Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
tgsyl - tgsyl: Sylvester equation
SYNOPSIS
Functions subroutine ctgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info) CTGSYL subroutine dtgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info) DTGSYL subroutine stgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info) STGSYL subroutine ztgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info) ZTGSYL
Detailed Description
Function Documentation
subroutine ctgsyl (character trans, integer ijob, integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( ldd, * ) d, integer ldd, complex, dimension( lde, * ) e, integer lde, complex, dimension( ldf, * ) f, integer ldf, real scale, real dif, complex, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info) CTGSYL Purpose: CTGSYL solves the generalized Sylvester equation: A * R - L * B = scale * C (1) D * R - L * E = scale * F where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, respectively, with complex entries. A, B, D and E are upper triangular (i.e., (A,D) and (B,E) in generalized Schur form). The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor chosen to avoid overflow. In matrix notation (1) is equivalent to solve Zx = scale*b, where Z is defined as Z = [ kron(In, A) -kron(B**H, Im) ] (2) [ kron(In, D) -kron(E**H, Im) ], Here Ix is the identity matrix of size x and X**H is the conjugate transpose of X. Kron(X, Y) is the Kronecker product between the matrices X and Y. If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b is solved for, which is equivalent to solve for R and L in A**H * R + D**H * L = scale * C (3) R * B**H + L * E**H = scale * -F This case (TRANS = 'C') is used to compute an one-norm-based estimate of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) and (B,E), using CLACON. If IJOB >= 1, CTGSYL computes a Frobenius norm-based estimate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. This is a level-3 BLAS algorithm. Parameters TRANS TRANS is CHARACTER*1 = 'N': solve the generalized sylvester equation (1). = 'C': solve the 'conjugate transposed' system (3). IJOB IJOB is INTEGER Specifies what kind of functionality to be performed. =0: solve (1) only. =1: The functionality of 0 and 3. =2: The functionality of 0 and 4. =3: Only an estimate of Dif[(A,D), (B,E)] is computed. (look ahead strategy is used). =4: Only an estimate of Dif[(A,D), (B,E)] is computed. (CGECON on sub-systems is used). Not referenced if TRANS = 'C'. M M is INTEGER The order of the matrices A and D, and the row dimension of the matrices C, F, R and L. N N is INTEGER The order of the matrices B and E, and the column dimension of the matrices C, F, R and L. A A is COMPLEX array, dimension (LDA, M) The upper triangular matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1, M). B B is COMPLEX array, dimension (LDB, N) The upper triangular matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1, N). C C is COMPLEX array, dimension (LDC, N) On entry, C contains the right-hand-side of the first matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, C has been overwritten by the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, the solution achieved during the computation of the Dif-estimate. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1, M). D D is COMPLEX array, dimension (LDD, M) The upper triangular matrix D. LDD LDD is INTEGER The leading dimension of the array D. LDD >= max(1, M). E E is COMPLEX array, dimension (LDE, N) The upper triangular matrix E. LDE LDE is INTEGER The leading dimension of the array E. LDE >= max(1, N). F F is COMPLEX array, dimension (LDF, N) On entry, F contains the right-hand-side of the second matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, F has been overwritten by the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, the solution achieved during the computation of the Dif-estimate. LDF LDF is INTEGER The leading dimension of the array F. LDF >= max(1, M). DIF DIF is REAL On exit DIF is the reciprocal of a lower bound of the reciprocal of the Dif-function, i.e. DIF is an upper bound of Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2). IF IJOB = 0 or TRANS = 'C', DIF is not referenced. SCALE SCALE is REAL On exit SCALE is the scaling factor in (1) or (3). If 0 < SCALE < 1, C and F hold the solutions R and L, resp., to a slightly perturbed system but the input matrices A, B, D and E have not been changed. If SCALE = 0, R and L will hold the solutions to the homogeneous system with C = F = 0. WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK > = 1. If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK IWORK is INTEGER array, dimension (M+N+2) INFO INFO is INTEGER =0: successful exit <0: If INFO = -i, the i-th argument had an illegal value. >0: (A, D) and (B, E) have common or very close eigenvalues. