Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       gges3 - gges3: Schur form

SYNOPSIS

   Functions
       subroutine cgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta,
           vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)
            CGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
           vectors for GE matrices (blocked algorithm)
       subroutine dgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai,
           beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)
            DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
           vectors for GE matrices (blocked algorithm)
       subroutine sgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai,
           beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)
            SGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
           vectors for GE matrices (blocked algorithm)
       subroutine zgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta,
           vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)
            ZGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
           vectors for GE matrices (blocked algorithm)

Detailed Description

Function Documentation

   subroutine cgges3 (character jobvsl, character jobvsr, character sort, external selctg,
       integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b,
       integer ldb, integer sdim, complex, dimension( * ) alpha, complex, dimension( * ) beta,
       complex, dimension( ldvsl, * ) vsl, integer ldvsl, complex, dimension( ldvsr, * ) vsr,
       integer ldvsr, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork,
       logical, dimension( * ) bwork, integer info)
        CGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
       vectors for GE matrices (blocked algorithm)

       Purpose:

            CGGES3 computes for a pair of N-by-N complex nonsymmetric matrices
            (A,B), the generalized eigenvalues, the generalized complex Schur
            form (S, T), and optionally left and/or right Schur vectors (VSL
            and VSR). This gives the generalized Schur factorization

                    (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )

            where (VSR)**H is the conjugate-transpose of VSR.

            Optionally, it also orders the eigenvalues so that a selected cluster
            of eigenvalues appears in the leading diagonal blocks of the upper
            triangular matrix S and the upper triangular matrix T. The leading
            columns of VSL and VSR then form an unitary basis for the
            corresponding left and right eigenspaces (deflating subspaces).

            (If only the generalized eigenvalues are needed, use the driver
            CGGEV instead, which is faster.)

            A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
            or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
            usually represented as the pair (alpha,beta), as there is a
            reasonable interpretation for beta=0, and even for both being zero.

            A pair of matrices (S,T) is in generalized complex Schur form if S
            and T are upper triangular and, in addition, the diagonal elements
            of T are non-negative real numbers.

       Parameters
           JOBVSL

                     JOBVSL is CHARACTER*1
                     = 'N':  do not compute the left Schur vectors;
                     = 'V':  compute the left Schur vectors.

           JOBVSR

                     JOBVSR is CHARACTER*1
                     = 'N':  do not compute the right Schur vectors;
                     = 'V':  compute the right Schur vectors.

           SORT

                     SORT is CHARACTER*1
                     Specifies whether or not to order the eigenvalues on the
                     diagonal of the generalized Schur form.
                     = 'N':  Eigenvalues are not ordered;
                     = 'S':  Eigenvalues are ordered (see SELCTG).

           SELCTG

                     SELCTG is a LOGICAL FUNCTION of two COMPLEX arguments
                     SELCTG must be declared EXTERNAL in the calling subroutine.
                     If SORT = 'N', SELCTG is not referenced.
                     If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     to the top left of the Schur form.
                     An eigenvalue ALPHA(j)/BETA(j) is selected if
                     SELCTG(ALPHA(j),BETA(j)) is true.

                     Note that a selected complex eigenvalue may no longer satisfy
                     SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
                     ordering may change the value of complex eigenvalues
                     (especially if the eigenvalue is ill-conditioned), in this
                     case INFO is set to N+2 (See INFO below).

           N

                     N is INTEGER
                     The order of the matrices A, B, VSL, and VSR.  N >= 0.

           A

                     A is COMPLEX array, dimension (LDA, N)
                     On entry, the first of the pair of matrices.
                     On exit, A has been overwritten by its generalized Schur
                     form S.

           LDA

                     LDA is INTEGER
                     The leading dimension of A.  LDA >= max(1,N).

           B

                     B is COMPLEX array, dimension (LDB, N)
                     On entry, the second of the pair of matrices.
                     On exit, B has been overwritten by its generalized Schur
                     form T.

           LDB

                     LDB is INTEGER
                     The leading dimension of B.  LDB >= max(1,N).

