Provided by: libmath-gsl-perl_0.44-1build3_amd64 

NAME
Math::GSL::Integration - Routines for performing numerical integration (quadrature) of a function in one
dimension
SYNOPSIS
use Math::GSL::Integration qw /:all/;
my $function = sub { $_[0]**2 } ;
my ($lower, $upper ) = (0,1);
my ($relerr,$abserr) = (0,1e-7);
my ($status, $result, $abserr, $num_evals) = gsl_integration_qng ( $function,
$lower, $upper, $relerr, $abserr
);
DESCRIPTION
This module allows you to numerically integrate a Perl subroutine. Depending on the properties of your
function (singularities, smoothness) and the type of integration range (finite, infinite, semi-infinite),
you will need to choose a quadrature routine that fits your needs.
• gsl_integration_workspace_alloc($n)
This function allocates a workspace sufficient to hold $n double precision intervals, their
integration results and error estimates.
• gsl_integration_workspace_free($w)
This function frees the memory associated with the workspace $w.
• "gsl_integration_qaws_table_alloc($alpha, $beta, $mu, $nu)"
This function allocates space for a gsl_integration_qaws_table struct
describing a singular weight function W(x) with the parameters ($alpha, $beta,
$mu, $nu), W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x) where
$alpha > -1, $beta > -1, and $mu = 0, 1, $nu = 0, 1. The weight function can
take four different forms depending on the values of $mu and $nu,
W(x) = (x-a)^alpha (b-x)^beta (mu = 0, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(x-a) (mu = 1, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(b-x) (mu = 0, nu = 1)
W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1)
The singular points (a,b) do not have to be specified until the integral is computed, where they are
the endpoints of the integration range. The function returns a pointer to the newly allocated table
gsl_integration_qaws_table if no errors were detected, and 0 in the case of error.
• "gsl_integration_qaws_table_set($t, $alpha, $beta, $mu, $nu)"
This function modifies the parameters ($alpha, $beta, $mu, $nu) of an existing
gsl_integration_qaws_table struct $t.
• gsl_integration_qaws_table_free($t)
This function frees all the memory associated with the
gsl_integration_qaws_table struct $t.
• "gsl_integration_qawo_table_alloc($omega, $L, $sine, $n)"
• "gsl_integration_qawo_table_set($t, $omega, $L, $sine, $n)"
This function changes the parameters omega, L and sine of the existing
workspace $t.
• "gsl_integration_qawo_table_set_length($t, $L)"
This function allows the length parameter $L of the workspace $t to be
changed.
• gsl_integration_qawo_table_free($t)
This function frees all the memory associated with the workspace $t.
• "gsl_integration_qk15($function,$a,$b,$resabs,$resasc) "
• "gsl_integration_qk21($function,$a,$b,$resabs,$resasc) "
• "gsl_integration_qk31($function,$a,$b,$resabs,$resasc) "
• "gsl_integration_qk41($function,$a,$b,$resabs,$resasc) "
• "gsl_integration_qk51($function,$a,$b,$resabs,$resasc) "
• "gsl_integration_qk61($function,$a,$b,$resabs,$resasc) "
• "gsl_integration_qcheb($function, $a, $b, $cheb12, $cheb24) "
• "gsl_integration_qk "
• "gsl_integration_qng($function,$a,$b,$epsabs,$epsrel,$num_evals) "
This routine QNG (Quadrature Non-Adaptive Gaussian) is inexpensive is the sense that it will evaluate
the function much fewer times than the adaptive routines. Because of this it does not need any
workspaces, so it is also more memory efficient. It should be perfectly fine for well-behaved
functions (smooth and nonsingular), but will not be able to get the required accuracy or may not
converge for more complicated functions.
• "gsl_integration_qag($function,$a,$b,$epsabs,$epsrel,$limit,$key,$workspace) "
This routine QAG (Quadrature Adaptive Gaussian) ...
• "gsl_integration_qagi($function,$epsabs,$epsrel,$limit,$workspace) "
• "gsl_integration_qagiu($function,$a,$epsabs,$epsrel,$limit,$workspace) "
• "gsl_integration_qagil($function,$b,$epsabs,$epsrel,$limit,$workspace) "
• "gsl_integration_qags($func,$a,$b,$epsabs,$epsrel,$limit,$workspace)"
($status, $result, $abserr) = gsl_integration_qags (
sub { 1/$_[0]} ,
1, 10, 0, 1e-7, 1000,
$workspace,
);
This function applies the Gauss-Kronrod 21-point integration rule
adaptively until an estimate of the integral of $func over ($a,$b) is
achieved within the desired absolute and relative error limits,
$epsabs and $epsrel.
• "gsl_integration_qagp($function, $pts, $npts, $epsbs, $epsrel, $limit, $workspace) "
• "gsl_integration_qawc($function, $a, $b, $c, $epsabs, $epsrel, $limit, $workspace) "
• "gsl_integration_qaws($function, $a, $b, $qaws_table, $epsabs, $epsrel, $limit, $workspace) "
• "gsl_integration_qawo($function, $a, $epsabs, $epsrel, $limit, $workspace, $qawo_table) "
• "gsl_integration_qawf($function, $a, $epsabs, $limit, $workspace, $cycle_workspace, $qawo_table) "
This module also includes the following constants :
• $GSL_INTEG_COSINE
• $GSL_INTEG_SINE
• $GSL_INTEG_GAUSS15
• $GSL_INTEG_GAUSS21
• $GSL_INTEG_GAUSS31
• $GSL_INTEG_GAUSS41
• $GSL_INTEG_GAUSS51
• $GSL_INTEG_GAUSS61
The following error constants are part of the Math::GSL::Errno module and can be returned by the
gsl_integration_* functions :
• $GSL_EMAXITER
Maximum number of subdivisions was exceeded.
• $GSL_EROUND
Cannot reach tolerance because of roundoff error, or roundoff error was detected in the extrapolation
table.
• GSL_ESING
A non-integrable singularity or other bad integrand behavior was found in the integration interval.
• GSL_EDIVERGE
The integral is divergent, or too slowly convergent to be integrated numerically.
MORE INFO
For more information on the functions, we refer you to the GSL official documentation:
<http://www.gnu.org/software/gsl/manual/html_node/>
AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
COPYRIGHT AND LICENSE
Copyright (C) 2008-2023 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.
perl v5.38.2 2024-03-31 Math::GSL::Integration(3pm)