Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       ungtsqr - {un,or}gtsqr: generate Q from latsqr

SYNOPSIS

   Functions
       subroutine cungtsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
           CUNGTSQR
       subroutine dorgtsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
           DORGTSQR
       subroutine sorgtsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
           SORGTSQR
       subroutine zungtsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
           ZUNGTSQR

Detailed Description

Function Documentation

   subroutine cungtsqr (integer m, integer n, integer mb, integer nb, complex, dimension( lda, *
       ) a, integer lda, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( * )
       work, integer lwork, integer info)
       CUNGTSQR

       Purpose:

            CUNGTSQR generates an M-by-N complex matrix Q_out with orthonormal
            columns, which are the first N columns of a product of comlpex unitary
            matrices of order M which are returned by CLATSQR

                 Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).

            See the documentation for CLATSQR.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           MB

                     MB is INTEGER
                     The row block size used by CLATSQR to return
                     arrays A and T. MB > N.
                     (Note that if MB > M, then M is used instead of MB
                     as the row block size).

           NB

                     NB is INTEGER
                     The column block size used by CLATSQR to return
                     arrays A and T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size).

           A

                     A is COMPLEX array, dimension (LDA,N)

                     On entry:

                        The elements on and above the diagonal are not accessed.
                        The elements below the diagonal represent the unit
                        lower-trapezoidal blocked matrix V computed by CLATSQR
                        that defines the input matrices Q_in(k) (ones on the
                        diagonal are not stored) (same format as the output A
                        below the diagonal in CLATSQR).

                     On exit:

                        The array A contains an M-by-N orthonormal matrix Q_out,
                        i.e the columns of A are orthogonal unit vectors.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is COMPLEX array,
                     dimension (LDT, N * NIRB)
                     where NIRB = Number_of_input_row_blocks
                                = MAX( 1, CEIL((M-N)/(MB-N)) )
                     Let NICB = Number_of_input_col_blocks
                              = CEIL(N/NB)

                     The upper-triangular block reflectors used to define the
                     input matrices Q_in(k), k=(1:NIRB*NICB). The block
                     reflectors are stored in compact form in NIRB block
                     reflector sequences. Each of NIRB block reflector sequences
                     is stored in a larger NB-by-N column block of T and consists
                     of NICB smaller NB-by-NB upper-triangular column blocks.
                     (same format as the output T in CLATSQR).

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB1,N)).

           WORK

                     (workspace) COMPLEX array, dimension (MAX(2,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= (M+NB)*N.
                     If LWORK = -1, then a workspace query is assumed.
                     The routine only calculates the optimal size of the WORK
                     array, returns this value as the first entry of the WORK
                     array, and no error message related to LWORK is issued
                     by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November 2019, Igor Kozachenko,
                           Computer Science Division,
                           University of California, Berkeley

   subroutine dorgtsqr (integer m, integer n, integer mb, integer nb, double precision,
       dimension( lda, * ) a, integer lda, double precision, dimension( ldt, * ) t, integer ldt,
       double precision, dimension( * ) work, integer lwork, integer info)
       DORGTSQR

       Purpose:

            DORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
            which are the first N columns of a product of real orthogonal
            matrices of order M which are returned by DLATSQR

                 Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).

            See the documentation for DLATSQR.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           MB

                     MB is INTEGER
                     The row block size used by DLATSQR to return
                     arrays A and T. MB > N.
                     (Note that if MB > M, then M is used instead of MB
                     as the row block size).

           NB

                     NB is INTEGER
                     The column block size used by DLATSQR to return
                     arrays A and T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size).

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)

                     On entry:

                        The elements on and above the diagonal are not accessed.
                        The elements below the diagonal represent the unit
                        lower-trapezoidal blocked matrix V computed by DLATSQR
                        that defines the input matrices Q_in(k) (ones on the
                        diagonal are not stored) (same format as the output A
                        below the diagonal in DLATSQR).

                     On exit:

                        The array A contains an M-by-N orthonormal matrix Q_out,
                        i.e the columns of A are orthogonal unit vectors.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is DOUBLE PRECISION array,
                     dimension (LDT, N * NIRB)
                     where NIRB = Number_of_input_row_blocks
                                = MAX( 1, CEIL((M-N)/(MB-N)) )
                     Let NICB = Number_of_input_col_blocks
                              = CEIL(N/NB)

                     The upper-triangular block reflectors used to define the
                     input matrices Q_in(k), k=(1:NIRB*NICB). The block
                     reflectors are stored in compact form in NIRB block
                     reflector sequences. Each of NIRB block reflector sequences
                     is stored in a larger NB-by-N column block of T and consists
                     of NICB smaller NB-by-NB upper-triangular column blocks.
                     (same format as the output T in DLATSQR).

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB1,N)).