           SDIM

                     SDIM is INTEGER
                     If SORT = 'N', SDIM = 0.
                     If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                     for which SELCTG is true.

           ALPHA

                     ALPHA is COMPLEX array, dimension (N)

           BETA

                     BETA is COMPLEX array, dimension (N)
                     On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
                     generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
                     j=1,...,N  are the diagonals of the complex Schur form (A,B)
                     output by CGGES3. The  BETA(j) will be non-negative real.

                     Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                     underflow, and BETA(j) may even be zero.  Thus, the user
                     should avoid naively computing the ratio alpha/beta.
                     However, ALPHA will be always less than and usually
                     comparable with norm(A) in magnitude, and BETA always less
                     than and usually comparable with norm(B).

           VSL

                     VSL is COMPLEX array, dimension (LDVSL,N)
                     If JOBVSL = 'V', VSL will contain the left Schur vectors.
                     Not referenced if JOBVSL = 'N'.

           LDVSL

                     LDVSL is INTEGER
                     The leading dimension of the matrix VSL. LDVSL >= 1, and
                     if JOBVSL = 'V', LDVSL >= N.

           VSR

                     VSR is COMPLEX array, dimension (LDVSR,N)
                     If JOBVSR = 'V', VSR will contain the right Schur vectors.
                     Not referenced if JOBVSR = 'N'.

           LDVSR

                     LDVSR is INTEGER
                     The leading dimension of the matrix VSR. LDVSR >= 1, and
                     if JOBVSR = 'V', LDVSR >= N.

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           RWORK

                     RWORK is REAL array, dimension (8*N)

           BWORK

                     BWORK is LOGICAL array, dimension (N)
                     Not referenced if SORT = 'N'.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     =1,...,N:
                           The QZ iteration failed.  (A,B) are not in Schur
                           form, but ALPHA(j) and BETA(j) should be correct for
                           j=INFO+1,...,N.
                     > N:  =N+1: other than QZ iteration failed in CLAQZ0
                           =N+2: after reordering, roundoff changed values of
                                 some complex eigenvalues so that leading
                                 eigenvalues in the Generalized Schur form no
                                 longer satisfy SELCTG=.TRUE.  This could also
                                 be caused due to scaling.
                           =N+3: reordering failed in CTGSEN.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dgges3 (character jobvsl, character jobvsr, character sort, external selctg,
       integer n, double precision, dimension( lda, * ) a, integer lda, double precision,
       dimension( ldb, * ) b, integer ldb, integer sdim, double precision, dimension( * ) alphar,
       double precision, dimension( * ) alphai, double precision, dimension( * ) beta, double
       precision, dimension( ldvsl, * ) vsl, integer ldvsl, double precision, dimension( ldvsr, *
       ) vsr, integer ldvsr, double precision, dimension( * ) work, integer lwork, logical,
       dimension( * ) bwork, integer info)
        DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
       vectors for GE matrices (blocked algorithm)

       Purpose:

            DGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
            the generalized eigenvalues, the generalized real Schur form (S,T),
            optionally, the left and/or right matrices of Schur vectors (VSL and
            VSR). This gives the generalized Schur factorization

                     (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )

            Optionally, it also orders the eigenvalues so that a selected cluster
            of eigenvalues appears in the leading diagonal blocks of the upper
            quasi-triangular matrix S and the upper triangular matrix T.The
            leading columns of VSL and VSR then form an orthonormal basis for the
            corresponding left and right eigenspaces (deflating subspaces).

            (If only the generalized eigenvalues are needed, use the driver
            DGGEV instead, which is faster.)

            A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
            or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
            usually represented as the pair (alpha,beta), as there is a
            reasonable interpretation for beta=0 or both being zero.

            A pair of matrices (S,T) is in generalized real Schur form if T is
            upper triangular with non-negative diagonal and S is block upper
            triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
            to real generalized eigenvalues, while 2-by-2 blocks of S will be
            'standardized' by making the corresponding elements of T have the
            form:
                    [  a  0  ]
                    [  0  b  ]

            and the pair of corresponding 2-by-2 blocks in S and T will have a
            complex conjugate pair of generalized eigenvalues.

