Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
lags2 - lags2: 2x2 orthogonal factor, step in tgsja
SYNOPSIS
Functions subroutine clags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq) CLAGS2 subroutine dlags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq) DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel. subroutine slags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq) SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel. subroutine zlags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq) ZLAGS2
Detailed Description
Function Documentation
subroutine clags2 (logical upper, real a1, complex a2, real a3, real b1, complex b2, real b3, real csu, complex snu, real csv, complex snv, real csq, complex snq) CLAGS2 Purpose: CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) where U = ( CSU SNU ), V = ( CSV SNV ), ( -SNU**H CSU ) ( -SNV**H CSV ) Q = ( CSQ SNQ ) ( -SNQ**H CSQ ) The rows of the transformed A and B are parallel. Moreover, if the input 2-by-2 matrix A is not zero, then the transformed (1,1) entry of A is not zero. If the input matrices A and B are both not zero, then the transformed (2,2) element of B is not zero, except when the first rows of input A and B are parallel and the second rows are zero. Parameters UPPER UPPER is LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 A1 is REAL A2 A2 is COMPLEX A3 A3 is REAL On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A. B1 B1 is REAL B2 B2 is COMPLEX B3 B3 is REAL On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B. CSU CSU is REAL SNU SNU is COMPLEX The desired unitary matrix U. CSV CSV is REAL SNV SNV is COMPLEX The desired unitary matrix V. CSQ CSQ is REAL SNQ SNQ is COMPLEX The desired unitary matrix Q. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dlags2 (logical upper, double precision a1, double precision a2, double precision a3, double precision b1, double precision b2, double precision b3, double precision csu, double precision snu, double precision csv, double precision snv, double precision csq, double precision snq) DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel. Purpose: DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U**T *A*Q = U**T *( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V**T*B*Q = V**T*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z**T denotes the transpose of Z. Parameters UPPER UPPER is LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 A1 is DOUBLE PRECISION A2 A2 is DOUBLE PRECISION A3 A3 is DOUBLE PRECISION On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A. B1 B1 is DOUBLE PRECISION B2 B2 is DOUBLE PRECISION B3 B3 is DOUBLE PRECISION On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B. CSU CSU is DOUBLE PRECISION SNU SNU is DOUBLE PRECISION The desired orthogonal matrix U. CSV CSV is DOUBLE PRECISION SNV SNV is DOUBLE PRECISION The desired orthogonal matrix V. CSQ CSQ is DOUBLE PRECISION SNQ SNQ is DOUBLE PRECISION The desired orthogonal matrix Q. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine slags2 (logical upper, real a1, real a2, real a3, real b1, real b2, real b3, real csu, real snu, real csv, real snv, real csq, real snq) SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel. Purpose: SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U**T *A*Q = U**T *( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V**T*B*Q = V**T*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z**T denotes the transpose of Z. Parameters UPPER UPPER is LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 A1 is REAL A2 A2 is REAL A3 A3 is REAL On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A. B1 B1 is REAL B2 B2 is REAL B3 B3 is REAL On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B. CSU CSU is REAL SNU SNU is REAL The desired orthogonal matrix U. CSV CSV is REAL SNV SNV is REAL The desired orthogonal matrix V. CSQ CSQ is REAL SNQ SNQ is REAL The desired orthogonal matrix Q. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zlags2 (logical upper, double precision a1, complex*16 a2, double precision a3, double precision b1, complex*16 b2, double precision b3, double precision csu, complex*16 snu, double precision csv, complex*16 snv, double precision csq, complex*16 snq) ZLAGS2 Purpose: ZLAGS2 computes 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) where U = ( CSU SNU ), V = ( CSV SNV ), ( -SNU**H CSU ) ( -SNV**H CSV ) Q = ( CSQ SNQ ) ( -SNQ**H CSQ ) The rows of the transformed A and B are parallel. Moreover, if the input 2-by-2 matrix A is not zero, then the transformed (1,1) entry of A is not zero. If the input matrices A and B are both not zero, then the transformed (2,2) element of B is not zero, except when the first rows of input A and B are parallel and the second rows are zero. Parameters UPPER UPPER is LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 A1 is DOUBLE PRECISION A2 A2 is COMPLEX*16 A3 A3 is DOUBLE PRECISION On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A. B1 B1 is DOUBLE PRECISION B2 B2 is COMPLEX*16 B3 B3 is DOUBLE PRECISION On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B. CSU CSU is DOUBLE PRECISION SNU SNU is COMPLEX*16 The desired unitary matrix U. CSV CSV is DOUBLE PRECISION SNV SNV is COMPLEX*16 The desired unitary matrix V. CSQ CSQ is DOUBLE PRECISION SNQ SNQ is COMPLEX*16 The desired unitary matrix Q. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.