Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       hpev - {hp,sp}ev: eig, QR iteration

SYNOPSIS

   Functions
       subroutine chpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
            CHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices
       subroutine dspev (jobz, uplo, n, ap, w, z, ldz, work, info)
            DSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices
       subroutine sspev (jobz, uplo, n, ap, w, z, ldz, work, info)
            SSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices
       subroutine zhpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
            ZHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices

Detailed Description

Function Documentation

   subroutine chpev (character jobz, character uplo, integer n, complex, dimension( * ) ap, real,
       dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * )
       work, real, dimension( * ) rwork, integer info)
        CHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            CHPEV computes all the eigenvalues and, optionally, eigenvectors of a
            complex Hermitian matrix in packed storage.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, AP is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     and first superdiagonal of the tridiagonal matrix T overwrite
                     the corresponding elements of A, and if UPLO = 'L', the
                     diagonal and first subdiagonal of T overwrite the
                     corresponding elements of A.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is COMPLEX array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is COMPLEX array, dimension (max(1, 2*N-1))

           RWORK

                     RWORK is REAL array, dimension (max(1, 3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dspev (character jobz, character uplo, integer n, double precision, dimension( * )
       ap, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer
       ldz, double precision, dimension( * ) work, integer info)
        DSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            DSPEV computes all the eigenvalues and, optionally, eigenvectors of a
            real symmetric matrix A in packed storage.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, AP is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     and first superdiagonal of the tridiagonal matrix T overwrite
                     the corresponding elements of A, and if UPLO = 'L', the
                     diagonal and first subdiagonal of T overwrite the
                     corresponding elements of A.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is DOUBLE PRECISION array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (3*N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sspev (character jobz, character uplo, integer n, real, dimension( * ) ap, real,
       dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work,
       integer info)
        SSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            SSPEV computes all the eigenvalues and, optionally, eigenvectors of a
            real symmetric matrix A in packed storage.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is REAL array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, AP is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     and first superdiagonal of the tridiagonal matrix T overwrite
                     the corresponding elements of A, and if UPLO = 'L', the
                     diagonal and first subdiagonal of T overwrite the
                     corresponding elements of A.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is REAL array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is REAL array, dimension (3*N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zhpev (character jobz, character uplo, integer n, complex*16, dimension( * ) ap,
       double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz,
       complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)
        ZHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a
            complex Hermitian matrix in packed storage.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, AP is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     and first superdiagonal of the tridiagonal matrix T overwrite
                     the corresponding elements of A, and if UPLO = 'L', the
                     diagonal and first subdiagonal of T overwrite the
                     corresponding elements of A.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is COMPLEX*16 array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     eigenvectors of the matrix A, with the i-th column of Z
                     holding the eigenvector associated with W(i).
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is COMPLEX*16 array, dimension (max(1, 2*N-1))

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.