Provided by: libssl-doc_3.0.13-0ubuntu3.4_all bug

NAME

       EVP_PKEY_CTX_ctrl, EVP_PKEY_CTX_ctrl_str, EVP_PKEY_CTX_ctrl_uint64, EVP_PKEY_CTX_md,
       EVP_PKEY_CTX_set_signature_md, EVP_PKEY_CTX_get_signature_md, EVP_PKEY_CTX_set_mac_key,
       EVP_PKEY_CTX_set_group_name, EVP_PKEY_CTX_get_group_name, EVP_PKEY_CTX_set_rsa_padding,
       EVP_PKEY_CTX_get_rsa_padding, EVP_PKEY_CTX_set_rsa_pss_saltlen,
       EVP_PKEY_CTX_get_rsa_pss_saltlen, EVP_PKEY_CTX_set_rsa_keygen_bits,
       EVP_PKEY_CTX_set_rsa_keygen_pubexp, EVP_PKEY_CTX_set1_rsa_keygen_pubexp,
       EVP_PKEY_CTX_set_rsa_keygen_primes, EVP_PKEY_CTX_set_rsa_mgf1_md_name,
       EVP_PKEY_CTX_set_rsa_mgf1_md, EVP_PKEY_CTX_get_rsa_mgf1_md,
       EVP_PKEY_CTX_get_rsa_mgf1_md_name, EVP_PKEY_CTX_set_rsa_oaep_md_name,
       EVP_PKEY_CTX_set_rsa_oaep_md, EVP_PKEY_CTX_get_rsa_oaep_md,
       EVP_PKEY_CTX_get_rsa_oaep_md_name, EVP_PKEY_CTX_set0_rsa_oaep_label,
       EVP_PKEY_CTX_get0_rsa_oaep_label, EVP_PKEY_CTX_set_dsa_paramgen_bits,
       EVP_PKEY_CTX_set_dsa_paramgen_q_bits, EVP_PKEY_CTX_set_dsa_paramgen_md,
       EVP_PKEY_CTX_set_dsa_paramgen_md_props, EVP_PKEY_CTX_set_dsa_paramgen_gindex,
       EVP_PKEY_CTX_set_dsa_paramgen_type, EVP_PKEY_CTX_set_dsa_paramgen_seed,
       EVP_PKEY_CTX_set_dh_paramgen_prime_len, EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
       EVP_PKEY_CTX_set_dh_paramgen_generator, EVP_PKEY_CTX_set_dh_paramgen_type,
       EVP_PKEY_CTX_set_dh_paramgen_gindex, EVP_PKEY_CTX_set_dh_paramgen_seed,
       EVP_PKEY_CTX_set_dh_rfc5114, EVP_PKEY_CTX_set_dhx_rfc5114, EVP_PKEY_CTX_set_dh_pad,
       EVP_PKEY_CTX_set_dh_nid, EVP_PKEY_CTX_set_dh_kdf_type, EVP_PKEY_CTX_get_dh_kdf_type,
       EVP_PKEY_CTX_set0_dh_kdf_oid, EVP_PKEY_CTX_get0_dh_kdf_oid, EVP_PKEY_CTX_set_dh_kdf_md,
       EVP_PKEY_CTX_get_dh_kdf_md, EVP_PKEY_CTX_set_dh_kdf_outlen,
       EVP_PKEY_CTX_get_dh_kdf_outlen, EVP_PKEY_CTX_set0_dh_kdf_ukm,
       EVP_PKEY_CTX_get0_dh_kdf_ukm, EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
       EVP_PKEY_CTX_set_ec_param_enc, EVP_PKEY_CTX_set_ecdh_cofactor_mode,
       EVP_PKEY_CTX_get_ecdh_cofactor_mode, EVP_PKEY_CTX_set_ecdh_kdf_type,
       EVP_PKEY_CTX_get_ecdh_kdf_type, EVP_PKEY_CTX_set_ecdh_kdf_md,
       EVP_PKEY_CTX_get_ecdh_kdf_md, EVP_PKEY_CTX_set_ecdh_kdf_outlen,
       EVP_PKEY_CTX_get_ecdh_kdf_outlen, EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
       EVP_PKEY_CTX_get0_ecdh_kdf_ukm, EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id,
       EVP_PKEY_CTX_get1_id_len, EVP_PKEY_CTX_set_kem_op - algorithm specific control operations