       Parameters
           JOBVSL

                     JOBVSL is CHARACTER*1
                     = 'N':  do not compute the left Schur vectors;
                     = 'V':  compute the left Schur vectors.

           JOBVSR

                     JOBVSR is CHARACTER*1
                     = 'N':  do not compute the right Schur vectors;
                     = 'V':  compute the right Schur vectors.

           SORT

                     SORT is CHARACTER*1
                     Specifies whether or not to order the eigenvalues on the
                     diagonal of the generalized Schur form.
                     = 'N':  Eigenvalues are not ordered;
                     = 'S':  Eigenvalues are ordered (see SELCTG);

           SELCTG

                     SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
                     SELCTG must be declared EXTERNAL in the calling subroutine.
                     If SORT = 'N', SELCTG is not referenced.
                     If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     to the top left of the Schur form.
                     An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
                     SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
                     one of a complex conjugate pair of eigenvalues is selected,
                     then both complex eigenvalues are selected.

                     Note that in the ill-conditioned case, a selected complex
                     eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
                     BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
                     in this case.

           N

                     N is INTEGER
                     The order of the matrices A, B, VSL, and VSR.  N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA, N)
                     On entry, the first of the pair of matrices.
                     On exit, A has been overwritten by its generalized Schur
                     form S.

           LDA

                     LDA is INTEGER
                     The leading dimension of A.  LDA >= max(1,N).

           B

                     B is DOUBLE PRECISION array, dimension (LDB, N)
                     On entry, the second of the pair of matrices.
                     On exit, B has been overwritten by its generalized Schur
                     form T.

           LDB

                     LDB is INTEGER
                     The leading dimension of B.  LDB >= max(1,N).

           SDIM

                     SDIM is INTEGER
                     If SORT = 'N', SDIM = 0.
                     If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                     for which SELCTG is true.  (Complex conjugate pairs for which
                     SELCTG is true for either eigenvalue count as 2.)

           ALPHAR

                     ALPHAR is DOUBLE PRECISION array, dimension (N)

           ALPHAI

                     ALPHAI is DOUBLE PRECISION array, dimension (N)

           BETA

                     BETA is DOUBLE PRECISION array, dimension (N)
                     On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                     be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
                     and  BETA(j),j=1,...,N are the diagonals of the complex Schur
                     form (S,T) that would result if the 2-by-2 diagonal blocks of
                     the real Schur form of (A,B) were further reduced to
                     triangular form using 2-by-2 complex unitary transformations.
                     If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                     positive, then the j-th and (j+1)-st eigenvalues are a
                     complex conjugate pair, with ALPHAI(j+1) negative.

                     Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                     may easily over- or underflow, and BETA(j) may even be zero.
                     Thus, the user should avoid naively computing the ratio.
                     However, ALPHAR and ALPHAI will be always less than and
                     usually comparable with norm(A) in magnitude, and BETA always
                     less than and usually comparable with norm(B).

           VSL

                     VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
                     If JOBVSL = 'V', VSL will contain the left Schur vectors.
                     Not referenced if JOBVSL = 'N'.

           LDVSL

                     LDVSL is INTEGER
                     The leading dimension of the matrix VSL. LDVSL >=1, and
                     if JOBVSL = 'V', LDVSL >= N.

           VSR

                     VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
                     If JOBVSR = 'V', VSR will contain the right Schur vectors.
                     Not referenced if JOBVSR = 'N'.

