Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       gebrd - gebrd: reduction to bidiagonal

SYNOPSIS

   Functions
       subroutine cgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)
           CGEBRD
       subroutine dgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)
           DGEBRD
       subroutine sgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)
           SGEBRD
       subroutine zgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)
           ZGEBRD

Detailed Description

Function Documentation

   subroutine cgebrd (integer m, integer n, complex, dimension( lda, * ) a, integer lda, real,
       dimension( * ) d, real, dimension( * ) e, complex, dimension( * ) tauq, complex,
       dimension( * ) taup, complex, dimension( * ) work, integer lwork, integer info)
       CGEBRD

       Purpose:

            CGEBRD reduces a general complex M-by-N matrix A to upper or lower
            bidiagonal form B by a unitary transformation: Q**H * A * P = B.

            If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

       Parameters
           M

                     M is INTEGER
                     The number of rows in the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns in the matrix A.  N >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the M-by-N general matrix to be reduced.
                     On exit,
                     if m >= n, the diagonal and the first superdiagonal are
                       overwritten with the upper bidiagonal matrix B; the
                       elements below the diagonal, with the array TAUQ, represent
                       the unitary matrix Q as a product of elementary
                       reflectors, and the elements above the first superdiagonal,
                       with the array TAUP, represent the unitary matrix P as
                       a product of elementary reflectors;
                     if m < n, the diagonal and the first subdiagonal are
                       overwritten with the lower bidiagonal matrix B; the
                       elements below the first subdiagonal, with the array TAUQ,
                       represent the unitary matrix Q as a product of
                       elementary reflectors, and the elements above the diagonal,
                       with the array TAUP, represent the unitary matrix P as
                       a product of elementary reflectors.
                     See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is REAL array, dimension (min(M,N))
                     The diagonal elements of the bidiagonal matrix B:
                     D(i) = A(i,i).

           E

                     E is REAL array, dimension (min(M,N)-1)
                     The off-diagonal elements of the bidiagonal matrix B:
                     if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
                     if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

           TAUQ

                     TAUQ is COMPLEX array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the unitary matrix Q. See Further Details.

           TAUP

                     TAUP is COMPLEX array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the unitary matrix P. See Further Details.

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.  LWORK >= max(1,M,N).
                     For optimum performance LWORK >= (M+N)*NB, where NB
                     is the optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrices Q and P are represented as products of elementary
             reflectors:

             If m >= n,

                Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

             where tauq and taup are complex scalars, and v and u are complex
             vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
             A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
             A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

             If m < n,

                Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

             where tauq and taup are complex scalars, and v and u are complex
             vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
             A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
             A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

             The contents of A on exit are illustrated by the following examples:

             m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

               (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
               (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
               (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
               (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
               (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
               (  v1  v2  v3  v4  v5 )

             where d and e denote diagonal and off-diagonal elements of B, vi
             denotes an element of the vector defining H(i), and ui an element of
             the vector defining G(i).

   subroutine dgebrd (integer m, integer n, double precision, dimension( lda, * ) a, integer lda,
       double precision, dimension( * ) d, double precision, dimension( * ) e, double precision,
       dimension( * ) tauq, double precision, dimension( * ) taup, double precision, dimension( *
       ) work, integer lwork, integer info)
       DGEBRD

       Purpose:

            DGEBRD reduces a general real M-by-N matrix A to upper or lower
            bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.

            If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

       Parameters
           M

                     M is INTEGER
                     The number of rows in the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns in the matrix A.  N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the M-by-N general matrix to be reduced.
                     On exit,
                     if m >= n, the diagonal and the first superdiagonal are
                       overwritten with the upper bidiagonal matrix B; the
                       elements below the diagonal, with the array TAUQ, represent
                       the orthogonal matrix Q as a product of elementary
                       reflectors, and the elements above the first superdiagonal,
                       with the array TAUP, represent the orthogonal matrix P as
                       a product of elementary reflectors;
                     if m < n, the diagonal and the first subdiagonal are
                       overwritten with the lower bidiagonal matrix B; the
                       elements below the first subdiagonal, with the array TAUQ,
                       represent the orthogonal matrix Q as a product of
                       elementary reflectors, and the elements above the diagonal,
                       with the array TAUP, represent the orthogonal matrix P as
                       a product of elementary reflectors.
                     See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is DOUBLE PRECISION array, dimension (min(M,N))
                     The diagonal elements of the bidiagonal matrix B:
                     D(i) = A(i,i).

           E

                     E is DOUBLE PRECISION array, dimension (min(M,N)-1)
                     The off-diagonal elements of the bidiagonal matrix B:
                     if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
                     if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

           TAUQ

                     TAUQ is DOUBLE PRECISION array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the orthogonal matrix Q. See Further Details.

           TAUP

                     TAUP is DOUBLE PRECISION array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the orthogonal matrix P. See Further Details.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.  LWORK >= max(1,M,N).
                     For optimum performance LWORK >= (M+N)*NB, where NB
                     is the optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrices Q and P are represented as products of elementary
             reflectors:

             If m >= n,

                Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T

             where tauq and taup are real scalars, and v and u are real vectors;
             v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
             u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
             tauq is stored in TAUQ(i) and taup in TAUP(i).

             If m < n,

                Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T

             where tauq and taup are real scalars, and v and u are real vectors;
             v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
             u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
             tauq is stored in TAUQ(i) and taup in TAUP(i).