SYNOPSIS

        #include <openssl/evp.h>

        int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
                              int cmd, int p1, void *p2);
        int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
                                     int cmd, uint64_t value);
        int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
                                  const char *value);

        int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);

        int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
        int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);

        int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, const unsigned char *key,
                                     int len);
        int EVP_PKEY_CTX_set_group_name(EVP_PKEY_CTX *ctx, const char *name);
        int EVP_PKEY_CTX_get_group_name(EVP_PKEY_CTX *ctx, char *name, size_t namelen);

        int EVP_PKEY_CTX_set_kem_op(EVP_PKEY_CTX *ctx, const char *op);

        #include <openssl/rsa.h>

        int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
        int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
        int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen);
        int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen);
        int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
        int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
        int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
        int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
                                            const char *mdprops);
        int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
        int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
        int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
                                              size_t namelen);
        int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
                                              const char *mdprops);
        int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
        int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
        int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
                                              size_t namelen);
        int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label,
                                             int len);
        int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);

        #include <openssl/dsa.h>

        int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
        int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits);
        int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
        int EVP_PKEY_CTX_set_dsa_paramgen_md_props(EVP_PKEY_CTX *ctx,
                                                   const char *md_name,
                                                   const char *md_properties);
        int EVP_PKEY_CTX_set_dsa_paramgen_type(EVP_PKEY_CTX *ctx, const char *name);
        int EVP_PKEY_CTX_set_dsa_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
        int EVP_PKEY_CTX_set_dsa_paramgen_seed(EVP_PKEY_CTX *ctx,
                                               const unsigned char *seed,
                                               size_t seedlen);

        #include <openssl/dh.h>

        int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
        int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
        int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
        int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
        int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
        int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
        int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
        int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
        int EVP_PKEY_CTX_set_dh_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
        int EVP_PKEY_CTX_set_dh_paramgen_seed(EVP_PKEY_CTX *ctx,
                                               const unsigned char *seed,
                                               size_t seedlen);
        int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
        int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
        int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
        int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
        int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
        int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
        int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
        int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
        int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);

        #include <openssl/ec.h>

        int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
        int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
        int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
        int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
        int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
        int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
        int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
        int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
        int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
        int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
        int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);

        int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
        int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
        int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len);

       The following functions have been deprecated since OpenSSL 3.0, and can be hidden entirely
       by defining OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros(7):

        #include <openssl/rsa.h>

        int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);

        #include <openssl/dh.h>

        int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);

        #include <openssl/ec.h>

        int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);

DESCRIPTION

       EVP_PKEY_CTX_ctrl() sends a control operation to the context ctx. The key type used must
       match keytype if it is not -1. The parameter optype is a mask indicating which operations
       the control can be applied to.  The control command is indicated in cmd and any additional
       arguments in p1 and p2.

       For cmd = EVP_PKEY_CTRL_SET_MAC_KEY, p1 is the length of the MAC key, and p2 is the MAC
       key. This is used by Poly1305, SipHash, HMAC and CMAC.

       Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will instead call one
       of the algorithm specific functions below.

       EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a uint64 value as p2 to
       EVP_PKEY_CTX_ctrl().

       EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm specific control
       operation to a context ctx in string form. This is intended to be used for options
       specified on the command line or in text files. The commands supported are documented in
       the openssl utility command line pages for the option -pkeyopt which is supported by the
       pkeyutl, genpkey and req commands.

       EVP_PKEY_CTX_md() sends a message digest control operation to the context ctx. The message
       digest is specified by its name md.

