Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       hetrs_3 - {he,sy}trs_3: solve using factor

SYNOPSIS

   Functions
       subroutine chetrs_3 (uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
           CHETRS_3
       subroutine csytrs_3 (uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
           CSYTRS_3
       subroutine dsytrs_3 (uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
           DSYTRS_3
       subroutine ssytrs_3 (uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
           SSYTRS_3
       subroutine zhetrs_3 (uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
           ZHETRS_3
       subroutine zsytrs_3 (uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
           ZSYTRS_3

Detailed Description

Function Documentation

   subroutine chetrs_3 (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a,
       integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, complex, dimension(
       ldb, * ) b, integer ldb, integer info)
       CHETRS_3

       Purpose:

            CHETRS_3 solves a system of linear equations A * X = B with a complex
            Hermitian matrix A using the factorization computed
            by CHETRF_RK or CHETRF_BK:

               A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),

            where U (or L) is unit upper (or lower) triangular matrix,
            U**H (or L**H) is the conjugate of U (or L), P is a permutation
            matrix, P**T is the transpose of P, and D is Hermitian and block
            diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This algorithm is using Level 3 BLAS.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the details of the factorization are
                     stored as an upper or lower triangular matrix:
                     = 'U':  Upper triangular, form is A = P*U*D*(U**H)*(P**T);
                     = 'L':  Lower triangular, form is A = P*L*D*(L**H)*(P**T).

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     Diagonal of the block diagonal matrix D and factors U or L
                     as computed by CHETRF_RK and CHETRF_BK:
                       a) ONLY diagonal elements of the Hermitian block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           should be provided on entry in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX array, dimension (N)
                     On entry, contains the superdiagonal (or subdiagonal)
                     elements of the Hermitian block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
                     If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is not referenced in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D
                     as determined by CHETRF_RK or CHETRF_BK.

           B

                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             June 2017,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine csytrs_3 (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a,
       integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, complex, dimension(
       ldb, * ) b, integer ldb, integer info)
       CSYTRS_3

       Purpose:

            CSYTRS_3 solves a system of linear equations A * X = B with a complex
            symmetric matrix A using the factorization computed
            by CSYTRF_RK or CSYTRF_BK:

               A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

            where U (or L) is unit upper (or lower) triangular matrix,
            U**T (or L**T) is the transpose of U (or L), P is a permutation
            matrix, P**T is the transpose of P, and D is symmetric and block
            diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This algorithm is using Level 3 BLAS.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the details of the factorization are
                     stored as an upper or lower triangular matrix:
                     = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
                     = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     Diagonal of the block diagonal matrix D and factors U or L
                     as computed by CSYTRF_RK and CSYTRF_BK:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           should be provided on entry in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX array, dimension (N)
                     On entry, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
                     If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is not referenced in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D
                     as determined by CSYTRF_RK or CSYTRF_BK.

           B

                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             June 2017,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine dsytrs_3 (character uplo, integer n, integer nrhs, double precision, dimension(
       lda, * ) a, integer lda, double precision, dimension( * ) e, integer, dimension( * ) ipiv,
       double precision, dimension( ldb, * ) b, integer ldb, integer info)
       DSYTRS_3

       Purpose:

            DSYTRS_3 solves a system of linear equations A * X = B with a real
            symmetric matrix A using the factorization computed
            by DSYTRF_RK or DSYTRF_BK:

               A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

            where U (or L) is unit upper (or lower) triangular matrix,
            U**T (or L**T) is the transpose of U (or L), P is a permutation
            matrix, P**T is the transpose of P, and D is symmetric and block
            diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This algorithm is using Level 3 BLAS.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the details of the factorization are
                     stored as an upper or lower triangular matrix:
                     = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
                     = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     Diagonal of the block diagonal matrix D and factors U or L
                     as computed by DSYTRF_RK and DSYTRF_BK:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           should be provided on entry in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is DOUBLE PRECISION array, dimension (N)
                     On entry, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
                     If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is not referenced in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D
                     as determined by DSYTRF_RK or DSYTRF_BK.

           B

                     B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             June 2017,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine ssytrs_3 (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a,
       integer lda, real, dimension( * ) e, integer, dimension( * ) ipiv, real, dimension( ldb, *
       ) b, integer ldb, integer info)
       SSYTRS_3

       Purpose:

            SSYTRS_3 solves a system of linear equations A * X = B with a real
            symmetric matrix A using the factorization computed
            by SSYTRF_RK or SSYTRF_BK:

               A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

            where U (or L) is unit upper (or lower) triangular matrix,
            U**T (or L**T) is the transpose of U (or L), P is a permutation
            matrix, P**T is the transpose of P, and D is symmetric and block
            diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This algorithm is using Level 3 BLAS.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the details of the factorization are
                     stored as an upper or lower triangular matrix:
                     = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
                     = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     Diagonal of the block diagonal matrix D and factors U or L
                     as computed by SSYTRF_RK and SSYTRF_BK:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           should be provided on entry in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is REAL array, dimension (N)
                     On entry, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
                     If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is not referenced in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D
                     as determined by SSYTRF_RK or SSYTRF_BK.

           B

                     B is REAL array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             June 2017,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine zhetrs_3 (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * )
       a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, complex*16,
       dimension( ldb, * ) b, integer ldb, integer info)
       ZHETRS_3

       Purpose:

            ZHETRS_3 solves a system of linear equations A * X = B with a complex
            Hermitian matrix A using the factorization computed
            by ZHETRF_RK or ZHETRF_BK:

               A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),

            where U (or L) is unit upper (or lower) triangular matrix,
            U**H (or L**H) is the conjugate of U (or L), P is a permutation
            matrix, P**T is the transpose of P, and D is Hermitian and block
            diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This algorithm is using Level 3 BLAS.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the details of the factorization are
                     stored as an upper or lower triangular matrix:
                     = 'U':  Upper triangular, form is A = P*U*D*(U**H)*(P**T);
                     = 'L':  Lower triangular, form is A = P*L*D*(L**H)*(P**T).

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     Diagonal of the block diagonal matrix D and factors U or L
                     as computed by ZHETRF_RK and ZHETRF_BK:
                       a) ONLY diagonal elements of the Hermitian block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           should be provided on entry in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX*16 array, dimension (N)
                     On entry, contains the superdiagonal (or subdiagonal)
                     elements of the Hermitian block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
                     If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is not referenced in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D
                     as determined by ZHETRF_RK or ZHETRF_BK.

           B

                     B is COMPLEX*16 array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             June 2017,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine zsytrs_3 (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * )
       a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, complex*16,
       dimension( ldb, * ) b, integer ldb, integer info)
       ZSYTRS_3

       Purpose:

            ZSYTRS_3 solves a system of linear equations A * X = B with a complex
            symmetric matrix A using the factorization computed
            by ZSYTRF_RK or ZSYTRF_BK:

               A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

            where U (or L) is unit upper (or lower) triangular matrix,
            U**T (or L**T) is the transpose of U (or L), P is a permutation
            matrix, P**T is the transpose of P, and D is symmetric and block
            diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This algorithm is using Level 3 BLAS.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the details of the factorization are
                     stored as an upper or lower triangular matrix:
                     = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
                     = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     Diagonal of the block diagonal matrix D and factors U or L
                     as computed by ZSYTRF_RK and ZSYTRF_BK:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           should be provided on entry in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX*16 array, dimension (N)
                     On entry, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
                     If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is not referenced in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D
                     as determined by ZSYTRF_RK or ZSYTRF_BK.

           B

                     B is COMPLEX*16 array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             June 2017,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

Author

       Generated automatically by Doxygen for LAPACK from the source code.