Provided by: libssl-doc_3.0.13-0ubuntu3.4_all bug

NAME

       LHASH, DECLARE_LHASH_OF, OPENSSL_LH_COMPFUNC, OPENSSL_LH_HASHFUNC, OPENSSL_LH_DOALL_FUNC,
       LHASH_DOALL_ARG_FN_TYPE, IMPLEMENT_LHASH_HASH_FN, IMPLEMENT_LHASH_COMP_FN, lh_TYPE_new,
       lh_TYPE_free, lh_TYPE_flush, lh_TYPE_insert, lh_TYPE_delete, lh_TYPE_retrieve,
       lh_TYPE_doall, lh_TYPE_doall_arg, lh_TYPE_num_items, lh_TYPE_get_down_load,
       lh_TYPE_set_down_load, lh_TYPE_error, OPENSSL_LH_new, OPENSSL_LH_free,  OPENSSL_LH_flush,
       OPENSSL_LH_insert, OPENSSL_LH_delete, OPENSSL_LH_retrieve, OPENSSL_LH_doall,
       OPENSSL_LH_doall_arg, OPENSSL_LH_num_items, OPENSSL_LH_get_down_load,
       OPENSSL_LH_set_down_load, OPENSSL_LH_error - dynamic hash table

SYNOPSIS

        #include <openssl/lhash.h>

        DECLARE_LHASH_OF(TYPE);

        LHASH_OF(TYPE) *lh_TYPE_new(OPENSSL_LH_HASHFUNC hash, OPENSSL_LH_COMPFUNC compare);
        void lh_TYPE_free(LHASH_OF(TYPE) *table);
        void lh_TYPE_flush(LHASH_OF(TYPE) *table);

        TYPE *lh_TYPE_insert(LHASH_OF(TYPE) *table, TYPE *data);
        TYPE *lh_TYPE_delete(LHASH_OF(TYPE) *table, TYPE *data);
        TYPE *lh_TYPE_retrieve(LHASH_OF(TYPE) *table, TYPE *data);

        void lh_TYPE_doall(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNC func);
        void lh_TYPE_doall_arg(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNCARG func,
                               TYPE *arg);

        unsigned long lh_TYPE_num_items(OPENSSL_LHASH *lh);
        unsigned long lh_TYPE_get_down_load(OPENSSL_LHASH *lh);
        void lh_TYPE_set_down_load(OPENSSL_LHASH *lh, unsigned long dl);

        int lh_TYPE_error(LHASH_OF(TYPE) *table);

        typedef int (*OPENSSL_LH_COMPFUNC)(const void *, const void *);
        typedef unsigned long (*OPENSSL_LH_HASHFUNC)(const void *);
        typedef void (*OPENSSL_LH_DOALL_FUNC)(const void *);
        typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *);

        OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c);
        void OPENSSL_LH_free(OPENSSL_LHASH *lh);
        void OPENSSL_LH_flush(OPENSSL_LHASH *lh);

        void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data);
        void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data);
        void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data);

        void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func);
        void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg);

        unsigned long OPENSSL_LH_num_items(OPENSSL_LHASH *lh);
        unsigned long OPENSSL_LH_get_down_load(OPENSSL_LHASH *lh);
        void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long dl);

        int OPENSSL_LH_error(OPENSSL_LHASH *lh);

        #define LH_LOAD_MULT   /* integer constant */

DESCRIPTION

       This library implements type-checked dynamic hash tables. The hash table entries can be
       arbitrary structures. Usually they consist of key and value fields.  In the description
       here, TYPE is used a placeholder for any of the OpenSSL datatypes, such as SSL_SESSION.

       lh_TYPE_new() creates a new LHASH_OF(TYPE) structure to store arbitrary data entries, and
       specifies the 'hash' and 'compare' callbacks to be used in organising the table's entries.
       The hash callback takes a pointer to a table entry as its argument and returns an unsigned
       long hash value for its key field.  The hash value is normally truncated to a power of 2,
       so make sure that your hash function returns well mixed low order bits.  The compare
       callback takes two arguments (pointers to two hash table entries), and returns 0 if their
       keys are equal, nonzero otherwise.

