems  that  return
       invalid  authentication codes due to hashing or implementation errors. Users are cautioned
       on the use of this option, as it removes an authentication check verifying the validity of
       a  packet.  However, in most organizations, this is unlikely to be a security issue. Those
       hitting  this  issue  may  see  "connection  timeout",  "session  timeout",  or  "password
       verification  timeout"  errors.   Issue  observed  on  Xyratex FB-H8-SRAY, Intel Windmill,
       Quanta Winterfell, and Wiwynn Windmill.

       intel20 - This workaround flag will work around  several  Intel  IPMI  2.0  authentication
       issues.  The  issues  covered include padding of usernames, and password truncation if the
       authentication algorithm is HMAC-MD5-128. Those  hitting  this  issue  may  see  "username
       invalid",  "password  invalid", or "k_g invalid" errors. Issue observed on Intel SE7520AF2
       with Intel Server Management Module (Professional Edition).

       supermicro20 -  This  workaround  flag  will  work  around  several  Supermicro  IPMI  2.0
       authentication  issues  on  motherboards  w/  Peppercon  IPMI firmware. The issues covered
       include handling invalid length authentication codes. Those hitting  this  issue  may  see
       "password  invalid"  errors.  Issue observed on Supermicro H8QME with SIMSO daughter card.
       Confirmed fixed on newerver firmware.

       sun20 - This workaround flag will work work around several  Sun  IPMI  2.0  authentication
       issues. The issues covered include invalid lengthed hash keys, improperly hashed keys, and
       invalid cipher suite records. Those hitting this issue may see "password invalid" or  "bmc
       error"  errors.   Issue  observed  on  Sun Fire 4100/4200/4500 with ILOM.  This workaround
       automatically includes the "opensesspriv" workaround.

       opensesspriv - This workaround flag will slightly alter  FreeIPMI's  IPMI  2.0  connection
       protocol  to  workaround  an  invalid  hashing  algorithm  used  by the remote system. The
       privilege level sent during the Open Session stage of an IPMI 2.0 connection is  used  for
       hashing  keys instead of the privilege level sent during the RAKP1 connection stage. Those
       hitting this issue may see "password invalid", "k_g  invalid",  or  "bad  rmcpplus  status
       code"  errors.   Issue  observed  on Sun Fire 4100/4200/4500 with ILOM, Inventec 5441/Dell
       Xanadu II, Supermicro X8DTH, Supermicro X8DTG, Intel S5500WBV/Penguin  Relion  700,  Intel
       S2600JF/Appro  512X,  Quanta  QSSC-S4R/Appro GB812X-CN, and Dell C5220. This workaround is
       automatically triggered with the "sun20" workaround.

       integritycheckvalue - This workaround flag will work around  an  invalid  integrity  check
       value during an IPMI 2.0 session establishment when using Cipher Suite ID 0. The integrity
       check value should be 0 length, however the remote motherboard responds with  a  non-empty
       field. Those hitting this issue may see "k_g invalid" errors. Issue observed on Supermicro
       X8DTG, Supermicro X8DTU, and Intel S5500WBV/Penguin Relion 700,  and  Intel  S2600JF/Appro
       512X.

       ipmiping  -  This  workaround  option will inform ipmipower to use IPMI based ping packets
       instead of RMCP ping packets. Some motherboards have been observed to not  implement  RMCP
       ping/pong  support  despite  being  required  by the IPMI specification. Issue observed on
       Intel Windmill, Quanta Winterfell, and Wiwynn Windmill.

       No IPMI 1.5 Support - Some motherboards that support IPMI  2.0  have  been  found  to  not
       support  IPMI  1.5. Those hitting this issue may see "ipmi 2.0 unavailable" or "connection
       timeout" errors. This issue can be worked around by using IPMI 2.0 instead of IPMI 1.5  by
       specifying  --driver-type=LAN_2_0.  Issue  observed  on  a  number  of  HP  and Supermicro
       motherboards.

DIAGNOSTICS

       Upon successful execution, exit status is 0. On error, exit status is 1.

       If multiple hosts are specified for communication, the exit status is 0 if and only if all
       targets successfully execute. Otherwise the exit status is 1.

       When  operating  in  interactive  mode,  the  exit  value  will be based on the last power
       operation executed.

KNOWN ISSUES

       On older operating systems, if you input your username, password,  and  other  potentially
       security  relevant  information on the command line, this information may be discovered by
       other users when using tools like the ps(1) command or looking in the /proc  file  system.
       It  is  generally more secure to input password information with options like the -P or -K
       options. Configuring security relevant information  in  the  FreeIPMI  configuration  file
       would also be an appropriate way to hide this information.

       In  order  to  prevent  brute  force attacks, some BMCs will temporarily "lock up" after a
       number of remote authentication errors. You may need to  wait  awhile  in  order  to  this
       temporary "lock up" to pass before you may authenticate again.

       IPMI  specifications  do  not  require  BMCs  to  perform a power control operation before
       returning a completion code to the caller.  Therefore, it is  possible  for  ipmipower  to
       return  power status queries opposite of what you are expecting.  For example, if a "power
       off" operation is performed, a BMC may return a successful completion  code  to  ipmipower
       before  the  "power  off" operation is actually performed. Subsequent power status queries
       may return "on" for several seconds, until the  BMC  actually  performs  the  "power  off"
       operation.

REPORTING BUGS

       Report bugs to <freeipmi-users@gnu.org> or <freeipmi-devel@gnu.org>.

COPYRIGHT

       Copyright (C) 2007-2015 Lawrence Livermore National Security, LLC.
       Copyright (C) 2003-2007 The Regents of the University of California.

       This program is free software; you can redistribute it and/or modify it under the terms of
       the GNU General Public License as  published  by  the  Free  Software  Foundation;  either
       version 3 of the License, or (at your option) any later version.

SEE ALSO

       freeipmi.conf(5), freeipmi(7), ipmi-config(8), ipmi-oem(8)

       http://www.gnu.org/software/freeipmi/