Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
lar2v - lar2v: apply vector of plane rotations to 2x2 matrices
SYNOPSIS
Functions subroutine clar2v (n, x, y, z, incx, c, s, incc) CLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. subroutine dlar2v (n, x, y, z, incx, c, s, incc) DLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. subroutine slar2v (n, x, y, z, incx, c, s, incc) SLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. subroutine zlar2v (n, x, y, z, incx, c, s, incc) ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
Detailed Description
Function Documentation
subroutine clar2v (integer n, complex, dimension( * ) x, complex, dimension( * ) y, complex, dimension( * ) z, integer incx, real, dimension( * ) c, complex, dimension( * ) s, integer incc) CLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. Purpose: CLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n ( x(i) z(i) ) := ( conjg(z(i)) y(i) ) ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) Parameters N N is INTEGER The number of plane rotations to be applied. X X is COMPLEX array, dimension (1+(N-1)*INCX) The vector x; the elements of x are assumed to be real. Y Y is COMPLEX array, dimension (1+(N-1)*INCX) The vector y; the elements of y are assumed to be real. Z Z is COMPLEX array, dimension (1+(N-1)*INCX) The vector z. INCX INCX is INTEGER The increment between elements of X, Y and Z. INCX > 0. C C is REAL array, dimension (1+(N-1)*INCC) The cosines of the plane rotations. S S is COMPLEX array, dimension (1+(N-1)*INCC) The sines of the plane rotations. INCC INCC is INTEGER The increment between elements of C and S. INCC > 0. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dlar2v (integer n, double precision, dimension( * ) x, double precision, dimension( * ) y, double precision, dimension( * ) z, integer incx, double precision, dimension( * ) c, double precision, dimension( * ) s, integer incc) DLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. Purpose: DLAR2V applies a vector of real plane rotations from both sides to a sequence of 2-by-2 real symmetric matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n ( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) ) ( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) ) Parameters N N is INTEGER The number of plane rotations to be applied. X X is DOUBLE PRECISION array, dimension (1+(N-1)*INCX) The vector x. Y Y is DOUBLE PRECISION array, dimension (1+(N-1)*INCX) The vector y. Z Z is DOUBLE PRECISION array, dimension (1+(N-1)*INCX) The vector z. INCX INCX is INTEGER The increment between elements of X, Y and Z. INCX > 0. C C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) The cosines of the plane rotations. S S is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) The sines of the plane rotations. INCC INCC is INTEGER The increment between elements of C and S. INCC > 0. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine slar2v (integer n, real, dimension( * ) x, real, dimension( * ) y, real, dimension( * ) z, integer incx, real, dimension( * ) c, real, dimension( * ) s, integer incc) SLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. Purpose: SLAR2V applies a vector of real plane rotations from both sides to a sequence of 2-by-2 real symmetric matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n ( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) ) ( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) ) Parameters N N is INTEGER The number of plane rotations to be applied. X X is REAL array, dimension (1+(N-1)*INCX) The vector x. Y Y is REAL array, dimension (1+(N-1)*INCX) The vector y. Z Z is REAL array, dimension (1+(N-1)*INCX) The vector z. INCX INCX is INTEGER The increment between elements of X, Y and Z. INCX > 0. C C is REAL array, dimension (1+(N-1)*INCC) The cosines of the plane rotations. S S is REAL array, dimension (1+(N-1)*INCC) The sines of the plane rotations. INCC INCC is INTEGER The increment between elements of C and S. INCC > 0. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zlar2v (integer n, complex*16, dimension( * ) x, complex*16, dimension( * ) y, complex*16, dimension( * ) z, integer incx, double precision, dimension( * ) c, complex*16, dimension( * ) s, integer incc) ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. Purpose: ZLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n ( x(i) z(i) ) := ( conjg(z(i)) y(i) ) ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) Parameters N N is INTEGER The number of plane rotations to be applied. X X is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector x; the elements of x are assumed to be real. Y Y is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector y; the elements of y are assumed to be real. Z Z is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector z. INCX INCX is INTEGER The increment between elements of X, Y and Z. INCX > 0. C C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) The cosines of the plane rotations. S S is COMPLEX*16 array, dimension (1+(N-1)*INCC) The sines of the plane rotations. INCC INCC is INTEGER The increment between elements of C and S. INCC > 0. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.