Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       tptri - tptri: triangular inverse

SYNOPSIS

   Functions
       subroutine ctptri (uplo, diag, n, ap, info)
           CTPTRI
       subroutine dtptri (uplo, diag, n, ap, info)
           DTPTRI
       subroutine stptri (uplo, diag, n, ap, info)
           STPTRI
       subroutine ztptri (uplo, diag, n, ap, info)
           ZTPTRI

Detailed Description

Function Documentation

   subroutine ctptri (character uplo, character diag, integer n, complex, dimension( * ) ap,
       integer info)
       CTPTRI

       Purpose:

            CTPTRI computes the inverse of a complex upper or lower triangular
            matrix A stored in packed format.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  A is upper triangular;
                     = 'L':  A is lower triangular.

           DIAG

                     DIAG is CHARACTER*1
                     = 'N':  A is non-unit triangular;
                     = 'U':  A is unit triangular.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangular matrix A, stored
                     columnwise in a linear array.  The j-th column of A is stored
                     in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
                     See below for further details.
                     On exit, the (triangular) inverse of the original matrix, in
                     the same packed storage format.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
                           matrix is singular and its inverse can not be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             A triangular matrix A can be transferred to packed storage using one
             of the following program segments:

             UPLO = 'U':                      UPLO = 'L':

                   JC = 1                           JC = 1
                   DO 2 J = 1, N                    DO 2 J = 1, N
                      DO 1 I = 1, J                    DO 1 I = J, N
                         AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
                 1    CONTINUE                    1    CONTINUE
                      JC = JC + J                      JC = JC + N - J + 1
                 2 CONTINUE                       2 CONTINUE

   subroutine dtptri (character uplo, character diag, integer n, double precision, dimension( * )
       ap, integer info)
       DTPTRI

       Purpose:

            DTPTRI computes the inverse of a real upper or lower triangular
            matrix A stored in packed format.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  A is upper triangular;
                     = 'L':  A is lower triangular.

           DIAG

                     DIAG is CHARACTER*1
                     = 'N':  A is non-unit triangular;
                     = 'U':  A is unit triangular.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangular matrix A, stored
                     columnwise in a linear array.  The j-th column of A is stored
                     in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
                     See below for further details.
                     On exit, the (triangular) inverse of the original matrix, in
                     the same packed storage format.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
                           matrix is singular and its inverse can not be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             A triangular matrix A can be transferred to packed storage using one
             of the following program segments:

             UPLO = 'U':                      UPLO = 'L':

                   JC = 1                           JC = 1
                   DO 2 J = 1, N                    DO 2 J = 1, N
                      DO 1 I = 1, J                    DO 1 I = J, N
                         AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
                 1    CONTINUE                    1    CONTINUE
                      JC = JC + J                      JC = JC + N - J + 1
                 2 CONTINUE                       2 CONTINUE

   subroutine stptri (character uplo, character diag, integer n, real, dimension( * ) ap, integer
       info)
       STPTRI

       Purpose:

            STPTRI computes the inverse of a real upper or lower triangular
            matrix A stored in packed format.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  A is upper triangular;
                     = 'L':  A is lower triangular.

           DIAG

                     DIAG is CHARACTER*1
                     = 'N':  A is non-unit triangular;
                     = 'U':  A is unit triangular.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is REAL array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangular matrix A, stored
                     columnwise in a linear array.  The j-th column of A is stored
                     in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
                     See below for further details.
                     On exit, the (triangular) inverse of the original matrix, in
                     the same packed storage format.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
                           matrix is singular and its inverse can not be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             A triangular matrix A can be transferred to packed storage using one
             of the following program segments:

             UPLO = 'U':                      UPLO = 'L':

                   JC = 1                           JC = 1
                   DO 2 J = 1, N                    DO 2 J = 1, N
                      DO 1 I = 1, J                    DO 1 I = J, N
                         AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
                 1    CONTINUE                    1    CONTINUE
                      JC = JC + J                      JC = JC + N - J + 1
                 2 CONTINUE                       2 CONTINUE

   subroutine ztptri (character uplo, character diag, integer n, complex*16, dimension( * ) ap,
       integer info)
       ZTPTRI

       Purpose:

            ZTPTRI computes the inverse of a complex upper or lower triangular
            matrix A stored in packed format.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  A is upper triangular;
                     = 'L':  A is lower triangular.

           DIAG

                     DIAG is CHARACTER*1
                     = 'N':  A is non-unit triangular;
                     = 'U':  A is unit triangular.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangular matrix A, stored
                     columnwise in a linear array.  The j-th column of A is stored
                     in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
                     See below for further details.
                     On exit, the (triangular) inverse of the original matrix, in
                     the same packed storage format.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
                           matrix is singular and its inverse can not be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             A triangular matrix A can be transferred to packed storage using one
             of the following program segments:

             UPLO = 'U':                      UPLO = 'L':

                   JC = 1                           JC = 1
                   DO 2 J = 1, N                    DO 2 J = 1, N
                      DO 1 I = 1, J                    DO 1 I = J, N
                         AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
                 1    CONTINUE                    1    CONTINUE
                      JC = JC + J                      JC = JC + N - J + 1
                 2 CONTINUE                       2 CONTINUE

Author

       Generated automatically by Doxygen for LAPACK from the source code.