Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
hesv - {he,sy}sv: rook (v1)
SYNOPSIS
Functions subroutine chesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info) CHESV computes the solution to system of linear equations A * X = B for HE matrices subroutine csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info) CSYSV computes the solution to system of linear equations A * X = B for SY matrices subroutine dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info) DSYSV computes the solution to system of linear equations A * X = B for SY matrices subroutine ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info) SSYSV computes the solution to system of linear equations A * X = B for SY matrices subroutine zhesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info) ZHESV computes the solution to system of linear equations A * X = B for HE matrices subroutine zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info) ZSYSV computes the solution to system of linear equations A * X = B for SY matrices
Detailed Description
Function Documentation
subroutine chesv (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) work, integer lwork, integer info) CHESV computes the solution to system of linear equations A * X = B for HE matrices Purpose: CHESV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as A = U * D * U**H, if UPLO = 'U', or A = L * D * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by CHETRF. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by CHETRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. B B is COMPLEX array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= 1, and for best performance LWORK >= max(1,N*NB), where NB is the optimal blocksize for CHETRF. for LWORK < N, TRS will be done with Level BLAS 2 for LWORK >= N, TRS will be done with Level BLAS 3 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine csysv (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) work, integer lwork, integer info) CSYSV computes the solution to system of linear equations A * X = B for SY matrices Purpose: CSYSV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by CSYTRF. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by CSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. B B is COMPLEX array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= 1, and for best performance LWORK >= max(1,N*NB), where NB is the optimal blocksize for CSYTRF. for LWORK < N, TRS will be done with Level BLAS 2 for LWORK >= N, TRS will be done with Level BLAS 3 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dsysv (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) work, integer lwork, integer info) DSYSV computes the solution to system of linear equations A * X = B for SY matrices Purpose: DSYSV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by DSYTRF. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by DSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. B B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= 1, and for best performance LWORK >= max(1,N*NB), where NB is the optimal blocksize for DSYTRF. for LWORK < N, TRS will be done with Level BLAS 2 for LWORK >= N, TRS will be done with Level BLAS 3 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine ssysv (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) work, integer lwork, integer info) SSYSV computes the solution to system of linear equations A * X = B for SY matrices Purpose: SSYSV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by SSYTRF. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by SSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. B B is REAL array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= 1, and for best performance LWORK >= max(1,N*NB), where NB is the optimal blocksize for SSYTRF. for LWORK < N, TRS will be done with Level BLAS 2 for LWORK >= N, TRS will be done with Level BLAS 3 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zhesv (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) work, integer lwork, integer info) ZHESV computes the solution to system of linear equations A * X = B for HE matrices Purpose: ZHESV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as A = U * D * U**H, if UPLO = 'U', or A = L * D * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by ZHETRF. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by ZHETRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= 1, and for best performance LWORK >= max(1,N*NB), where NB is the optimal blocksize for ZHETRF. for LWORK < N, TRS will be done with Level BLAS 2 for LWORK >= N, TRS will be done with Level BLAS 3 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zsysv (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) work, integer lwork, integer info) ZSYSV computes the solution to system of linear equations A * X = B for SY matrices Purpose: ZSYSV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by ZSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= 1, and for best performance LWORK >= max(1,N*NB), where NB is the optimal blocksize for ZSYTRF. for LWORK < N, TRS will be done with Level BLAS 2 for LWORK >= N, TRS will be done with Level BLAS 3 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.