       EVP_PKEY_CTX_set_signature_md() sets the message digest type used in a signature. It can
       be used in the RSA, DSA and ECDSA algorithms.

       EVP_PKEY_CTX_get_signature_md()gets the message digest type used in a signature. It can be
       used in the RSA, DSA and ECDSA algorithms.

       Key generation typically involves setting up parameters to be used and generating the
       private and public key data. Some algorithm implementations allow private key data to be
       set explicitly using EVP_PKEY_CTX_set_mac_key().  In this case key generation is simply
       the process of setting up the parameters for the key and then setting the raw key data to
       the value explicitly.  Normally applications would call EVP_PKEY_new_raw_private_key(3) or
       similar functions instead.

       EVP_PKEY_CTX_set_mac_key() can be used with any of the algorithms supported by the
       EVP_PKEY_new_raw_private_key(3) function.

       EVP_PKEY_CTX_set_group_name() sets the group name to name for parameter and key
       generation. For example for EC keys this will set the curve name and for DH keys it will
       set the name of the finite field group.

       EVP_PKEY_CTX_get_group_name() finds the group name that's currently set with ctx, and
       writes it to the location that name points at, as long as its size namelen is large enough
       to store that name, including a terminating NUL byte.

   RSA parameters
       EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for ctx.  The pad parameter can
       take the value RSA_PKCS1_PADDING for PKCS#1 padding, RSA_NO_PADDING for no padding,
       RSA_PKCS1_OAEP_PADDING for OAEP padding (encrypt and decrypt only), RSA_X931_PADDING for
       X9.31 padding (signature operations only), RSA_PKCS1_PSS_PADDING (sign and verify only)
       and RSA_PKCS1_WITH_TLS_PADDING for TLS RSA ClientKeyExchange message padding (decryption
       only).

       Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md() is used. If
       this function is called for PKCS#1 padding the plaintext buffer is an actual digest value
       and is encapsulated in a DigestInfo structure according to PKCS#1 when signing and this
       structure is expected (and stripped off) when verifying. If this control is not used with
       RSA and PKCS#1 padding then the supplied data is used directly and not encapsulated. In
       the case of X9.31 padding for RSA the algorithm identifier byte is added or checked and
       removed if this control is called. If it is not called then the first byte of the
       plaintext buffer is expected to be the algorithm identifier byte.

       EVP_PKEY_CTX_get_rsa_padding() gets the RSA padding mode for ctx.

       EVP_PKEY_CTX_set_rsa_pss_saltlen() sets the RSA PSS salt length to saltlen.  As its name
       implies it is only supported for PSS padding. If this function is not called then the
       maximum salt length is used when signing and auto detection when verifying. Three special
       values are supported:

       RSA_PSS_SALTLEN_DIGEST
           sets the salt length to the digest length.

       RSA_PSS_SALTLEN_MAX
           sets the salt length to the maximum permissible value.

       RSA_PSS_SALTLEN_AUTO
           causes the salt length to be automatically determined based on the PSS block structure
           when verifying.  When signing, it has the same meaning as RSA_PSS_SALTLEN_MAX.

       EVP_PKEY_CTX_get_rsa_pss_saltlen() gets the RSA PSS salt length for ctx.  The padding mode
       must already have been set to RSA_PKCS1_PSS_PADDING.

       EVP_PKEY_CTX_set_rsa_keygen_bits() sets the RSA key length for RSA key generation to bits.
       If not specified 2048 bits is used.

       EVP_PKEY_CTX_set1_rsa_keygen_pubexp() sets the public exponent value for RSA key
       generation to the value stored in pubexp. Currently it should be an odd integer. In
       accordance with the OpenSSL naming convention, the pubexp pointer must be freed
       independently of the EVP_PKEY_CTX (ie, it is internally copied).  If not specified 65537
       is used.

       EVP_PKEY_CTX_set_rsa_keygen_pubexp() does the same as
       EVP_PKEY_CTX_set1_rsa_keygen_pubexp() except that there is no internal copy and therefore
       pubexp should not be modified or freed after the call.

