Provided by: libmath-gsl-perl_0.44-1build3_amd64 bug

NAME

       Math::GSL::Sys - Misc Math Functions

SYNOPSIS

           use Math::GSL::Sys qw/:all/;

DESCRIPTION

       This module contains various useful math functions that are not usually provided by
       standard libraries.

       •   gsl_log1p($x)

           This function computes the value of \log(1+$x) in a way that is accurate for small $x.
           It provides an alternative to the BSD math function log1p(x).

       •   gsl_expm1($x)

           This function computes the value of \exp($x)-1 in a way that is accurate for small $x.
           It provides an alternative to the BSD math function expm1(x).

       •   "gsl_hypot($x, $y)"

           This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids overflow.
           It provides an alternative to the BSD math function hypot($x,$y).

       •   "gsl_hypot3($x, $y, $z)"

           This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that avoids
           overflow.

       •   gsl_acosh($x)

           This function computes the value of \arccosh($x). It provides an alternative to the
           standard math function acosh($x).

       •   gsl_asinh($x)

           This function computes the value of \arcsinh($x). It provides an alternative to the
           standard math function asinh($x).

       •   gsl_atanh($x)

           This function computes the value of \arctanh($x). It provides an alternative to the
           standard math function atanh($x).

       •   gsl_isnan($x)

           This function returns 1 if $x is not-a-number.

       •   gsl_isinf($x)

           This function returns +1 if $x is positive infinity, -1 if $x is negative infinity and
           0 otherwise.

       •   gsl_finite($x)

           This function returns 1 if $x is a real number, and 0 if it is infinite or not-a-
           number.

       •   "gsl_posinf "

       •   "gsl_neginf "

       •   "gsl_fdiv "

       •   "gsl_coerce_double "

       •   "gsl_coerce_float "

       •   "gsl_coerce_long_double "

       •   "gsl_ldexp($x, $e)"

           This function computes the value of $x * 2**$e. It provides an alternative to the
           standard math function ldexp($x,$e).

       •   gsl_frexp($x)

           This function splits the number $x into its normalized fraction f and exponent e, such
           that $x = f * 2^e and 0.5 <= f < 1. The function returns f and then the exponent in e.
           If $x is zero, both f and e are set to zero. This function provides an alternative to
           the standard math function frexp(x, e).

       •   "gsl_fcmp($x, $y, $epsilon)"

           This function determines whether $x and $y are approximately equal to a relative
           accuracy $epsilon. The relative accuracy is measured using an interval of size 2
           \delta, where \delta = 2^k \epsilon and k is the maximum base-2 exponent of $x and $y
           as computed by the function frexp. If $x and $y lie within this interval, they are
           considered approximately equal and the function returns 0. Otherwise if $x < $y, the
           function returns -1, or if $x > $y, the function returns +1. Note that $x and $y are
           compared to relative accuracy, so this function is not suitable for testing whether a
           value is approximately zero. The implementation is based on the package fcmp by T.C.
           Belding.

       For more information on the functions, we refer you to the GSL official documentation:
       <http://www.gnu.org/software/gsl/manual/html_node/>

AUTHORS

       Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

COPYRIGHT AND LICENSE

       Copyright (C) 2008-2023 Jonathan "Duke" Leto and Thierry Moisan

       This program is free software; you can redistribute it and/or modify it under the same
       terms as Perl itself.