Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       ladiv - ladiv: complex divide

SYNOPSIS

   Functions
       complex function cladiv (x, y)
           CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
       subroutine dladiv (a, b, c, d, p, q)
           DLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
       subroutine dladiv1 (a, b, c, d, p, q)
       double precision function dladiv2 (a, b, c, d, r, t)
       subroutine sladiv (a, b, c, d, p, q)
           SLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
       subroutine sladiv1 (a, b, c, d, p, q)
       real function sladiv2 (a, b, c, d, r, t)
       complex *16 function zladiv (x, y)
           ZLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.

Detailed Description

Function Documentation

   complex function cladiv (complex x, complex y)
       CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.

       Purpose:

            CLADIV := X / Y, where X and Y are complex.  The computation of X / Y
            will not overflow on an intermediary step unless the results
            overflows.

       Parameters
           X

                     X is COMPLEX

           Y

                     Y is COMPLEX
                     The complex scalars X and Y.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dladiv (double precision a, double precision b, double precision c, double
       precision d, double precision p, double precision q)
       DLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.

       Purpose:

            DLADIV performs complex division in  real arithmetic

                                  a + i*b
                       p + i*q = ---------
                                  c + i*d

            The algorithm is due to Michael Baudin and Robert L. Smith
            and can be found in the paper
            'A Robust Complex Division in Scilab'

       Parameters
           A

                     A is DOUBLE PRECISION

           B

                     B is DOUBLE PRECISION

           C

                     C is DOUBLE PRECISION

           D

                     D is DOUBLE PRECISION
                     The scalars a, b, c, and d in the above expression.

           P

                     P is DOUBLE PRECISION

           Q

                     Q is DOUBLE PRECISION
                     The scalars p and q in the above expression.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sladiv (real a, real b, real c, real d, real p, real q)
       SLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.

       Purpose:

            SLADIV performs complex division in  real arithmetic

                                  a + i*b
                       p + i*q = ---------
                                  c + i*d

            The algorithm is due to Michael Baudin and Robert L. Smith
            and can be found in the paper
            'A Robust Complex Division in Scilab'

       Parameters
           A

                     A is REAL

           B

                     B is REAL

           C

                     C is REAL

           D

                     D is REAL
                     The scalars a, b, c, and d in the above expression.

           P

                     P is REAL

           Q

                     Q is REAL
                     The scalars p and q in the above expression.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   complex*16 function zladiv (complex*16 x, complex*16 y)
       ZLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.

       Purpose:

            ZLADIV := X / Y, where X and Y are complex.  The computation of X / Y
            will not overflow on an intermediary step unless the results
            overflows.

       Parameters
           X

                     X is COMPLEX*16

           Y

                     Y is COMPLEX*16
                     The complex scalars X and Y.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.