Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
gelq2 - gelq2: LQ factor, level 2
SYNOPSIS
Functions subroutine cgelq2 (m, n, a, lda, tau, work, info) CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. subroutine dgelq2 (m, n, a, lda, tau, work, info) DGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. subroutine sgelq2 (m, n, a, lda, tau, work, info) SGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. subroutine zgelq2 (m, n, a, lda, tau, work, info) ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
Detailed Description
Function Documentation
subroutine cgelq2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info) CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: CGELQ2 computes an LQ factorization of a complex m-by-n matrix A: A = ( L 0 ) * Q where: Q is a n-by-n orthogonal matrix; L is a lower-triangular m-by-m matrix; 0 is a m-by-(n-m) zero matrix, if m < n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and below the diagonal of the array contain the m by min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in A(i,i+1:n), and tau in TAU(i). subroutine dgelq2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info) DGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: DGELQ2 computes an LQ factorization of a real m-by-n matrix A: A = ( L 0 ) * Q where: Q is a n-by-n orthogonal matrix; L is a lower-triangular m-by-m matrix; 0 is a m-by-(n-m) zero matrix, if m < n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and below the diagonal of the array contain the m by min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is DOUBLE PRECISION array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), and tau in TAU(i). subroutine sgelq2 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info) SGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: SGELQ2 computes an LQ factorization of a real m-by-n matrix A: A = ( L 0 ) * Q where: Q is a n-by-n orthogonal matrix; L is a lower-triangular m-by-m matrix; 0 is a m-by-(n-m) zero matrix, if m < n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and below the diagonal of the array contain the m by min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is REAL array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), and tau in TAU(i). subroutine zgelq2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info) ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A: A = ( L 0 ) * Q where: Q is a n-by-n orthogonal matrix; L is a lower-triangular m-by-m matrix; 0 is a m-by-(n-m) zero matrix, if m < n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and below the diagonal of the array contain the m by min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in A(i,i+1:n), and tau in TAU(i).
Author
Generated automatically by Doxygen for LAPACK from the source code.