Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       hbev - {hb,sb}ev: eig, QR iteration

SYNOPSIS

   Functions
       subroutine chbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)
            CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices
       subroutine dsbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
            DSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices
       subroutine ssbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
            SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices
       subroutine zhbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)
            ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices

Detailed Description

Function Documentation

   subroutine chbev (character jobz, character uplo, integer n, integer kd, complex, dimension(
       ldab, * ) ab, integer ldab, real, dimension( * ) w, complex, dimension( ldz, * ) z,
       integer ldz, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)
        CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            CHBEV computes all the eigenvalues and, optionally, eigenvectors of
            a complex Hermitian band matrix A.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is COMPLEX array, dimension (LDAB, N)
                     On entry, the upper or lower triangle of the Hermitian band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

                     On exit, AB is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the first
                     superdiagonal and the diagonal of the tridiagonal matrix T
                     are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     the diagonal and first subdiagonal of T are returned in the
                     first two rows of AB.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD + 1.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is COMPLEX array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is COMPLEX array, dimension (N)

           RWORK

                     RWORK is REAL array, dimension (max(1,3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dsbev (character jobz, character uplo, integer n, integer kd, double precision,
       dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, double
       precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work,
       integer info)
        DSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            DSBEV computes all the eigenvalues and, optionally, eigenvectors of
            a real symmetric band matrix A.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is DOUBLE PRECISION array, dimension (LDAB, N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

                     On exit, AB is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the first
                     superdiagonal and the diagonal of the tridiagonal matrix T
                     are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     the diagonal and first subdiagonal of T are returned in the
                     first two rows of AB.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD + 1.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is DOUBLE PRECISION array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine ssbev (character jobz, character uplo, integer n, integer kd, real, dimension(
       ldab, * ) ab, integer ldab, real, dimension( * ) w, real, dimension( ldz, * ) z, integer
       ldz, real, dimension( * ) work, integer info)
        SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            SSBEV computes all the eigenvalues and, optionally, eigenvectors of
            a real symmetric band matrix A.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is REAL array, dimension (LDAB, N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

                     On exit, AB is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the first
                     superdiagonal and the diagonal of the tridiagonal matrix T
                     are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     the diagonal and first subdiagonal of T are returned in the
                     first two rows of AB.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD + 1.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is REAL array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is REAL array, dimension (max(1,3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zhbev (character jobz, character uplo, integer n, integer kd, complex*16,
       dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, complex*16,
       dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, double precision,
       dimension( * ) rwork, integer info)
        ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            ZHBEV computes all the eigenvalues and, optionally, eigenvectors of
            a complex Hermitian band matrix A.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is COMPLEX*16 array, dimension (LDAB, N)
                     On entry, the upper or lower triangle of the Hermitian band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

                     On exit, AB is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the first
                     superdiagonal and the diagonal of the tridiagonal matrix T
                     are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     the diagonal and first subdiagonal of T are returned in the
                     first two rows of AB.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD + 1.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is COMPLEX*16 array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is COMPLEX*16 array, dimension (N)

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.