           LDVSR

                     LDVSR is INTEGER
                     The leading dimension of the matrix VSR. LDVSR >= 1, and
                     if JOBVSR = 'V', LDVSR >= N.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           BWORK

                     BWORK is LOGICAL array, dimension (N)
                     Not referenced if SORT = 'N'.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     = 1,...,N:
                           The QZ iteration failed.  (A,B) are not in Schur
                           form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                           be correct for j=INFO+1,...,N.
                     > N:  =N+1: other than QZ iteration failed in DLAQZ0.
                           =N+2: after reordering, roundoff changed values of
                                 some complex eigenvalues so that leading
                                 eigenvalues in the Generalized Schur form no
                                 longer satisfy SELCTG=.TRUE.  This could also
                                 be caused due to scaling.
                           =N+3: reordering failed in DTGSEN.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sgges3 (character jobvsl, character jobvsr, character sort, external selctg,
       integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer
       ldb, integer sdim, real, dimension( * ) alphar, real, dimension( * ) alphai, real,
       dimension( * ) beta, real, dimension( ldvsl, * ) vsl, integer ldvsl, real, dimension(
       ldvsr, * ) vsr, integer ldvsr, real, dimension( * ) work, integer lwork, logical,
       dimension( * ) bwork, integer info)
        SGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
       vectors for GE matrices (blocked algorithm)

       Purpose:

            SGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
            the generalized eigenvalues, the generalized real Schur form (S,T),
            optionally, the left and/or right matrices of Schur vectors (VSL and
            VSR). This gives the generalized Schur factorization

                     (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )

            Optionally, it also orders the eigenvalues so that a selected cluster
            of eigenvalues appears in the leading diagonal blocks of the upper
            quasi-triangular matrix S and the upper triangular matrix T.The
            leading columns of VSL and VSR then form an orthonormal basis for the
            corresponding left and right eigenspaces (deflating subspaces).

            (If only the generalized eigenvalues are needed, use the driver
            SGGEV instead, which is faster.)

            A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
            or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
            usually represented as the pair (alpha,beta), as there is a
            reasonable interpretation for beta=0 or both being zero.

            A pair of matrices (S,T) is in generalized real Schur form if T is
            upper triangular with non-negative diagonal and S is block upper
            triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
            to real generalized eigenvalues, while 2-by-2 blocks of S will be
            'standardized' by making the corresponding elements of T have the
            form:
                    [  a  0  ]
                    [  0  b  ]

            and the pair of corresponding 2-by-2 blocks in S and T will have a
            complex conjugate pair of generalized eigenvalues.

       Parameters
           JOBVSL

                     JOBVSL is CHARACTER*1
                     = 'N':  do not compute the left Schur vectors;
                     = 'V':  compute the left Schur vectors.

           JOBVSR

                     JOBVSR is CHARACTER*1
                     = 'N':  do not compute the right Schur vectors;
                     = 'V':  compute the right Schur vectors.

           SORT

                     SORT is CHARACTER*1
                     Specifies whether or not to order the eigenvalues on the
                     diagonal of the generalized Schur form.
                     = 'N':  Eigenvalues are not ordered;
                     = 'S':  Eigenvalues are ordered (see SELCTG);

           SELCTG

                     SELCTG is a LOGICAL FUNCTION of three REAL arguments
                     SELCTG must be declared EXTERNAL in the calling subroutine.
                     If SORT = 'N', SELCTG is not referenced.
                     If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     to the top left of the Schur form.
                     An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
                     SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
                     one of a complex conjugate pair of eigenvalues is selected,
                     then both complex eigenvalues are selected.

                     Note that in the ill-conditioned case, a selected complex
                     eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
                     BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
                     in this case.

           N

                     N is INTEGER
                     The order of the matrices A, B, VSL, and VSR.  N >= 0.

           A

                     A is REAL array, dimension (LDA, N)
                     On entry, the first of the pair of matrices.
                     On exit, A has been overwritten by its generalized Schur
                     form S.

           LDA

                     LDA is INTEGER
                     The leading dimension of A.  LDA >= max(1,N).

           B

                     B is REAL array, dimension (LDB, N)
                     On entry, the second of the pair of matrices.
                     On exit, B has been overwritten by its generalized Schur
                     form T.

           LDB

                     LDB is INTEGER
                     The leading dimension of B.  LDB >= max(1,N).

           SDIM

                     SDIM is INTEGER
                     If SORT = 'N', SDIM = 0.
                     If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                     for which SELCTG is true.  (Complex conjugate pairs for which
                     SELCTG is true for either eigenvalue count as 2.)