       If your hash table will contain items of some particular type and the hash and compare
       callbacks hash/compare these types, then the IMPLEMENT_LHASH_HASH_FN and
       IMPLEMENT_LHASH_COMP_FN macros can be used to create callback wrappers of the prototypes
       required by lh_TYPE_new() as shown in this example:

        /*
         * Implement the hash and compare functions; "stuff" can be any word.
         */
        static unsigned long stuff_hash(const TYPE *a)
        {
            ...
        }
        static int stuff_cmp(const TYPE *a, const TYPE *b)
        {
            ...
        }

        /*
         * Implement the wrapper functions.
         */
        static IMPLEMENT_LHASH_HASH_FN(stuff, TYPE)
        static IMPLEMENT_LHASH_COMP_FN(stuff, TYPE)

       If the type is going to be used in several places, the following macros can be used in a
       common header file to declare the function wrappers:

        DECLARE_LHASH_HASH_FN(stuff, TYPE)
        DECLARE_LHASH_COMP_FN(stuff, TYPE)

       Then a hash table of TYPE objects can be created using this:

        LHASH_OF(TYPE) *htable;

        htable = B<lh_I<TYPE>_new>(LHASH_HASH_FN(stuff), LHASH_COMP_FN(stuff));

       lh_TYPE_free() frees the LHASH_OF(TYPE) structure table. Allocated hash table entries will
       not be freed; consider using lh_TYPE_doall() to deallocate any remaining entries in the
       hash table (see below).

       lh_TYPE_flush() empties the LHASH_OF(TYPE) structure table. New entries can be added to
       the flushed table.  Allocated hash table entries will not be freed; consider using
       lh_TYPE_doall() to deallocate any remaining entries in the hash table (see below).

       lh_TYPE_insert() inserts the structure pointed to by data into table.  If there already is
       an entry with the same key, the old value is replaced. Note that lh_TYPE_insert() stores
       pointers, the data are not copied.

       lh_TYPE_delete() deletes an entry from table.

       lh_TYPE_retrieve() looks up an entry in table. Normally, data is a structure with the key
       field(s) set; the function will return a pointer to a fully populated structure.

       lh_TYPE_doall() will, for every entry in the hash table, call func with the data item as
       its parameter.  For example:

        /* Cleans up resources belonging to 'a' (this is implemented elsewhere) */
        void TYPE_cleanup_doall(TYPE *a);

        /* Implement a prototype-compatible wrapper for "TYPE_cleanup" */
        IMPLEMENT_LHASH_DOALL_FN(TYPE_cleanup, TYPE)

        /* Call "TYPE_cleanup" against all items in a hash table. */
        lh_TYPE_doall(hashtable, LHASH_DOALL_FN(TYPE_cleanup));

        /* Then the hash table itself can be deallocated */
        lh_TYPE_free(hashtable);

       lh_TYPE_doall_arg() is the same as lh_TYPE_doall() except that func will be called with
       arg as the second argument and func should be of type LHASH_DOALL_ARG_FN(TYPE) (a callback
       prototype that is passed both the table entry and an extra argument).  As with lh_doall(),
       you can instead choose to declare your callback with a prototype matching the types you
       are dealing with and use the declare/implement macros to create compatible wrappers that
       cast variables before calling your type-specific callbacks.  An example of this is
       demonstrated here (printing all hash table entries to a BIO that is provided by the
       caller):

        /* Prints item 'a' to 'output_bio' (this is implemented elsewhere) */
        void TYPE_print_doall_arg(const TYPE *a, BIO *output_bio);

        /* Implement a prototype-compatible wrapper for "TYPE_print" */
        static IMPLEMENT_LHASH_DOALL_ARG_FN(TYPE, const TYPE, BIO)

        /* Print out the entire hashtable to a particular BIO */
        lh_TYPE_doall_arg(hashtable, LHASH_DOALL_ARG_FN(TYPE_print), BIO,
                          logging_bio);

       Note that it is by default not safe to use lh_TYPE_delete() inside a callback passed to
       lh_TYPE_doall() or lh_TYPE_doall_arg(). The reason for this is that deleting an item from
       the hash table may result in the hash table being contracted to a smaller size and
       rehashed.  lh_TYPE_doall() and lh_TYPE_doall_arg() are unsafe and will exhibit undefined
       behaviour under these conditions, as these functions assume the hash table size and bucket
       pointers do not change during the call.

       If it is desired to use lh_TYPE_doall() or lh_TYPE_doall_arg() with lh_TYPE_delete(), it
       is essential that you call lh_TYPE_set_down_load() with a down_load argument of 0 first.
       This disables hash table contraction and guarantees that it will be safe to delete items
       from a hash table during a call to lh_TYPE_doall() or lh_TYPE_doall_arg().