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. References: [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK Working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. Appl., 15(4):1045-1060, 1994. [3] B. Kagstrom and L. Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. subroutine dtgsyl (character trans, integer ijob, integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( ldd, * ) d, integer ldd, double precision, dimension( lde, * ) e, integer lde, double precision, dimension( ldf, * ) f, integer ldf, double precision scale, double precision dif, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info) DTGSYL Purpose: DTGSYL solves the generalized Sylvester equation: A * R - L * B = scale * C (1) D * R - L * E = scale * F where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, respectively, with real entries. (A, D) and (B, E) must be in generalized (real) Schur canonical form, i.e. A, B are upper quasi triangular and D, E are upper triangular. The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor chosen to avoid overflow. In matrix notation (1) is equivalent to solve Zx = scale b, where Z is defined as Z = [ kron(In, A) -kron(B**T, Im) ] (2) [ kron(In, D) -kron(E**T, Im) ]. Here Ik is the identity matrix of size k and X**T is the transpose of X. kron(X, Y) is the Kronecker product between the matrices X and Y. If TRANS = 'T', DTGSYL solves the transposed system Z**T*y = scale*b, which is equivalent to solve for R and L in A**T * R + D**T * L = scale * C (3) R * B**T + L * E**T = scale * -F This case (TRANS = 'T') is used to compute an one-norm-based estimate of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) and (B,E), using DLACON. If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. See [1-2] for more information. This is a level 3 BLAS algorithm. Parameters TRANS TRANS is CHARACTER*1 = 'N': solve the generalized Sylvester equation (1). = 'T': solve the 'transposed' system (3). IJOB IJOB is INTEGER Specifies what kind of functionality to be performed. = 0: solve (1) only. = 1: The functionality of 0 and 3. = 2: The functionality of 0 and 4. = 3: Only an estimate of Dif[(A,D), (B,E)] is computed. (look ahead strategy IJOB = 1 is used). = 4: Only an estimate of Dif[(A,D), (B,E)] is computed. ( DGECON on sub-systems is used ). Not referenced if TRANS = 'T'. M M is INTEGER The order of the matrices A and D, and the row dimension of the matrices C, F, R and L. N N is INTEGER The order of the matrices B and E, and the column dimension of the matrices C, F, R and L. A A is DOUBLE PRECISION array, dimension (LDA, M) The upper quasi triangular matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1, M). B B is DOUBLE PRECISION array, dimension (LDB, N) The upper quasi triangular matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1, N). C C is DOUBLE PRECISION array, dimension (LDC, N) On entry, C contains the right-hand-side of the first matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, C has been overwritten by the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, the solution achieved during the computation of the Dif-estimate. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1, M). D D is DOUBLE PRECISION array, dimension (LDD, M) The upper triangular matrix D. LDD LDD is INTEGER The leading dimension of the array D. LDD >= max(1, M). E E is DOUBLE PRECISION array, dimension (LDE, N) The upper triangular matrix E. LDE LDE is INTEGER The leading dimension of the array E. LDE >= max(1, N). F F is DOUBLE PRECISION array, dimension (LDF, N) On entry, F contains the right-hand-side of the second matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, F has been overwritten by the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, the solution achieved during the computation of the Dif-estimate. LDF LDF is INTEGER The leading dimension of the array F. LDF >= max(1, M). DIF DIF is DOUBLE PRECISION On exit DIF is the reciprocal of a lower bound of the reciprocal of the Dif-function, i.e. DIF is an upper bound of Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). IF IJOB = 0 or TRANS = 'T', DIF is not touched. SCALE SCALE is DOUBLE PRECISION On exit SCALE is the scaling factor in (1) or (3). If 0 < SCALE < 1, C and F hold the solutions R and L, resp., to a slightly perturbed system but the input matrices A, B, D and E have not been changed. If SCALE = 0, C and F hold the solutions R and L, respectively, to the homogeneous system with C = F = 0. Normally, SCALE = 1. WORK WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK > = 1. If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK IWORK is INTEGER array, dimension (M+N+6) INFO INFO is INTEGER =0: successful exit <0: If INFO = -i, the i-th argument had an illegal value. >0: (A, D) and (B, E) have common or close eigenvalues. