Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       geqlf - geqlf: QL factor

SYNOPSIS

   Functions
       subroutine cgeqlf (m, n, a, lda, tau, work, lwork, info)
           CGEQLF
       subroutine dgeqlf (m, n, a, lda, tau, work, lwork, info)
           DGEQLF
       subroutine sgeqlf (m, n, a, lda, tau, work, lwork, info)
           SGEQLF
       subroutine zgeqlf (m, n, a, lda, tau, work, lwork, info)
           ZGEQLF

Detailed Description

Function Documentation

   subroutine cgeqlf (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex,
       dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)
       CGEQLF

       Purpose:

            CGEQLF computes a QL factorization of a complex M-by-N matrix A:
            A = Q * L.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A.  N >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit,
                     if m >= n, the lower triangle of the subarray
                     A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
                     if m <= n, the elements on and below the (n-m)-th
                     superdiagonal contain the M-by-N lower trapezoidal matrix L;
                     the remaining elements, with the array TAU, represent the
                     unitary matrix Q as a product of elementary reflectors
                     (see Further Details).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           TAU

                     TAU is COMPLEX array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is
                     the optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix Q is represented as a product of elementary reflectors

                Q = H(k) . . . H(2) H(1), where k = min(m,n).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
             A(1:m-k+i-1,n-k+i), and tau in TAU(i).

   subroutine dgeqlf (integer m, integer n, double precision, dimension( lda, * ) a, integer lda,
       double precision, dimension( * ) tau, double precision, dimension( * ) work, integer
       lwork, integer info)
       DGEQLF

       Purpose:

            DGEQLF computes a QL factorization of a real M-by-N matrix A:
            A = Q * L.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A.  N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit,
                     if m >= n, the lower triangle of the subarray
                     A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
                     if m <= n, the elements on and below the (n-m)-th
                     superdiagonal contain the M-by-N lower trapezoidal matrix L;
                     the remaining elements, with the array TAU, represent the
                     orthogonal matrix Q as a product of elementary reflectors
                     (see Further Details).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           TAU

                     TAU is DOUBLE PRECISION array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is the
                     optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix Q is represented as a product of elementary reflectors

                Q = H(k) . . . H(2) H(1), where k = min(m,n).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
             A(1:m-k+i-1,n-k+i), and tau in TAU(i).

   subroutine sgeqlf (integer m, integer n, real, dimension( lda, * ) a, integer lda, real,
       dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)
       SGEQLF

       Purpose:

            SGEQLF computes a QL factorization of a real M-by-N matrix A:
            A = Q * L.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A.  N >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit,
                     if m >= n, the lower triangle of the subarray
                     A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
                     if m <= n, the elements on and below the (n-m)-th
                     superdiagonal contain the M-by-N lower trapezoidal matrix L;
                     the remaining elements, with the array TAU, represent the
                     orthogonal matrix Q as a product of elementary reflectors
                     (see Further Details).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           TAU

                     TAU is REAL array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is the
                     optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix Q is represented as a product of elementary reflectors

                Q = H(k) . . . H(2) H(1), where k = min(m,n).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
             A(1:m-k+i-1,n-k+i), and tau in TAU(i).

   subroutine zgeqlf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda,
       complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer
       info)
       ZGEQLF

       Purpose:

            ZGEQLF computes a QL factorization of a complex M-by-N matrix A:
            A = Q * L.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit,
                     if m >= n, the lower triangle of the subarray
                     A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
                     if m <= n, the elements on and below the (n-m)-th
                     superdiagonal contain the M-by-N lower trapezoidal matrix L;
                     the remaining elements, with the array TAU, represent the
                     unitary matrix Q as a product of elementary reflectors
                     (see Further Details).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           TAU

                     TAU is COMPLEX*16 array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,N).
                     For optimum performance LWORK >= N*NB, where NB is
                     the optimal blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix Q is represented as a product of elementary reflectors

                Q = H(k) . . . H(2) H(1), where k = min(m,n).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
             A(1:m-k+i-1,n-k+i), and tau in TAU(i).

Author

       Generated automatically by Doxygen for LAPACK from the source code.