           ALPHAR

                     ALPHAR is REAL array, dimension (N)

           ALPHAI

                     ALPHAI is REAL array, dimension (N)

           BETA

                     BETA is REAL array, dimension (N)
                     On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                     be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
                     and  BETA(j),j=1,...,N are the diagonals of the complex Schur
                     form (S,T) that would result if the 2-by-2 diagonal blocks of
                     the real Schur form of (A,B) were further reduced to
                     triangular form using 2-by-2 complex unitary transformations.
                     If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                     positive, then the j-th and (j+1)-st eigenvalues are a
                     complex conjugate pair, with ALPHAI(j+1) negative.

                     Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                     may easily over- or underflow, and BETA(j) may even be zero.
                     Thus, the user should avoid naively computing the ratio.
                     However, ALPHAR and ALPHAI will be always less than and
                     usually comparable with norm(A) in magnitude, and BETA always
                     less than and usually comparable with norm(B).

           VSL

                     VSL is REAL array, dimension (LDVSL,N)
                     If JOBVSL = 'V', VSL will contain the left Schur vectors.
                     Not referenced if JOBVSL = 'N'.

           LDVSL

                     LDVSL is INTEGER
                     The leading dimension of the matrix VSL. LDVSL >=1, and
                     if JOBVSL = 'V', LDVSL >= N.

           VSR

                     VSR is REAL array, dimension (LDVSR,N)
                     If JOBVSR = 'V', VSR will contain the right Schur vectors.
                     Not referenced if JOBVSR = 'N'.

           LDVSR

                     LDVSR is INTEGER
                     The leading dimension of the matrix VSR. LDVSR >= 1, and
                     if JOBVSR = 'V', LDVSR >= N.

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           BWORK

                     BWORK is LOGICAL array, dimension (N)
                     Not referenced if SORT = 'N'.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     = 1,...,N:
                           The QZ iteration failed.  (A,B) are not in Schur
                           form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                           be correct for j=INFO+1,...,N.
                     > N:  =N+1: other than QZ iteration failed in SLAQZ0.
                           =N+2: after reordering, roundoff changed values of
                                 some complex eigenvalues so that leading
                                 eigenvalues in the Generalized Schur form no
                                 longer satisfy SELCTG=.TRUE.  This could also
                                 be caused due to scaling.
                           =N+3: reordering failed in STGSEN.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zgges3 (character jobvsl, character jobvsr, character sort, external selctg,
       integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * )
       b, integer ldb, integer sdim, complex*16, dimension( * ) alpha, complex*16, dimension( * )
       beta, complex*16, dimension( ldvsl, * ) vsl, integer ldvsl, complex*16, dimension( ldvsr,
       * ) vsr, integer ldvsr, complex*16, dimension( * ) work, integer lwork, double precision,
       dimension( * ) rwork, logical, dimension( * ) bwork, integer info)
        ZGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur
       vectors for GE matrices (blocked algorithm)

       Purpose:

            ZGGES3 computes for a pair of N-by-N complex nonsymmetric matrices
            (A,B), the generalized eigenvalues, the generalized complex Schur
            form (S, T), and optionally left and/or right Schur vectors (VSL
            and VSR). This gives the generalized Schur factorization

                    (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )

            where (VSR)**H is the conjugate-transpose of VSR.

            Optionally, it also orders the eigenvalues so that a selected cluster
            of eigenvalues appears in the leading diagonal blocks of the upper
            triangular matrix S and the upper triangular matrix T. The leading
            columns of VSL and VSR then form an unitary basis for the
            corresponding left and right eigenspaces (deflating subspaces).

            (If only the generalized eigenvalues are needed, use the driver
            ZGGEV instead, which is faster.)

            A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
            or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
            usually represented as the pair (alpha,beta), as there is a
            reasonable interpretation for beta=0, and even for both being zero.

            A pair of matrices (S,T) is in generalized complex Schur form if S
            and T are upper triangular and, in addition, the diagonal elements
            of T are non-negative real numbers.