       EVP_PKEY_CTX_set_rsa_keygen_primes() sets the number of primes for RSA key generation to
       primes. If not specified 2 is used.

       EVP_PKEY_CTX_set_rsa_mgf1_md_name() sets the MGF1 digest for RSA padding schemes to the
       digest named mdname. If the RSA algorithm implementation for the selected provider
       supports it then the digest will be fetched using the properties mdprops. If not
       explicitly set the signing digest is used. The padding mode must have been set to
       RSA_PKCS1_OAEP_PADDING or RSA_PKCS1_PSS_PADDING.

       EVP_PKEY_CTX_set_rsa_mgf1_md() does the same as EVP_PKEY_CTX_set_rsa_mgf1_md_name() except
       that the name of the digest is inferred from the supplied md and it is not possible to
       specify any properties.

       EVP_PKEY_CTX_get_rsa_mgf1_md_name() gets the name of the MGF1 digest algorithm for ctx. If
       not explicitly set the signing digest is used.  The padding mode must have been set to
       RSA_PKCS1_OAEP_PADDING or RSA_PKCS1_PSS_PADDING.

       EVP_PKEY_CTX_get_rsa_mgf1_md() does the same as EVP_PKEY_CTX_get_rsa_mgf1_md_name() except
       that it returns a pointer to an EVP_MD object instead. Note that only known, built-in
       EVP_MD objects will be returned. The EVP_MD object may be NULL if the digest is not one of
       these (such as a digest only implemented in a third party provider).

       EVP_PKEY_CTX_set_rsa_oaep_md_name() sets the message digest type used in RSA OAEP to the
       digest named mdname.  If the RSA algorithm implementation for the selected provider
       supports it then the digest will be fetched using the properties mdprops. The padding mode
       must have been set to RSA_PKCS1_OAEP_PADDING.

       EVP_PKEY_CTX_set_rsa_oaep_md() does the same as EVP_PKEY_CTX_set_rsa_oaep_md_name() except
       that the name of the digest is inferred from the supplied md and it is not possible to
       specify any properties.

       EVP_PKEY_CTX_get_rsa_oaep_md_name() gets the message digest algorithm name used in RSA
       OAEP and stores it in the buffer name which is of size namelen. The padding mode must have
       been set to RSA_PKCS1_OAEP_PADDING. The buffer should be sufficiently large for any
       expected digest algorithm names or the function will fail.

       EVP_PKEY_CTX_get_rsa_oaep_md() does the same as EVP_PKEY_CTX_get_rsa_oaep_md_name() except
       that it returns a pointer to an EVP_MD object instead. Note that only known, built-in
       EVP_MD objects will be returned. The EVP_MD object may be NULL if the digest is not one of
       these (such as a digest only implemented in a third party provider).

       EVP_PKEY_CTX_set0_rsa_oaep_label() sets the RSA OAEP label to binary data label and its
       length in bytes to len. If label is NULL or len is 0, the label is cleared. The library
       takes ownership of the label so the caller should not free the original memory pointed to
       by label.  The padding mode must have been set to RSA_PKCS1_OAEP_PADDING.

       EVP_PKEY_CTX_get0_rsa_oaep_label() gets the RSA OAEP label to label. The return value is
       the label length. The padding mode must have been set to RSA_PKCS1_OAEP_PADDING. The
       resulting pointer is owned by the library and should not be freed by the caller.

       RSA_PKCS1_WITH_TLS_PADDING is used when decrypting an RSA encrypted TLS pre-master secret
       in a TLS ClientKeyExchange message. It is the same as RSA_PKCS1_PADDING except that it
       additionally verifies that the result is the correct length and the first two bytes are
       the protocol version initially requested by the client. If the encrypted content is
       publicly invalid then the decryption will fail. However, if the padding checks fail then
       decryption will still appear to succeed but a random TLS premaster secret will be returned
       instead. This padding mode accepts two parameters which can be set using the
       EVP_PKEY_CTX_set_params(3) function. These are OSSL_ASYM_CIPHER_PARAM_TLS_CLIENT_VERSION
       and OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION, both of which are expected to be
       unsigned integers. Normally only the first of these will be set and represents the TLS
       protocol version that was first requested by the client (e.g. 0x0303 for TLSv1.2, 0x0302
       for TLSv1.1 etc). Historically some buggy clients would use the negotiated protocol
       version instead of the protocol version first requested. If this behaviour should be
       tolerated then OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION should be set to the actual
       negotiated protocol version. Otherwise it should be left unset.

