Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
ladiv - ladiv: complex divide
SYNOPSIS
Functions complex function cladiv (x, y) CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. subroutine dladiv (a, b, c, d, p, q) DLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. subroutine dladiv1 (a, b, c, d, p, q) double precision function dladiv2 (a, b, c, d, r, t) subroutine sladiv (a, b, c, d, p, q) SLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. subroutine sladiv1 (a, b, c, d, p, q) real function sladiv2 (a, b, c, d, r, t) complex *16 function zladiv (x, y) ZLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
Detailed Description
Function Documentation
complex function cladiv (complex x, complex y) CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. Purpose: CLADIV := X / Y, where X and Y are complex. The computation of X / Y will not overflow on an intermediary step unless the results overflows. Parameters X X is COMPLEX Y Y is COMPLEX The complex scalars X and Y. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dladiv (double precision a, double precision b, double precision c, double precision d, double precision p, double precision q) DLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. Purpose: DLADIV performs complex division in real arithmetic a + i*b p + i*q = --------- c + i*d The algorithm is due to Michael Baudin and Robert L. Smith and can be found in the paper 'A Robust Complex Division in Scilab' Parameters A A is DOUBLE PRECISION B B is DOUBLE PRECISION C C is DOUBLE PRECISION D D is DOUBLE PRECISION The scalars a, b, c, and d in the above expression. P P is DOUBLE PRECISION Q Q is DOUBLE PRECISION The scalars p and q in the above expression. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine sladiv (real a, real b, real c, real d, real p, real q) SLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. Purpose: SLADIV performs complex division in real arithmetic a + i*b p + i*q = --------- c + i*d The algorithm is due to Michael Baudin and Robert L. Smith and can be found in the paper 'A Robust Complex Division in Scilab' Parameters A A is REAL B B is REAL C C is REAL D D is REAL The scalars a, b, c, and d in the above expression. P P is REAL Q Q is REAL The scalars p and q in the above expression. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. complex*16 function zladiv (complex*16 x, complex*16 y) ZLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. Purpose: ZLADIV := X / Y, where X and Y are complex. The computation of X / Y will not overflow on an intermediary step unless the results overflows. Parameters X X is COMPLEX*16 Y Y is COMPLEX*16 The complex scalars X and Y. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.