             The contents of A on exit are illustrated by the following examples:

             m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

               (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
               (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
               (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
               (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
               (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
               (  v1  v2  v3  v4  v5 )

             where d and e denote diagonal and off-diagonal elements of B, vi
             denotes an element of the vector defining H(i), and ui an element of
             the vector defining G(i).

   subroutine sgebrd (integer m, integer n, real, dimension( lda, * ) a, integer lda, real,
       dimension( * ) d, real, dimension( * ) e, real, dimension( * ) tauq, real, dimension( * )
       taup, real, dimension( * ) work, integer lwork, integer info)
       SGEBRD

       Purpose:

            SGEBRD reduces a general real M-by-N matrix A to upper or lower
            bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.

            If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

       Parameters
           M

                     M is INTEGER
                     The number of rows in the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns in the matrix A.  N >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the M-by-N general matrix to be reduced.
                     On exit,
                     if m >= n, the diagonal and the first superdiagonal are
                       overwritten with the upper bidiagonal matrix B; the
                       elements below the diagonal, with the array TAUQ, represent
                       the orthogonal matrix Q as a product of elementary
                       reflectors, and the elements above the first superdiagonal,
                       with the array TAUP, represent the orthogonal matrix P as
                       a product of elementary reflectors;
                     if m < n, the diagonal and the first subdiagonal are
                       overwritten with the lower bidiagonal matrix B; the
                       elements below the first subdiagonal, with the array TAUQ,
                       represent the orthogonal matrix Q as a product of
                       elementary reflectors, and the elements above the diagonal,
                       with the array TAUP, represent the orthogonal matrix P as
                       a product of elementary reflectors.
                     See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is REAL array, dimension (min(M,N))
                     The diagonal elements of the bidiagonal matrix B:
                     D(i) = A(i,i).

           E

                     E is REAL array, dimension (min(M,N)-1)
                     The off-diagonal elements of the bidiagonal matrix B:
                     if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
                     if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

           TAUQ

                     TAUQ is REAL array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the orthogonal matrix Q. See Further Details.

           TAUP

                     TAUP is REAL array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the orthogonal matrix P. See Further Details.

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.  LWORK >= max(1,M,N).
                     For optimum performance LWORK >= (M+N)*NB, where NB
                     is the optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrices Q and P are represented as products of elementary
             reflectors:

             If m >= n,

                Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T

             where tauq and taup are real scalars, and v and u are real vectors;
             v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
             u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
             tauq is stored in TAUQ(i) and taup in TAUP(i).

             If m < n,

                Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T

             where tauq and taup are real scalars, and v and u are real vectors;
             v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
             u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
             tauq is stored in TAUQ(i) and taup in TAUP(i).

             The contents of A on exit are illustrated by the following examples:

             m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

               (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
               (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
               (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
               (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
               (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
               (  v1  v2  v3  v4  v5 )

             where d and e denote diagonal and off-diagonal elements of B, vi
             denotes an element of the vector defining H(i), and ui an element of
             the vector defining G(i).

   subroutine zgebrd (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda,
       double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16,
       dimension( * ) tauq, complex*16, dimension( * ) taup, complex*16, dimension( * ) work,
       integer lwork, integer info)
       ZGEBRD

       Purpose:

            ZGEBRD reduces a general complex M-by-N matrix A to upper or lower
            bidiagonal form B by a unitary transformation: Q**H * A * P = B.

            If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

       Parameters
           M

                     M is INTEGER
                     The number of rows in the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns in the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the M-by-N general matrix to be reduced.
                     On exit,
                     if m >= n, the diagonal and the first superdiagonal are
                       overwritten with the upper bidiagonal matrix B; the
                       elements below the diagonal, with the array TAUQ, represent
                       the unitary matrix Q as a product of elementary
                       reflectors, and the elements above the first superdiagonal,
                       with the array TAUP, represent the unitary matrix P as
                       a product of elementary reflectors;
                     if m < n, the diagonal and the first subdiagonal are
                       overwritten with the lower bidiagonal matrix B; the
                       elements below the first subdiagonal, with the array TAUQ,
                       represent the unitary matrix Q as a product of
                       elementary reflectors, and the elements above the diagonal,
                       with the array TAUP, represent the unitary matrix P as
                       a product of elementary reflectors.
                     See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is DOUBLE PRECISION array, dimension (min(M,N))
                     The diagonal elements of the bidiagonal matrix B:
                     D(i) = A(i,i).

           E

                     E is DOUBLE PRECISION array, dimension (min(M,N)-1)
                     The off-diagonal elements of the bidiagonal matrix B:
                     if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
                     if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

           TAUQ

                     TAUQ is COMPLEX*16 array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the unitary matrix Q. See Further Details.

           TAUP

                     TAUP is COMPLEX*16 array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors which
                     represent the unitary matrix P. See Further Details.

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.  LWORK >= max(1,M,N).
                     For optimum performance LWORK >= (M+N)*NB, where NB
                     is the optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrices Q and P are represented as products of elementary
             reflectors:

             If m >= n,

                Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

             where tauq and taup are complex scalars, and v and u are complex
             vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
             A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
             A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

             If m < n,

                Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)

             Each H(i) and G(i) has the form:

                H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

             where tauq and taup are complex scalars, and v and u are complex
             vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
             A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
             A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

             The contents of A on exit are illustrated by the following examples:

             m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

               (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
               (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
               (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
               (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
               (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
               (  v1  v2  v3  v4  v5 )

             where d and e denote diagonal and off-diagonal elements of B, vi
             denotes an element of the vector defining H(i), and ui an element of
             the vector defining G(i).

Author

       Generated automatically by Doxygen for LAPACK from the source code.