       Similarly to the RSA_PKCS1_WITH_TLS_PADDING above, since OpenSSL version 3.1.0, the use of
       RSA_PKCS1_PADDING will return a randomly generated message instead of padding errors in
       case padding checks fail. Applications that want to remain secure while using earlier
       versions of OpenSSL, still need to handle both the error code from the RSA decryption
       operation and the returned message in a side channel secure manner.  This protection
       against Bleichenbacher attacks can be disabled by setting the
       OSSL_ASYM_CIPHER_PARAM_IMPLICIT_REJECTION (an unsigned integer) to 0.

   DSA parameters
       EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used for DSA parameter
       generation to nbits. If not specified, 2048 is used.

       EVP_PKEY_CTX_set_dsa_paramgen_q_bits() sets the number of bits in the subprime parameter q
       for DSA parameter generation to qbits. If not specified, 224 is used. If a digest function
       is specified below, this parameter is ignored and instead, the number of bits in q matches
       the size of the digest.

       EVP_PKEY_CTX_set_dsa_paramgen_md() sets the digest function used for DSA parameter
       generation to md. If not specified, one of SHA-1, SHA-224, or SHA-256 is selected to match
       the bit length of q above.

       EVP_PKEY_CTX_set_dsa_paramgen_md_props() sets the digest function used for DSA parameter
       generation using md_name and md_properties to retrieve the digest from a provider.  If not
       specified, md_name will be set to one of SHA-1, SHA-224, or SHA-256 depending on the bit
       length of q above. md_properties is a property query string that has a default value of ''
       if not specified.

       EVP_PKEY_CTX_set_dsa_paramgen_gindex() sets the gindex used by the generator G. The
       default value is -1 which uses unverifiable g, otherwise a positive value uses verifiable
       g. This value must be saved if key validation of g is required, since it is not part of a
       persisted key.

       EVP_PKEY_CTX_set_dsa_paramgen_seed() sets the seed to use for generation rather than using
       a randomly generated value for the seed. This is useful for testing purposes only and can
       fail if the seed does not produce primes for both p & q on its first iteration. This value
       must be saved if key validation of p, q, and verifiable g are required, since it is not
       part of a persisted key.

       EVP_PKEY_CTX_set_dsa_paramgen_type() sets the generation type to use FIPS186-4 generation
       if name is "fips186_4", or FIPS186-2 generation if name is "fips186_2". The default value
       for the default provider is "fips186_2". The default value for the FIPS provider is
       "fips186_4".

   DH parameters
       EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH prime parameter p for
       DH parameter generation. If this function is not called then 2048 is used. Only accepts
       lengths greater than or equal to 256.

       EVP_PKEY_CTX_set_dh_paramgen_subprime_len() sets the length of the DH optional subprime
       parameter q for DH parameter generation. The default is 256 if the prime is at least 2048
       bits long or 160 otherwise. The DH paramgen type must have been set to "fips186_4".

       EVP_PKEY_CTX_set_dh_paramgen_generator() sets DH generator to gen for DH parameter
       generation. If not specified 2 is used.

       EVP_PKEY_CTX_set_dh_paramgen_type() sets the key type for DH parameter generation. The
       supported parameters are:

       DH_PARAMGEN_TYPE_GROUP
           Use a named group. If only the safe prime parameter p is set this can be used to
           select a ffdhe safe prime group of the correct size.

       DH_PARAMGEN_TYPE_FIPS_186_4
           FIPS186-4 FFC parameter generator.

