Provided by: libmath-gsl-perl_0.44-1build3_amd64
NAME
Math::GSL::Sys - Misc Math Functions
SYNOPSIS
use Math::GSL::Sys qw/:all/;
DESCRIPTION
This module contains various useful math functions that are not usually provided by standard libraries. • gsl_log1p($x) This function computes the value of \log(1+$x) in a way that is accurate for small $x. It provides an alternative to the BSD math function log1p(x). • gsl_expm1($x) This function computes the value of \exp($x)-1 in a way that is accurate for small $x. It provides an alternative to the BSD math function expm1(x). • "gsl_hypot($x, $y)" This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids overflow. It provides an alternative to the BSD math function hypot($x,$y). • "gsl_hypot3($x, $y, $z)" This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that avoids overflow. • gsl_acosh($x) This function computes the value of \arccosh($x). It provides an alternative to the standard math function acosh($x). • gsl_asinh($x) This function computes the value of \arcsinh($x). It provides an alternative to the standard math function asinh($x). • gsl_atanh($x) This function computes the value of \arctanh($x). It provides an alternative to the standard math function atanh($x). • gsl_isnan($x) This function returns 1 if $x is not-a-number. • gsl_isinf($x) This function returns +1 if $x is positive infinity, -1 if $x is negative infinity and 0 otherwise. • gsl_finite($x) This function returns 1 if $x is a real number, and 0 if it is infinite or not-a- number. • "gsl_posinf " • "gsl_neginf " • "gsl_fdiv " • "gsl_coerce_double " • "gsl_coerce_float " • "gsl_coerce_long_double " • "gsl_ldexp($x, $e)" This function computes the value of $x * 2**$e. It provides an alternative to the standard math function ldexp($x,$e). • gsl_frexp($x) This function splits the number $x into its normalized fraction f and exponent e, such that $x = f * 2^e and 0.5 <= f < 1. The function returns f and then the exponent in e. If $x is zero, both f and e are set to zero. This function provides an alternative to the standard math function frexp(x, e). • "gsl_fcmp($x, $y, $epsilon)" This function determines whether $x and $y are approximately equal to a relative accuracy $epsilon. The relative accuracy is measured using an interval of size 2 \delta, where \delta = 2^k \epsilon and k is the maximum base-2 exponent of $x and $y as computed by the function frexp. If $x and $y lie within this interval, they are considered approximately equal and the function returns 0. Otherwise if $x < $y, the function returns -1, or if $x > $y, the function returns +1. Note that $x and $y are compared to relative accuracy, so this function is not suitable for testing whether a value is approximately zero. The implementation is based on the package fcmp by T.C. Belding. For more information on the functions, we refer you to the GSL official documentation: <http://www.gnu.org/software/gsl/manual/html_node/>
AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
COPYRIGHT AND LICENSE
Copyright (C) 2008-2023 Jonathan "Duke" Leto and Thierry Moisan This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.