Provided by: libmath-gsl-perl_0.44-1build3_amd64 

NAME
Math::GSL::Sys - Misc Math Functions
SYNOPSIS
use Math::GSL::Sys qw/:all/;
DESCRIPTION
This module contains various useful math functions that are not usually provided by standard libraries.
• gsl_log1p($x)
This function computes the value of \log(1+$x) in a way that is accurate for small $x. It provides an
alternative to the BSD math function log1p(x).
• gsl_expm1($x)
This function computes the value of \exp($x)-1 in a way that is accurate for small $x. It provides an
alternative to the BSD math function expm1(x).
• "gsl_hypot($x, $y)"
This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids overflow. It provides an
alternative to the BSD math function hypot($x,$y).
• "gsl_hypot3($x, $y, $z)"
This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that avoids overflow.
• gsl_acosh($x)
This function computes the value of \arccosh($x). It provides an alternative to the standard math
function acosh($x).
• gsl_asinh($x)
This function computes the value of \arcsinh($x). It provides an alternative to the standard math
function asinh($x).
• gsl_atanh($x)
This function computes the value of \arctanh($x). It provides an alternative to the standard math
function atanh($x).
• gsl_isnan($x)
This function returns 1 if $x is not-a-number.
• gsl_isinf($x)
This function returns +1 if $x is positive infinity, -1 if $x is negative infinity and 0 otherwise.
• gsl_finite($x)
This function returns 1 if $x is a real number, and 0 if it is infinite or not-a-number.
• "gsl_posinf "
• "gsl_neginf "
• "gsl_fdiv "
• "gsl_coerce_double "
• "gsl_coerce_float "
• "gsl_coerce_long_double "
• "gsl_ldexp($x, $e)"
This function computes the value of $x * 2**$e. It provides an alternative to the standard math
function ldexp($x,$e).
• gsl_frexp($x)
This function splits the number $x into its normalized fraction f and exponent e, such that $x = f *
2^e and 0.5 <= f < 1. The function returns f and then the exponent in e. If $x is zero, both f and e
are set to zero. This function provides an alternative to the standard math function frexp(x, e).
• "gsl_fcmp($x, $y, $epsilon)"
This function determines whether $x and $y are approximately equal to a relative accuracy $epsilon.
The relative accuracy is measured using an interval of size 2 \delta, where \delta = 2^k \epsilon and
k is the maximum base-2 exponent of $x and $y as computed by the function frexp. If $x and $y lie
within this interval, they are considered approximately equal and the function returns 0. Otherwise
if $x < $y, the function returns -1, or if $x > $y, the function returns +1. Note that $x and $y are
compared to relative accuracy, so this function is not suitable for testing whether a value is
approximately zero. The implementation is based on the package fcmp by T.C. Belding.
For more information on the functions, we refer you to the GSL official documentation:
<http://www.gnu.org/software/gsl/manual/html_node/>
AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
COPYRIGHT AND LICENSE
Copyright (C) 2008-2023 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.
perl v5.38.2 2024-03-31 Math::GSL::Sys(3pm)