       DH_PARAMGEN_TYPE_FIPS_186_2
           FIPS186-2 FFC parameter generator (X9.42 DH).

       DH_PARAMGEN_TYPE_GENERATOR
           Uses a safe prime generator g (PKCS#3 format).

       The default in the default provider is DH_PARAMGEN_TYPE_GENERATOR for the "DH" keytype,
       and DH_PARAMGEN_TYPE_FIPS_186_2 for the "DHX" keytype. In the FIPS provider the default
       value is DH_PARAMGEN_TYPE_GROUP for the "DH" keytype and <DH_PARAMGEN_TYPE_FIPS_186_4 for
       the "DHX" keytype.

       EVP_PKEY_CTX_set_dh_paramgen_gindex() sets the gindex used by the generator G.  The
       default value is -1 which uses unverifiable g, otherwise a positive value uses verifiable
       g. This value must be saved if key validation of g is required, since it is not part of a
       persisted key.

       EVP_PKEY_CTX_set_dh_paramgen_seed() sets the seed to use for generation rather than using
       a randomly generated value for the seed. This is useful for testing purposes only and can
       fail if the seed does not produce primes for both p & q on its first iteration. This value
       must be saved if key validation of p, q, and verifiable g are required, since it is not
       part of a persisted key.

       EVP_PKEY_CTX_set_dh_pad() sets the DH padding mode.  If pad is 1 the shared secret is
       padded with zeros up to the size of the DH prime p.  If pad is zero (the default) then no
       padding is performed.

       EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values corresponding to nid as defined
       in RFC7919 or RFC3526. The nid parameter must be NID_ffdhe2048, NID_ffdhe3072,
       NID_ffdhe4096, NID_ffdhe6144, NID_ffdhe8192, NID_modp_1536, NID_modp_2048, NID_modp_3072,
       NID_modp_4096, NID_modp_6144, NID_modp_8192 or NID_undef to clear the stored value. This
       function can be called during parameter or key generation.  The nid parameter and the
       rfc5114 parameter are mutually exclusive.

       EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() both set the DH
       parameters to the values defined in RFC5114. The rfc5114 parameter must be 1, 2 or 3
       corresponding to RFC5114 sections 2.1, 2.2 and 2.3. or 0 to clear the stored value. This
       macro can be called during parameter generation. The ctx must have a key type of
       EVP_PKEY_DHX.  The rfc5114 parameter and the nid parameter are mutually exclusive.

   DH key derivation function parameters
       Note that all of the following functions require that the ctx parameter has a private key
       type of EVP_PKEY_DHX. When using key derivation, the output of EVP_PKEY_derive() is the
       output of the KDF instead of the DH shared secret.  The KDF output is typically used as a
       Key Encryption Key (KEK) that in turn encrypts a Content Encryption Key (CEK).

       EVP_PKEY_CTX_set_dh_kdf_type() sets the key derivation function type to kdf for DH key
       derivation. Possible values are EVP_PKEY_DH_KDF_NONE and EVP_PKEY_DH_KDF_X9_42 which uses
       the key derivation specified in RFC2631 (based on the keying algorithm described in
       X9.42). When using key derivation, the kdf_oid, kdf_md and kdf_outlen parameters must also
       be specified.

       EVP_PKEY_CTX_get_dh_kdf_type() gets the key derivation function type for ctx used for DH
       key derivation. Possible values are EVP_PKEY_DH_KDF_NONE and EVP_PKEY_DH_KDF_X9_42.

       EVP_PKEY_CTX_set0_dh_kdf_oid() sets the key derivation function object identifier to oid
       for DH key derivation. This OID should identify the algorithm to be used with the Content
       Encryption Key.  The library takes ownership of the object identifier so the caller should
       not free the original memory pointed to by oid.

       EVP_PKEY_CTX_get0_dh_kdf_oid() gets the key derivation function oid for ctx used for DH
       key derivation. The resulting pointer is owned by the library and should not be freed by
       the caller.

