Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       ungqr - {un,or}gqr: generate explicit Q from geqrf

SYNOPSIS

   Functions
       subroutine cungqr (m, n, k, a, lda, tau, work, lwork, info)
           CUNGQR
       subroutine dorgqr (m, n, k, a, lda, tau, work, lwork, info)
           DORGQR
       subroutine sorgqr (m, n, k, a, lda, tau, work, lwork, info)
           SORGQR
       subroutine zungqr (m, n, k, a, lda, tau, work, lwork, info)
           ZUNGQR

Detailed Description

Function Documentation

   subroutine cungqr (integer m, integer n, integer k, complex, dimension( lda, * ) a, integer
       lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer
       info)
       CUNGQR

       Purpose:

            CUNGQR generates an M-by-N complex matrix Q with orthonormal columns,
            which is defined as the first N columns of a product of K elementary
            reflectors of order M

                  Q  =  H(1) H(2) . . . H(k)

            as returned by CGEQRF.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix Q. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix Q. M >= N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines the
                     matrix Q. N >= K >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the i-th column must contain the vector which
                     defines the elementary reflector H(i), for i = 1,2,...,k, as
                     returned by CGEQRF in the first k columns of its array
                     argument A.
                     On exit, the M-by-N matrix Q.

           LDA

                     LDA is INTEGER
                     The first dimension of the array A. LDA >= max(1,M).

           TAU

                     TAU is COMPLEX array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by CGEQRF.

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is the
                     optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument has an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dorgqr (integer m, integer n, integer k, double precision, dimension( lda, * ) a,
       integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work,
       integer lwork, integer info)
       DORGQR

       Purpose:

            DORGQR generates an M-by-N real matrix Q with orthonormal columns,
            which is defined as the first N columns of a product of K elementary
            reflectors of order M

                  Q  =  H(1) H(2) . . . H(k)

            as returned by DGEQRF.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix Q. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix Q. M >= N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines the
                     matrix Q. N >= K >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the i-th column must contain the vector which
                     defines the elementary reflector H(i), for i = 1,2,...,k, as
                     returned by DGEQRF in the first k columns of its array
                     argument A.
                     On exit, the M-by-N matrix Q.

           LDA

                     LDA is INTEGER
                     The first dimension of the array A. LDA >= max(1,M).

           TAU

                     TAU is DOUBLE PRECISION array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by DGEQRF.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is the
                     optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument has an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sorgqr (integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda,
       real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)
       SORGQR

       Purpose:

            SORGQR generates an M-by-N real matrix Q with orthonormal columns,
            which is defined as the first N columns of a product of K elementary
            reflectors of order M

                  Q  =  H(1) H(2) . . . H(k)

            as returned by SGEQRF.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix Q. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix Q. M >= N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines the
                     matrix Q. N >= K >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the i-th column must contain the vector which
                     defines the elementary reflector H(i), for i = 1,2,...,k, as
                     returned by SGEQRF in the first k columns of its array
                     argument A.
                     On exit, the M-by-N matrix Q.

           LDA

                     LDA is INTEGER
                     The first dimension of the array A. LDA >= max(1,M).

           TAU

                     TAU is REAL array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by SGEQRF.

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is the
                     optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument has an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zungqr (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer
       lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork,
       integer info)
       ZUNGQR

       Purpose:

            ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns,
            which is defined as the first N columns of a product of K elementary
            reflectors of order M

                  Q  =  H(1) H(2) . . . H(k)

            as returned by ZGEQRF.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix Q. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix Q. M >= N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines the
                     matrix Q. N >= K >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the i-th column must contain the vector which
                     defines the elementary reflector H(i), for i = 1,2,...,k, as
                     returned by ZGEQRF in the first k columns of its array
                     argument A.
                     On exit, the M-by-N matrix Q.

           LDA

                     LDA is INTEGER
                     The first dimension of the array A. LDA >= max(1,M).

           TAU

                     TAU is COMPLEX*16 array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by ZGEQRF.

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is the
                     optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument has an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.