       It is never safe to call lh_TYPE_insert() during a call to lh_TYPE_doall() or
       lh_TYPE_doall_arg().

       lh_TYPE_error() can be used to determine if an error occurred in the last operation.

       lh_TYPE_num_items() returns the number of items in the hash table.

       lh_TYPE_get_down_load() and lh_TYPE_set_down_load() get and set the factor used to
       determine when the hash table is contracted. The factor is the load factor at or below
       which hash table contraction will occur, multiplied by LH_LOAD_MULT, where the load factor
       is the number of items divided by the number of nodes. Setting this value to 0 disables
       hash table contraction.

       OPENSSL_LH_new() is the same as the lh_TYPE_new() except that it is not type specific. So
       instead of returning an LHASH_OF(TYPE) value it returns a void *. In the same way the
       functions OPENSSL_LH_free(), OPENSSL_LH_flush(), OPENSSL_LH_insert(), OPENSSL_LH_delete(),
       OPENSSL_LH_retrieve(), OPENSSL_LH_doall(), OPENSSL_LH_doall_arg(), OPENSSL_LH_num_items(),
       OPENSSL_LH_get_down_load(), OPENSSL_LH_set_down_load() and OPENSSL_LH_error() are
       equivalent to the similarly named lh_TYPE functions except that they return or use a void
       * where the equivalent lh_TYPE function returns or uses a TYPE * or LHASH_OF(TYPE) *.
       lh_TYPE functions are implemented as type checked wrappers around the OPENSSL_LH
       functions. Most applications should not call the OPENSSL_LH functions directly.

RETURN VALUES

       lh_TYPE_new() and OPENSSL_LH_new() return NULL on error, otherwise a pointer to the new
       LHASH structure.

       When a hash table entry is replaced, lh_TYPE_insert() or OPENSSL_LH_insert() return the
       value being replaced. NULL is returned on normal operation and on error.

       lh_TYPE_delete() and OPENSSL_LH_delete() return the entry being deleted.  NULL is returned
       if there is no such value in the hash table.

       lh_TYPE_retrieve() and OPENSSL_LH_retrieve() return the hash table entry if it has been
       found, NULL otherwise.

       lh_TYPE_error() and OPENSSL_LH_error() return 1 if an error occurred in the last
       operation, 0 otherwise. It's meaningful only after non-retrieve operations.

       lh_TYPE_free(), OPENSSL_LH_free(), lh_TYPE_flush(), OPENSSL_LH_flush(), lh_TYPE_doall()
       OPENSSL_LH_doall(), lh_TYPE_doall_arg() and OPENSSL_LH_doall_arg() return no values.

NOTE

       The LHASH code is not thread safe. All updating operations, as well as lh_TYPE_error() or
       OPENSSL_LH_error() calls must be performed under a write lock. All retrieve operations
       should be performed under a read lock, unless accurate usage statistics are desired. In
       which case, a write lock should be used for retrieve operations as well. For output of the
       usage statistics, using the functions from OPENSSL_LH_stats(3), a read lock suffices.

       The LHASH code regards table entries as constant data.  As such, it internally represents
       lh_insert()'d items with a "const void *" pointer type.  This is why callbacks such as
       those used by lh_doall() and lh_doall_arg() declare their prototypes with "const", even
       for the parameters that pass back the table items' data pointers - for consistency, user-
       provided data is "const" at all times as far as the LHASH code is concerned.  However, as
       callers are themselves providing these pointers, they can choose whether they too should
       be treating all such parameters as constant.

       As an example, a hash table may be maintained by code that, for reasons of encapsulation,
       has only "const" access to the data being indexed in the hash table (i.e. it is returned
       as "const" from elsewhere in their code) - in this case the LHASH prototypes are
       appropriate as-is.  Conversely, if the caller is responsible for the life-time of the data
       in question, then they may well wish to make modifications to table item passed back in
       the lh_doall() or lh_doall_arg() callbacks (see the "TYPE_cleanup" example above).  If so,
       the caller can either cast the "const" away (if they're providing the raw callbacks
       themselves) or use the macros to declare/implement the wrapper functions without "const"
       types.

       Callers that only have "const" access to data they're indexing in a table, yet declare
       callbacks without constant types (or cast the "const" away themselves), are therefore
       creating their own risks/bugs without being encouraged to do so by the API.  On a related
       note, those auditing code should pay special attention to any instances of
       DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types without any "const"
       qualifiers.

BUGS

       lh_TYPE_insert() and OPENSSL_LH_insert() return NULL both for success and error.

SEE ALSO

       OPENSSL_LH_stats(3)

HISTORY

       In OpenSSL 1.0.0, the lhash interface was revamped for better type checking.

COPYRIGHT

       Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the Apache License 2.0 (the "License").  You may not use this file except
       in compliance with the License.  You can obtain a copy in the file LICENSE in the source
       distribution or at <https://www.openssl.org/source/license.html>.