       EVP_PKEY_CTX_set_dh_kdf_md() sets the key derivation function message digest to md for DH
       key derivation. Note that RFC2631 specifies that this digest should be SHA1 but OpenSSL
       tolerates other digests.

       EVP_PKEY_CTX_get_dh_kdf_md() gets the key derivation function message digest for ctx used
       for DH key derivation.

       EVP_PKEY_CTX_set_dh_kdf_outlen() sets the key derivation function output length to len for
       DH key derivation.

       EVP_PKEY_CTX_get_dh_kdf_outlen() gets the key derivation function output length for ctx
       used for DH key derivation.

       EVP_PKEY_CTX_set0_dh_kdf_ukm() sets the user key material to ukm and its length to len for
       DH key derivation. This parameter is optional and corresponds to the partyAInfo field in
       RFC2631 terms. The specification requires that it is 512 bits long but this is not
       enforced by OpenSSL.  The library takes ownership of the user key material so the caller
       should not free the original memory pointed to by ukm.

       EVP_PKEY_CTX_get0_dh_kdf_ukm() gets the user key material for ctx.  The return value is
       the user key material length. The resulting pointer is owned by the library and should not
       be freed by the caller.

   EC parameters
       Use EVP_PKEY_CTX_set_group_name() (described above) to set the curve name to name for
       parameter and key generation.

       EVP_PKEY_CTX_set_ec_paramgen_curve_nid() does the same as EVP_PKEY_CTX_set_group_name(),
       but is specific to EC and uses a nid rather than a name string.

       For EC parameter generation, one of EVP_PKEY_CTX_set_group_name() or
       EVP_PKEY_CTX_set_ec_paramgen_curve_nid() must be called or an error occurs because there
       is no default curve.  These function can also be called to set the curve explicitly when
       generating an EC key.

       EVP_PKEY_CTX_get_group_name() (described above) can be used to obtain the curve name
       that's currently set with ctx.

       EVP_PKEY_CTX_set_ec_param_enc() sets the EC parameter encoding to param_enc when
       generating EC parameters or an EC key. The encoding can be OPENSSL_EC_EXPLICIT_CURVE for
       explicit parameters (the default in versions of OpenSSL before 1.1.0) or
       OPENSSL_EC_NAMED_CURVE to use named curve form.  For maximum compatibility the named curve
       form should be used. Note: the OPENSSL_EC_NAMED_CURVE value was added in OpenSSL 1.1.0;
       previous versions should use 0 instead.

   ECDH parameters
       EVP_PKEY_CTX_set_ecdh_cofactor_mode() sets the cofactor mode to cofactor_mode for ECDH key
       derivation. Possible values are 1 to enable cofactor key derivation, 0 to disable it and
       -1 to clear the stored cofactor mode and fallback to the private key cofactor mode.

       EVP_PKEY_CTX_get_ecdh_cofactor_mode() returns the cofactor mode for ctx used for ECDH key
       derivation. Possible values are 1 when cofactor key derivation is enabled and 0 otherwise.

   ECDH key derivation function parameters
       EVP_PKEY_CTX_set_ecdh_kdf_type() sets the key derivation function type to kdf for ECDH key
       derivation. Possible values are EVP_PKEY_ECDH_KDF_NONE and EVP_PKEY_ECDH_KDF_X9_63 which
       uses the key derivation specified in X9.63.  When using key derivation, the kdf_md and
       kdf_outlen parameters must also be specified.

       EVP_PKEY_CTX_get_ecdh_kdf_type() returns the key derivation function type for ctx used for
       ECDH key derivation. Possible values are EVP_PKEY_ECDH_KDF_NONE and
       EVP_PKEY_ECDH_KDF_X9_63.

       EVP_PKEY_CTX_set_ecdh_kdf_md() sets the key derivation function message digest to md for
       ECDH key derivation. Note that X9.63 specifies that this digest should be SHA1 but OpenSSL
       tolerates other digests.