       Parameters
           JOBVSL

                     JOBVSL is CHARACTER*1
                     = 'N':  do not compute the left Schur vectors;
                     = 'V':  compute the left Schur vectors.

           JOBVSR

                     JOBVSR is CHARACTER*1
                     = 'N':  do not compute the right Schur vectors;
                     = 'V':  compute the right Schur vectors.

           SORT

                     SORT is CHARACTER*1
                     Specifies whether or not to order the eigenvalues on the
                     diagonal of the generalized Schur form.
                     = 'N':  Eigenvalues are not ordered;
                     = 'S':  Eigenvalues are ordered (see SELCTG).

           SELCTG

                     SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
                     SELCTG must be declared EXTERNAL in the calling subroutine.
                     If SORT = 'N', SELCTG is not referenced.
                     If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     to the top left of the Schur form.
                     An eigenvalue ALPHA(j)/BETA(j) is selected if
                     SELCTG(ALPHA(j),BETA(j)) is true.

                     Note that a selected complex eigenvalue may no longer satisfy
                     SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
                     ordering may change the value of complex eigenvalues
                     (especially if the eigenvalue is ill-conditioned), in this
                     case INFO is set to N+2 (See INFO below).

           N

                     N is INTEGER
                     The order of the matrices A, B, VSL, and VSR.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA, N)
                     On entry, the first of the pair of matrices.
                     On exit, A has been overwritten by its generalized Schur
                     form S.

           LDA

                     LDA is INTEGER
                     The leading dimension of A.  LDA >= max(1,N).

           B

                     B is COMPLEX*16 array, dimension (LDB, N)
                     On entry, the second of the pair of matrices.
                     On exit, B has been overwritten by its generalized Schur
                     form T.

           LDB

                     LDB is INTEGER
                     The leading dimension of B.  LDB >= max(1,N).

           SDIM

                     SDIM is INTEGER
                     If SORT = 'N', SDIM = 0.
                     If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                     for which SELCTG is true.

           ALPHA

                     ALPHA is COMPLEX*16 array, dimension (N)

           BETA

                     BETA is COMPLEX*16 array, dimension (N)
                     On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
                     generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
                     j=1,...,N  are the diagonals of the complex Schur form (A,B)
                     output by ZGGES3. The  BETA(j) will be non-negative real.

                     Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                     underflow, and BETA(j) may even be zero.  Thus, the user
                     should avoid naively computing the ratio alpha/beta.
                     However, ALPHA will be always less than and usually
                     comparable with norm(A) in magnitude, and BETA always less
                     than and usually comparable with norm(B).

           VSL

                     VSL is COMPLEX*16 array, dimension (LDVSL,N)
                     If JOBVSL = 'V', VSL will contain the left Schur vectors.
                     Not referenced if JOBVSL = 'N'.

           LDVSL

                     LDVSL is INTEGER
                     The leading dimension of the matrix VSL. LDVSL >= 1, and
                     if JOBVSL = 'V', LDVSL >= N.

           VSR

                     VSR is COMPLEX*16 array, dimension (LDVSR,N)
                     If JOBVSR = 'V', VSR will contain the right Schur vectors.
                     Not referenced if JOBVSR = 'N'.

           LDVSR

                     LDVSR is INTEGER
                     The leading dimension of the matrix VSR. LDVSR >= 1, and
                     if JOBVSR = 'V', LDVSR >= N.

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (8*N)

           BWORK

                     BWORK is LOGICAL array, dimension (N)
                     Not referenced if SORT = 'N'.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     =1,...,N:
                           The QZ iteration failed.  (A,B) are not in Schur
                           form, but ALPHA(j) and BETA(j) should be correct for
                           j=INFO+1,...,N.
                     > N:  =N+1: other than QZ iteration failed in ZLAQZ0
                           =N+2: after reordering, roundoff changed values of
                                 some complex eigenvalues so that leading
                                 eigenvalues in the Generalized Schur form no
                                 longer satisfy SELCTG=.TRUE.  This could also
                                 be caused due to scaling.
                           =N+3: reordering failed in ZTGSEN.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.