Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
gbequb - gbequb: equilibration, power of 2
SYNOPSIS
Functions subroutine cgbequb (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info) CGBEQUB subroutine dgbequb (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info) DGBEQUB subroutine sgbequb (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info) SGBEQUB subroutine zgbequb (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info) ZGBEQUB
Detailed Description
Function Documentation
subroutine cgbequb (integer m, integer n, integer kl, integer ku, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) r, real, dimension( * ) c, real rowcnd, real colcnd, real amax, integer info) CGBEQUB Purpose: CGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from CGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix). Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is COMPLEX array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) LDAB LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M). R R is REAL array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A. C C is REAL array, dimension (N) If INFO = 0, C contains the column scale factors for A. ROWCND ROWCND is REAL If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R. COLCND COLCND is REAL If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C. AMAX AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dgbequb (integer m, integer n, integer kl, integer ku, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) r, double precision, dimension( * ) c, double precision rowcnd, double precision colcnd, double precision amax, integer info) DGBEQUB Purpose: DGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from DGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix). Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is DOUBLE PRECISION array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) LDAB LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M). R R is DOUBLE PRECISION array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A. C C is DOUBLE PRECISION array, dimension (N) If INFO = 0, C contains the column scale factors for A. ROWCND ROWCND is DOUBLE PRECISION If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R. COLCND COLCND is DOUBLE PRECISION If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C. AMAX AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine sgbequb (integer m, integer n, integer kl, integer ku, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) r, real, dimension( * ) c, real rowcnd, real colcnd, real amax, integer info) SGBEQUB Purpose: SGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from SGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix). Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is REAL array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) LDAB LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M). R R is REAL array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A. C C is REAL array, dimension (N) If INFO = 0, C contains the column scale factors for A. ROWCND ROWCND is REAL If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R. COLCND COLCND is REAL If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C. AMAX AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zgbequb (integer m, integer n, integer kl, integer ku, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) r, double precision, dimension( * ) c, double precision rowcnd, double precision colcnd, double precision amax, integer info) ZGBEQUB Purpose: ZGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from ZGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix). Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is COMPLEX*16 array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) LDAB LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M). R R is DOUBLE PRECISION array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A. C C is DOUBLE PRECISION array, dimension (N) If INFO = 0, C contains the column scale factors for A. ROWCND ROWCND is DOUBLE PRECISION If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R. COLCND COLCND is DOUBLE PRECISION If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C. AMAX AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.