           WORK

                     (workspace) DOUBLE PRECISION array, dimension (MAX(2,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= (M+NB)*N.
                     If LWORK = -1, then a workspace query is assumed.
                     The routine only calculates the optimal size of the WORK
                     array, returns this value as the first entry of the WORK
                     array, and no error message related to LWORK is issued
                     by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November 2019, Igor Kozachenko,
                           Computer Science Division,
                           University of California, Berkeley

   subroutine sorgtsqr (integer m, integer n, integer mb, integer nb, real, dimension( lda, * )
       a, integer lda, real, dimension( ldt, * ) t, integer ldt, real, dimension( * ) work,
       integer lwork, integer info)
       SORGTSQR

       Purpose:

            SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
            which are the first N columns of a product of real orthogonal
            matrices of order M which are returned by SLATSQR

                 Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).

            See the documentation for SLATSQR.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           MB

                     MB is INTEGER
                     The row block size used by SLATSQR to return
                     arrays A and T. MB > N.
                     (Note that if MB > M, then M is used instead of MB
                     as the row block size).

           NB

                     NB is INTEGER
                     The column block size used by SLATSQR to return
                     arrays A and T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size).

           A

                     A is REAL array, dimension (LDA,N)

                     On entry:

                        The elements on and above the diagonal are not accessed.
                        The elements below the diagonal represent the unit
                        lower-trapezoidal blocked matrix V computed by SLATSQR
                        that defines the input matrices Q_in(k) (ones on the
                        diagonal are not stored) (same format as the output A
                        below the diagonal in SLATSQR).

                     On exit:

                        The array A contains an M-by-N orthonormal matrix Q_out,
                        i.e the columns of A are orthogonal unit vectors.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is REAL array,
                     dimension (LDT, N * NIRB)
                     where NIRB = Number_of_input_row_blocks
                                = MAX( 1, CEIL((M-N)/(MB-N)) )
                     Let NICB = Number_of_input_col_blocks
                              = CEIL(N/NB)

                     The upper-triangular block reflectors used to define the
                     input matrices Q_in(k), k=(1:NIRB*NICB). The block
                     reflectors are stored in compact form in NIRB block
                     reflector sequences. Each of NIRB block reflector sequences
                     is stored in a larger NB-by-N column block of T and consists
                     of NICB smaller NB-by-NB upper-triangular column blocks.
                     (same format as the output T in SLATSQR).

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB1,N)).

           WORK

                     (workspace) REAL array, dimension (MAX(2,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= (M+NB)*N.
                     If LWORK = -1, then a workspace query is assumed.
                     The routine only calculates the optimal size of the WORK
                     array, returns this value as the first entry of the WORK
                     array, and no error message related to LWORK is issued
                     by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November 2019, Igor Kozachenko,
                           Computer Science Division,
                           University of California, Berkeley

   subroutine zungtsqr (integer m, integer n, integer mb, integer nb, complex*16, dimension( lda,
       * ) a, integer lda, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension(
       * ) work, integer lwork, integer info)
       ZUNGTSQR

       Purpose:

            ZUNGTSQR generates an M-by-N complex matrix Q_out with orthonormal
            columns, which are the first N columns of a product of comlpex unitary
            matrices of order M which are returned by ZLATSQR

                 Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).

            See the documentation for ZLATSQR.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           MB

                     MB is INTEGER
                     The row block size used by ZLATSQR to return
                     arrays A and T. MB > N.
                     (Note that if MB > M, then M is used instead of MB
                     as the row block size).

           NB

                     NB is INTEGER
                     The column block size used by ZLATSQR to return
                     arrays A and T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size).

           A

                     A is COMPLEX*16 array, dimension (LDA,N)

                     On entry:

                        The elements on and above the diagonal are not accessed.
                        The elements below the diagonal represent the unit
                        lower-trapezoidal blocked matrix V computed by ZLATSQR
                        that defines the input matrices Q_in(k) (ones on the
                        diagonal are not stored) (same format as the output A
                        below the diagonal in ZLATSQR).

                     On exit:

                        The array A contains an M-by-N orthonormal matrix Q_out,
                        i.e the columns of A are orthogonal unit vectors.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is COMPLEX*16 array,
                     dimension (LDT, N * NIRB)
                     where NIRB = Number_of_input_row_blocks
                                = MAX( 1, CEIL((M-N)/(MB-N)) )
                     Let NICB = Number_of_input_col_blocks
                              = CEIL(N/NB)

                     The upper-triangular block reflectors used to define the
                     input matrices Q_in(k), k=(1:NIRB*NICB). The block
                     reflectors are stored in compact form in NIRB block
                     reflector sequences. Each of NIRB block reflector sequences
                     is stored in a larger NB-by-N column block of T and consists
                     of NICB smaller NB-by-NB upper-triangular column blocks.
                     (same format as the output T in ZLATSQR).

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB1,N)).

           WORK

                     (workspace) COMPLEX*16 array, dimension (MAX(2,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= (M+NB)*N.
                     If LWORK = -1, then a workspace query is assumed.
                     The routine only calculates the optimal size of the WORK
                     array, returns this value as the first entry of the WORK
                     array, and no error message related to LWORK is issued
                     by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November 2019, Igor Kozachenko,
                           Computer Science Division,
                           University of California, Berkeley

Author

       Generated automatically by Doxygen for LAPACK from the source code.