       EVP_PKEY_CTX_get_ecdh_kdf_md() gets the key derivation function message digest for ctx
       used for ECDH key derivation.

       EVP_PKEY_CTX_set_ecdh_kdf_outlen() sets the key derivation function output length to len
       for ECDH key derivation.

       EVP_PKEY_CTX_get_ecdh_kdf_outlen() gets the key derivation function output length for ctx
       used for ECDH key derivation.

       EVP_PKEY_CTX_set0_ecdh_kdf_ukm() sets the user key material to ukm for ECDH key
       derivation. This parameter is optional and corresponds to the shared info in X9.63 terms.
       The library takes ownership of the user key material so the caller should not free the
       original memory pointed to by ukm.

       EVP_PKEY_CTX_get0_ecdh_kdf_ukm() gets the user key material for ctx.  The return value is
       the user key material length. The resulting pointer is owned by the library and should not
       be freed by the caller.

   Other parameters
       EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len() are used to
       manipulate the special identifier field for specific signature algorithms such as SM2. The
       EVP_PKEY_CTX_set1_id() sets an ID pointed by id with the length id_len to the library. The
       library takes a copy of the id so that the caller can safely free the original memory
       pointed to by id.  EVP_PKEY_CTX_get1_id_len() returns the length of the ID set via a
       previous call to EVP_PKEY_CTX_set1_id(). The length is usually used to allocate adequate
       memory for further calls to EVP_PKEY_CTX_get1_id(). EVP_PKEY_CTX_get1_id() returns the
       previously set ID value to caller in id. The caller should allocate adequate memory space
       for the id before calling EVP_PKEY_CTX_get1_id().

       EVP_PKEY_CTX_set_kem_op() sets the KEM operation to run. This can be set after
       EVP_PKEY_encapsulate_init() or EVP_PKEY_decapsulate_init() to select the kem operation.
       RSA is the only key type that supports encapsulation currently, and as there is no default
       operation for the RSA type, this function must be called before EVP_PKEY_encapsulate() or
       EVP_PKEY_decapsulate().

RETURN VALUES

       All other functions described on this page return a positive value for success and 0 or a
       negative value for failure. In particular a return value of -2 indicates the operation is
       not supported by the public key algorithm.

SEE ALSO

       EVP_PKEY_CTX_set_params(3), EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3),
       EVP_PKEY_sign(3), EVP_PKEY_verify(3), EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3),
       EVP_PKEY_keygen(3) EVP_PKEY_encapsulate(3) EVP_PKEY_decapsulate(3)

HISTORY

       EVP_PKEY_CTX_get_rsa_oaep_md_name(), EVP_PKEY_CTX_get_rsa_mgf1_md_name(),
       EVP_PKEY_CTX_set_rsa_mgf1_md_name(), EVP_PKEY_CTX_set_rsa_oaep_md_name(),
       EVP_PKEY_CTX_set_dsa_paramgen_md_props(), EVP_PKEY_CTX_set_dsa_paramgen_gindex(),
       EVP_PKEY_CTX_set_dsa_paramgen_type(), EVP_PKEY_CTX_set_dsa_paramgen_seed(),
       EVP_PKEY_CTX_set_group_name() and EVP_PKEY_CTX_get_group_name() were added in OpenSSL 3.0.

       The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len() macros
       were added in 1.1.1, other functions were added in OpenSSL 1.0.0.

       In OpenSSL 1.1.1 and below the functions were mostly macros.  From OpenSSL 3.0 they are
       all functions.

       EVP_PKEY_CTX_set_rsa_keygen_pubexp(), EVP_PKEY_CTX_get0_dh_kdf_ukm(), and
       EVP_PKEY_CTX_get0_ecdh_kdf_ukm() were deprecated in OpenSSL 3.0.

COPYRIGHT

       Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the Apache License 2.0 (the "License").  You may not use this file except
       in compliance with the License.  You can obtain a copy in the file LICENSE in the source
       distribution or at <https://www.openssl.org/source/license.html>.