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. References: [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK Working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. Appl., 15(4):1045-1060, 1994 [3] B. Kagstrom and L. Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. subroutine stgsyl (character trans, integer ijob, integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldc, * ) c, integer ldc, real, dimension( ldd, * ) d, integer ldd, real, dimension( lde, * ) e, integer lde, real, dimension( ldf, * ) f, integer ldf, real scale, real dif, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info) STGSYL Purpose: STGSYL solves the generalized Sylvester equation: A * R - L * B = scale * C (1) D * R - L * E = scale * F where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, respectively, with real entries. (A, D) and (B, E) must be in generalized (real) Schur canonical form, i.e. A, B are upper quasi triangular and D, E are upper triangular. The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor chosen to avoid overflow. In matrix notation (1) is equivalent to solve Zx = scale b, where Z is defined as Z = [ kron(In, A) -kron(B**T, Im) ] (2) [ kron(In, D) -kron(E**T, Im) ]. Here Ik is the identity matrix of size k and X**T is the transpose of X. kron(X, Y) is the Kronecker product between the matrices X and Y. If TRANS = 'T', STGSYL solves the transposed system Z**T*y = scale*b, which is equivalent to solve for R and L in A**T * R + D**T * L = scale * C (3) R * B**T + L * E**T = scale * -F This case (TRANS = 'T') is used to compute an one-norm-based estimate of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) and (B,E), using SLACON. If IJOB >= 1, STGSYL computes a Frobenius norm-based estimate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. See [1-2] for more information. This is a level 3 BLAS algorithm. Parameters TRANS TRANS is CHARACTER*1 = 'N': solve the generalized Sylvester equation (1). = 'T': solve the 'transposed' system (3). IJOB IJOB is INTEGER Specifies what kind of functionality to be performed. = 0: solve (1) only. = 1: The functionality of 0 and 3. = 2: The functionality of 0 and 4. = 3: Only an estimate of Dif[(A,D), (B,E)] is computed. (look ahead strategy IJOB = 1 is used). = 4: Only an estimate of Dif[(A,D), (B,E)] is computed. ( SGECON on sub-systems is used ). Not referenced if TRANS = 'T'. M M is INTEGER The order of the matrices A and D, and the row dimension of the matrices C, F, R and L. N N is INTEGER The order of the matrices B and E, and the column dimension of the matrices C, F, R and L. A A is REAL array, dimension (LDA, M) The upper quasi triangular matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1, M). B B is REAL array, dimension (LDB, N) The upper quasi triangular matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1, N). C C is REAL array, dimension (LDC, N) On entry, C contains the right-hand-side of the first matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, C has been overwritten by the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, the solution achieved during the computation of the Dif-estimate. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1, M). D D is REAL array, dimension (LDD, M) The upper triangular matrix D. LDD LDD is INTEGER The leading dimension of the array D. LDD >= max(1, M). E E is REAL array, dimension (LDE, N) The upper triangular matrix E. LDE LDE is INTEGER The leading dimension of the array E. LDE >= max(1, N). F F is REAL array, dimension (LDF, N) On entry, F contains the right-hand-side of the second matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, F has been overwritten by the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, the solution achieved during the computation of the Dif-estimate. LDF LDF is INTEGER The leading dimension of the array F. LDF >= max(1, M). DIF DIF is REAL On exit DIF is the reciprocal of a lower bound of the reciprocal of the Dif-function, i.e. DIF is an upper bound of Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). IF IJOB = 0 or TRANS = 'T', DIF is not touched. SCALE SCALE is REAL On exit SCALE is the scaling factor in (1) or (3). If 0 < SCALE < 1, C and F hold the solutions R and L, resp., to a slightly perturbed system but the input matrices A, B, D and E have not been changed. If SCALE = 0, C and F hold the solutions R and L, respectively, to the homogeneous system with C = F = 0. Normally, SCALE = 1. WORK WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK > = 1. If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK IWORK is INTEGER array, dimension (M+N+6) INFO INFO is INTEGER =0: successful exit <0: If INFO = -i, the i-th argument had an illegal value. >0: (A, D) and (B, E) have common or close eigenvalues. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. References: [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK Working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. Appl., 15(4):1045-1060, 1994 [3] B. Kagstrom and L. Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. subroutine ztgsyl (character trans, integer ijob, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( ldd, * ) d, integer ldd, complex*16, dimension( lde, * ) e, integer lde, complex*16, dimension( ldf, * ) f, integer ldf, double precision scale, double precision dif, complex*16, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info) ZTGSYL Purpose: ZTGSYL solves the generalized Sylvester equation: A * R - L * B = scale * C (1) D * R - L * E = scale * F where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, respectively, with complex entries. A, B, D and E are upper triangular (i.e., (A,D) and (B,E) in generalized Schur form). The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor chosen to avoid overflow. In matrix notation (1) is equivalent to solve Zx = scale*b, where Z is defined as Z = [ kron(In, A) -kron(B**H, Im) ] (2) [ kron(In, D) -kron(E**H, Im) ], Here Ix is the identity matrix of size x and X**H is the conjugate transpose of X. Kron(X, Y) is the Kronecker product between the matrices X and Y. If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b is solved for, which is equivalent to solve for R and L in A**H * R + D**H * L = scale * C (3) R * B**H + L * E**H = scale * -F This case (TRANS = 'C') is used to compute an one-norm-based estimate of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) and (B,E), using ZLACON. If IJOB >= 1, ZTGSYL computes a Frobenius norm-based estimate of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. This is a level-3 BLAS algorithm. Parameters TRANS TRANS is CHARACTER*1 = 'N': solve the generalized sylvester equation (1). = 'C': solve the 'conjugate transposed' system (3). IJOB IJOB is INTEGER Specifies what kind of functionality to be performed. =0: solve (1) only. =1: The functionality of 0 and 3. =2: The functionality of 0 and 4. =3: Only an estimate of Dif[(A,D), (B,E)] is computed. (look ahead strategy is used). =4: Only an estimate of Dif[(A,D), (B,E)] is computed. (ZGECON on sub-systems is used). Not referenced if TRANS = 'C'. M M is INTEGER The order of the matrices A and D, and the row dimension of the matrices C, F, R and L. N N is INTEGER The order of the matrices B and E, and the column dimension of the matrices C, F, R and L. A A is COMPLEX*16 array, dimension (LDA, M) The upper triangular matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1, M). B B is COMPLEX*16 array, dimension (LDB, N) The upper triangular matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1, N). C C is COMPLEX*16 array, dimension (LDC, N) On entry, C contains the right-hand-side of the first matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, C has been overwritten by the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, the solution achieved during the computation of the Dif-estimate. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1, M). D D is COMPLEX*16 array, dimension (LDD, M) The upper triangular matrix D. LDD LDD is INTEGER The leading dimension of the array D. LDD >= max(1, M). E E is COMPLEX*16 array, dimension (LDE, N) The upper triangular matrix E. LDE LDE is INTEGER The leading dimension of the array E. LDE >= max(1, N). F F is COMPLEX*16 array, dimension (LDF, N) On entry, F contains the right-hand-side of the second matrix equation in (1) or (3). On exit, if IJOB = 0, 1 or 2, F has been overwritten by the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, the solution achieved during the computation of the Dif-estimate. LDF LDF is INTEGER The leading dimension of the array F. LDF >= max(1, M). DIF DIF is DOUBLE PRECISION On exit DIF is the reciprocal of a lower bound of the reciprocal of the Dif-function, i.e. DIF is an upper bound of Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2). IF IJOB = 0 or TRANS = 'C', DIF is not referenced. SCALE SCALE is DOUBLE PRECISION On exit SCALE is the scaling factor in (1) or (3). If 0 < SCALE < 1, C and F hold the solutions R and L, resp., to a slightly perturbed system but the input matrices A, B, D and E have not been changed. If SCALE = 0, R and L will hold the solutions to the homogeneous system with C = F = 0. WORK WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK > = 1. If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK IWORK is INTEGER array, dimension (M+N+2) INFO INFO is INTEGER =0: successful exit <0: If INFO = -i, the i-th argument had an illegal value. >0: (A, D) and (B, E) have common or very close eigenvalues. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. References: [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK Working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. Appl., 15(4):1045-1060, 1994. [3] B. Kagstrom and L. Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
Author
Generated automatically by Doxygen for LAPACK from the source code.